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PREFACE
[TO THE FIRST EDITION]

There is a certain well-defined range in Electromagnetic Theory, which

every student of physics may be expected to have covered, with more

or less of thoroughness, before proceeding to the study of special branches

of developments of the subject. The present book is intended to give the

mathematical theory of this range of electromagnetism, together with the

mathematical analysis required in its treatment.

The range is very approximately that of Maxwell’s onginal Treatise, but

the present book is in many respects more elementary than that of Maxwell.

Maxwell’s Treatise was written for the fully-equipped mathematician: the

present book is written more especially for the student, and for the physicist

of limited mathematical attainments.

The questions of mathematical analysis which are treated in the text have

been inserted in the places where they are first needed for the development

of the physical theory, in the belief that, in many cases, the mathematical and

ph}^sical theories illuminate one another by being studied simultaneously.

For example, brief sketches of the theories of spherical, zonal and ellipsoidal

harmonics are given in the chapter on Special Problems in Electrostatics,

interwoven with the study of harmonic potentials and electrical applications:

Stokes’ Theorem is similarly given in connection with the magnetic vector-

potential, and so on. One result of this arrangement is to destroy, at least in

appearance, the balance of the amounts of space allotted to the different parts

of the subject. For instance, more than half the book appears to be devoted

to Electrostatics, but this space will, perhaps, not seem excessive when it is

noticed how many of the pages in the Electrostatic part of the book are devoted

to non-elcctrical subjects in applied mathematics (potential-theory, theory of

stress, etc.), or in pure mathematics (Green’s Theorem, harmonic analysis,

complex variable, Fourier’s series, conjugate functions, curvilinear coordinates,

etc.).

A number of examples, taken mainly from the usual Cambridge examina-

tion papers, are inserted. These may provide problems for the mathematical

student, but it is hoped that they may also form a sort of compendium of results

for the physicist, shewing what types of problem admit of exact mathematical

solution.

It is again a pleasure to record my thanks to the officials of the University

Press for the«r unfailing vigilance and help during the printing of the book.

J. H. JEANS.
Princeton,

December^ 1907.



vi Preface

[TO THE SECOND EDITION]

The second Edition will be found to differ only very slightly from the first

in all except the last few chapters. The chapter on Electromagnetic Theory

of Light has, however, been largely rewritten and considerably amplified, and

two new chapters appear in the present edition, on the Motion of Electrons

and on the General Equations ofthe Electromagnetic Field. These last chapters

attempt to give an introduction to the more recent developments of the subject.

They do not aim at anything like completeness of treatment, even in the small

parts of the subjects with which they deal, but it is hoped they will form a

useful introduction to more complete and specialised works and monographs.

J.H. JEANS.
Cambridoe,

[TO THE THIRD EDITION]

In preparing a third Edition I have made only a few changes in the latter

chapters, which were necessary to bring the book up to date.

J. H. JEANS.
London,

[TO THE FOURTH EDITION]

It will be found that the main changes in the fourth Edition consist in a

rearrangement of the later chapters and the addition of a wholly new chapter

on the Theory of Relativity. It need hardly be said that no attempt is made

to give a full account of the Theory; I have tried to present its broad outlines

in the simplest possible way, and in striving after simplicity I have intentionally

omitted all elaboration and detail. It is hoped that the new chapter will pro-

vide a suitable introduction to the Theory of Relativity for the student who

approaches the subject for the first time, equipped with such knowledge of

general electrical theory as can be gained from the rest of the book.

J. H. JEANS.
Dorking,



Preface vii

[TO THE FIFTH EDITION]

In preparing a Fifth Edition 1 have introduced the changes that seemed

to be called for by the now established position of the new theories of relativity

and quanta. I have not attempted any detailed account of the theory of

quanta but have added a chapter on “ The Electrical Structure of Matter
”

which will introduce the reader to this theory.

It is a pleasure to record my thanks to friends and correspondents who
have helped me by making suggestions and pointing out errors and misprints

in earlier editions. My thanks are espeeially due to Dr A. Russell, F.R.S.,

Dr Harold Jeffreys, F.R.S., Professor E. P. Adams, Dr R. E. Baynes, Mr
L. A. Pass and Dr H. L. Curtis.

J. H. JEANS.
Dorking,
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INTRODUCTION

THE THREE DIVISIONS OF ELECTROMAGNETISM

1. The fact that a piece of amber, on being rubbed, attracted to itself

other small bodies, was known to the Greeks, the discovery of this fact being

attributed to Thales of Miletus (640-548 B.C.). A second fact, namely, that

a certain mineral ore (lodestone) possessed the property of attracting iron,

is mentioned by Lucretius. These two facts have formed the basis from

which the modern science of Electromagnetism has grown. It has been

found that the two phenomena are not isolated, but are insignificant units in

a vast and intricate series of phenomena. To study, and as far as possible

interpret, these phenomena is the province of Electromagnetism. And the

mathematical development of the subject must aim at bringing as large

a number of the phenomena as possible within the power of exact mathe-

matical treatment

2. The first great branch of the science of Electromagnetism is known

as Electrostatics. The second branch is commonly spoken of as Magnetism,

but is more accurately described as Magnetostatics. We may say that

Electrostatics has been developed from the single property of amber already

mentioned, and that Magnetostatics has been developed from the single

property of the lodestone. These two branches of Electromagnetism deal

solely with states of rest, not with motion or changes of state, and are

therefore concerned only with phenomena which can be described as statical.

The developments of the two statical branches of Electromagnetism, namely

Electrostatics and Magnetostatics, are entirely independent of one another.

The science of Electrostatics could have been developed if the properties of

the lodestone had never been discovered, and similarly the science of

Magnetostatics could have been developed without any knowledge of the

properties of amber.

The third braneh of Electromagnetism, namely. Electrodynamics, deals

with the motion of electricity and magnetism, and it is in the development

of this branch that we first find that the two groups of phenomena of

electricity and magnetism are related to one another. The relation is
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a reciprocal relation: it is found that magnets in motion produce the same

effects as electricity at rest, while electricity in motion produces the same

effects as magnets at rest. The third division of Electromagnetism, then,

connects the two former divisions of Electrostatics and Magnetostatics, and

is in a sense symmetrically placed with regard to them. Perhaps we may
compare the whole structure of Electromagnetism to an arch made of three

stones. The two side stones can be placed in position independently, neither

in any way resting on the other, but the third cannot be placed in position

until the two side stones are securely fixed. The third stone rests equally

on the two other stones and forms a connection between them.

3. In the present book these throe divisions will be developed in the

order in which they have been mentioned, namely Electrostatics, Ma.ofneto-

statics, Electrodynamics. The earlier chapters will give an explanation of

the physical ideas adopted by Maxwell in his Treatise on Electricity and

Magnetism side by side with a purely mathematical theory. Maxwell’s treat-

ment of Electrical Science was differentiated from that of other writers by

his insistence on Faradays conception of electric and magnetic energy as

residing in the medium. According to this view, the forces acting on electrified

or magnetised bodies did not form the whole system of forces in action, but

served only to reveal the presence of a vastly more intricate system of forces,

which acted throughout the ether by which the material bodies were supposed

to be surrounded. It was only through the presence of matter that the sup-

posed system of forces became perceptible to human observation, so that it

was necessary to try to reconstruct the whole system of forces from no data

except those given by the resultant effect of the forces on matter, where

matter was present. As might be expected, these data proved insufficient to

give full and definite knowledge of the system of ethereal forces; it was found

that a great number of systems of ethereal forces could be constructed, each

of which would produce the same effects on matter as are observed. Of these

systems, however, a single one seemed so very much more probable than any

of the others, that it was unhesitatingly adopted both by Maxwell and by

Faraday.

As soon as the step had been taken of attributing the mechanical forces

acting on matter to a system of forces acting throughout the whole ether,

a further physical development wtis made not only possible but also necessary.

A stress in the ether might be supposed to represent either an electric or a

magnetic force, but could not be both. Faraday supposed a stress in the ether

to be identical with electrostatic force. There was no longer any possibility,

in this scheme of the univ<u-se, of regarding magnetostatic forces as evidence

of simple stresses in the ether.
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It has, however, been said that magnetostatic forces are found to be

produced by the motion of electric charges. Now if electric charges at rest

produce simple stresses in the ether, the motion of electric charges must
obviously be accompanied by changes in the stresses in the ether. It accord-

ingly became possible to identify magnetostatic force with change in the

system of stresses in the ether. This interpretation of magnetic force formed

an essential part of Maxwell’s theory. Comparing the ether to an elastic

material medium, we may say that the electric forces were interpreted as the

statical pressures and strains which accompanied the compression, dilatation

or displacement of the medium, while magnetic forces were interpreted as the

pressures and strains in the medium caused by its motion and momentum.

Thus electrostatic energy was regarded as the potential energy of the medium,

while magnetic energy was regarded as its kinetic energy. Maxwell shewed

that the whole series of known electrostatic and magnetostatic phenomena

might be consistently interpreted as phenomena produced by the stresses

and motion of a medium, this motion being in conformity with the laws of

dynamics. This hypothesis is examined in the earlier chapters of the book,

although, as will be seen later, recent developments call for at least a drastic

modification, and more probably for the complete abandonment of the whole

hypothesis.

4. The observational fact that magnetostatic forces were produced by the

motion of electric charges inevitably raised the question of the interpretation

of general magnetic phenomena in electrical terms. A solution of the problem

suggested by Ampere and Weber needs but little modification to represent

the answer to which modem investigations have led. Recent experimental

researches shew that all matter must be supposed to consist solely of electrically

charged particles, and it seems highly probable that all magnetic phenomena

can be explained by the motion of these charges. If the motion of the charges

is governed by a regularity of a certain kind, the body as a wdiole will shew

magnetic properties. If this regularity does not obtain, the magnetic forces

produced by the motions of the individual charges will on the whole neutralise

one another, and the body will appear to be non-magnetic. On this view the

electricity .and magnetism which at first sight appeared to exist independently

in the universe, are resolved into electricity alone—electricity and magnetism

become electricity at rest and electricity in motion.

This discovery of the ultimate identity of electricity and magnetism is by

no means the hast word of the science of Electromagnetism. As far back as

the time of Maxwell and Faraday, it was recognised that the forces at work

in chemical phenomena must be regarded largely, if not entirely, as electrical

forces. Later, Maxwell shewed light to be an electromagnetic phenomenon,

so that the whole science of Optics became a branch of Electromagnetism.
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Gradually the conviction grew that all physical forces, with the possible

exception of Gravitation, would prove to be ultimately of Electromagnetic

origin, so that by the end of the nineteenth century most scientists believed

that the science of Electromagnetism would advance along the road opened

out by Maxwell until the whole physical universe had been explained in the

terms of electromagnetic theory. Recently this belief has experienced two

very severe checks.

If, as Maxwell believed, the ultimate seat of electromagnetic and optical

phenomena is the ether, it ought to be possible to find out something about

the ether by electromagnetic and optical means. It ought, for instance, at

least to be possible to determine the velocity with which we move through the

ether. A series of experiments devised to this end have one and all failed to

disclose this velocity. To every experimental enquiry, Nature seems to give

the answer either that there is no ether or that natural phenomena go on

exactly as if there were no ether. If this view is finally established, and at

present there seems only a very meagre chance of any alternative. Maxwell’s

theory of the electromagnetic ether must necessarily fall out of science; it will

have served its purpose as a scaffolding which will have enabled the structure

of electromagnetic theory to have been built in perfect form, but it will not

be part of that structure. Nevertheless the time for finally deciding how

much of Maxwell’s theory is scaffolding and how much is part of the essential

structure hiis hardly yet come, so th.at in the present book we shall first

develop the theory along the general lines initiated by Maxwell, and then

shall devote a chapter to the development of a more modern theory and to a*

discussion of how far the existence of an ether is essential to electromagnetic

theory.

The second check to IMaxwell’s theory has originated from the study of

radiation and the ultimate electrical structure of matter; phenomena of

primary importance have been found not to be reconcileable with Maxwell’s

original theory. In a sense the new facts hardly cut at the roots of the theory;

they must rather be thought of as restricting the spread of the branches.

There is no question that the electrical phenomena of everyday life, thunder-

storms, telephones and dynamos, are all governed by Maxwell’s laws; it is

only when we pass to the jihenomena arising from the most intimate electrical

structure of matter that Maxwell’s laws appear to be inadequate. Our final

chapter will contain an explanation of the failure of Maxwell’s Electrodynamics

to deal with these problems, and a very brief introduction to the new theory

which has taken its place.



CHAPTER I

PHYSICAL PRINX'IPLES

The Fundamental Conceptions of Electrostatics

I. ^tate of Electrification of a Body,

6. We proceed to a discussion of the fundamental conceptions which

form the basis of Electrostatics. The first of these is that of a state of

electrification of a body. When a piece of amber has been rubbed so that it

attracts small bodies to itself, we say that it is in a state of electrification

—

or, more shortly, that it is electrified.

Other bodies besides amber possess the power of attracting small bodies

after being rubbed, and are therefore susceptible of electrification. Indeed

it is found that all bodies possess this property, although it is less easily

recognised in the case of most bodies, than in the case of amber. For

instance a brass rod with a glass handle, if rubbed on a piece of silk or cloth,

will shew the power to a marked degree. The electrification here resides in

the brass ;
as will be explained immediately, the interposition of glass or

some similar substance between the brass and the hand is necessary in order

that the brass may retain its power for a sufficient time to enable us to

observe it. If we hold the instrument by the brass rod and rub the glass

handle we find that the same power is acquired by the glass.

11. Conductors and Insulators,

6. Let us now suppose that we hold the electrified brass rod in one hand

by its glass handle, and that we touch it with the other hand. We find that

after touching it its power of attracting small bodies will have completely

disappeared. If we immerse it in a stream of water or pass it through a

flame we find the same result. If on the other hand we touch it with

a piece of silk or a rod of glass, or stand it in a current of air, we find

that its power of attracting small bodies remains unimpaired, at any rate

for a time. It appears therefore that the human body, a flame or water
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have the power of destro3a]ig the electrification of the brass rod when placed

in contact with it, while silk and glass and air do not possess this property.

It is for this reason that in handling the electrified brass rod, the substance

in direct contact with the brass has been supposed to be glass and not the

hand.

In this way we arrive at the idea of dividing all substances into two

classes according as they do or do not remove the electrification when touch-

ing the electrified body. The class which remove the electrification are

called conductors, for as we shall see later, they conduct the electrification

away from the electrified body rather than destroy it altogether; the class

which allow the electrified body to retain its electrification are called non-

conductors or insulators. The classification of bodies into conductors and

insulators appears to have been first discovered by Stephen Gray (1696-

1736).

At the same time it must be explained that the difference between

insulators and conductors is one of degree only. If our electrified brass rod

were left standing for a week in contact only with the air surrounding it and

the glass of its handle, we should find it hard to detect traces of electrifica-

tion after this time—the electrification would have been conducted <away by

the air and the glass. So also if we had been able to immerse the rod in a

flame for a billionth of a second only, we might have found that it retained

considerable traces of electrification. It is therefore more logical to spejik of

good conductors and bad conductors than to speak of conductors and insula-

tors. Nevertheless the difference between a good and a bad conductor is so

enormous, that for our present purpose we need hardly take into account the

feeble conducting power of a bad conductor, and may without serious incon-

sistency, speak of a bad conductor as an insulator. There is, of course, nothing

to prevent us imagining an ideal substance which has no conducting power

at all. It will often simplify the argument to imagine such a substance,

although we cannot realise it in nature.

It may be mentioned here that of all substances the metals are by very

much the best conductors. Next come solutions of salts and acids, and lastly

as very bad conductors (and therefore as good insulators) come oils, waxes,

silk, glass and such substances as sealing wax, shellac, indiarubber. Gases

under ordinary conditions are good insulators. Indeed it is vrorth noticing

that if this had not been so, we should probably never have become acquainted

with electric phenomena at all, for all electricity would be carried away by

conduction through the air as soon as it was generated. Flames, however,

conduct well, and, for reasons which will be explained later, all gases become

good conductors when in the presence of radium or of so-called radio-active

substances. Distilled water is an almost perfect insulator, but any other

sample of water will contain impurities which generally cause it to conduct
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tolerably well, and hence a wet body is generally a bad insulator. So also an

electrified body suspended in air loses its electrification much more rapidly in

damp weather than in dry, owing to conduction by water-particles in the air.

When the body is in contact with insulators only, it is said to be

‘'insulated.” The insulation is said to be good when the electrified body

retains its electrification for a long interval of time, and is said to be poor

when the electrification disappears rapidly. Ggod insulation will enable a

body to retain most of its electrification for some days, while with poor insula-

tion the electrification will last only for a few minutes or seconds.

IIT. Quantity of Electricity.

7. We pass next to the conception of a definite quantity of electricity,

this quantity measuring the degree of electrification of the body with which

it is associated. It is found that the quantity of electricity associated with

any body remains constant except in so far as it is conducted away by con-

ductor. To illustrate, and to some extent to prove this law, we may use

an instrument known as the gold-leaf electroscope. This consists of a glass

vessel, through the top of which a metal rod is passed, supporting at its lower

end two gold-leaves which under normal conditions hang flat side by side,

touching one another throughout their length. When an electrified body

touches or is brought near to the brass rod, the two gold-leaves are seen to

separate, for reasons which will become clear later (§21), so that the instru-

ment can be used to examine whether or not a body is electrified.

Let us fix a metal vessel on the top of the brass rod, the vessel being

closed but having a lid through which bodies can be in-

serted. The lid must be supplied with an insulating

handle for its manipulation. Suppose that we have

electrified some piece of matter—^to make the picture

definite, suppose that we have electrified a small brass

rod by rubbing it on silk- and let us .suspend this body

inside the vessel by an insulating thread in such a

manner that it does not touch the sides of the vessel.

Let us close the lid of the vessel, so that the vessel

entirely surrounds the electrified body, and note the

amount of separation of the gold-leaves of the electro-

scope. Let us try the experiment any number of times,

placing the electrified body in different positions inside

the closed vessel, taking care only that it does not come

into contact with the sides of the vessel or with any

other conductors. We shall find that in every case the separation of the

gold-leaves is exactly the same.
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In this way then, we get the idea of a definite quantity of electrification

associated with the brass rod, this quantity being independent of the position

of the rod inside the closed vessel of the electroscope. We find, further, that

the divergence of the gold-leaves is not only independent of the position of

the rod inside the vessel, but is independent of any changes of state which

the rod may have experienced between successive insertions in the vessel,

provided only that it has not been touched by conducting bodies. We
might for instance heat the rod, or, if it was sufficiently thin, we might

bend it into a different shape, and on replacing it inside the vessel we
should find that it produced exactly the same deviation of the gold-leaves

as before. We may, then, regard the electrical properties of the rod as being

due to a quantity of electricity associated with the rod, this quantit}'^ remaining

permanently the same; except in so far as the original charge is lessened by

contact with conductors, or increased by a fresh supply.

8. We can regard the electroscope as giving an indication of the magni-

tude of a quantity of electricity, two charges being equal when they produce

the same divergence of the leaves of the electroscope.

In the same way we can regard a spring-balance as giving an indication

of the magnitude of a weight, two weights being equal when they produce

the same extension of the spring.

The question of the actual quantitative measurement of a quantity of

electricity as a multiple of a specified unit has not yet been touched. We
can, however, easily devise means for the exact quantitative measurement

of electricity in terms of a unit. We can charge a brass rod to any degree

we please, and agree that the charge on this rod is to be taken to be the

standard unit charge. By rubbing a number of rods until each produces

exactly the same divergence of the electroscope as the standard charge, we

can prepare a number of unit charges, and we can now say that a charge is

equal to n units, if it produces the same deviation of the electroscope as

would be produced by n units all inserted in the vessel of the electroscope

at once. This method of measuring an electric charge is of course not one

that any rational being would apply in practice, but the object of the

present explanation is to elucidate the fundamental principles, and not to

give an account of practical methods.

9. Positive and Negative Electricity. Let us suppose that we insert in

the vessel of the electroscope the piece of silk on which one of the bras««

rods has been supposed to have been rubbed in order to produce its unit

charge. We shall find that the silk produces a divergence of the leaves of

the electroscope, and further that this divergence is exactly equal to that

which is produced by inserting the brass rod alone into the vessel of the

electroscope. If, however, we insert the brass rod and the silk together into

the electroscope, no deviation of the leaves can be detected.
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Again, let us suppose that we charge a brass rod A with a charge which

the divergence of the leaves shews to be n units. Let us rub a second brass

rod B with a piece of silk G until it has a charge, as indicated by the electro-

scope, of m units, m being smaller than n. If we insert the two brass rods

together, the electroscope w’ill, as already explained, give a divergence corre-

sponding to n+m units. If, however, we insert the rod A and the silk C
together, the deviation will be found to correspond to n — m units.

In this way it is found that a charge of electricity must be supposed to

have sign as well as magnitude. As a matter of convention, we agree to

speak of the m units of charge on the silk as m positive units, or more briefly

as a charge + m, while we speak of the charge on the brass as m negative

units, or a charge — m.

10. Generation of Electricity, It is found to be a general law that, on

nibbing two bodies which are initially uncharged, equal quantities of positive

and negative electricity are produced on the two bodies, so that the total

charge generated, measured algebraically, is nil.

We have seen that the electroscope does not determine the sign of the

charge phiced inside the closed vessel, but only its magnitude. We can,

however, determine both the sign and magnitude by two observations. Let

us first insert the charged body alone into the vessel. Then if the divergence

of the leaves corresponds to m units, we know that the charge is either + m
or — m, and if we now insert the body in company with another charged body,

of which the charge is known to be + n, then the charge we are attempting

to metisure will be + m or — m according as the divergence of the leaves

indicates n + m or units. With more elaborate instruments to be

described later (electrometers) it is possible to determine both the magnitude

and sign of a charge by one observation.

11. If we had rubbed a rod of glass, instead of one of brass, on the silk,

we should have found that the silk had a negative charge, and the glass of

course an equal positive charge. It therefore appears that the sign of the

charge produced on a body by friction depends not only on the nature of the

body itself, but also on the nature of the body with which it has been

rubbed.

The following is found to be a general law : If rubbing a substance A on

a second substance B charges A positively and B negatively, and if rubbing

the substance on a third substance G charges B positively and G negatively,

then rubbing the substance A on the substance G will charge A positively

and G negatively.

It is therefore possible to arrange any number of substances in a list such

that a substance is charged with positive or negative electricity when rubbed
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with a second substance, according as the first substance stands above or

below the second substance on the list. The following is a list of this kind,

which includes some of the most important substances ;

Cat's skin, Glass, Ivory, Silk, Rock crystal. The Hand, Wood, Sulphur,

Flannel, Cotton, Shellac, Caoutchouc, Resins, Guttapercha, Metals, Guncotton.

A substance is said to be electropositive or electronegative to a second

substance according as it stands above or below it on a list of this kind.

Thus of any pair of substances one is always electropositive to the other, the

other being electronegative to the first. Two substances, although chemically

the same, must be regarded as distinct for the purposes of a list such as the

above, if their physical conditions are different
;
for instance, it is found that

a hot body must be placed lower on the list than a cold body of the same

chemical composition.

IV. Attraction and Repulsion of Electric Charges,

12. A small ball of pith, or some similarly light substance, coated with

gold-leaf and suspended by an insulating thread, forms a convenient instru-

ment for investigating the forces, if any, which are brought into play by the

presence of electric charges. Let us electrify a pith ball of this kind positively

and suspend it from a fixed point. We shall find that when we bring a

second small body charged with positive electricity near to this first body

the two bodies tend to repel one another, whereas if we bring a negatively

charged body near to it, the two bodies tend to attract one another. From
this and similar experiments it is found that two small bodies charged with

electricity of the same sign repel one another, and that two small bodies

charged with electricity of different signs attract one another.

This law can be well illustrated by tying together a few light silk threads

by their ends, so that they form a tassel, and allowing the threads to hang

vertically. If we now stroke the threads with the hand, or brush them with

a brush of any kind, the threads all become positively electrified, and there-

fore repel one another. They consequently no longer hang vertically but

spread themselves out into a cone. A similar phenomenon can often be

noticed on brushing the hair in dry weather. The hairs become positively

electrified and so tend to stand out from the head.

13. On shaking up a mixture of powdered red lead and yellow sulphur,

the particles of red lead will become positively electrified, and those of the

sulphur will become negatively electrified, as the result of the friction which

has occurred between the two sets of particles in the shaking. If some of

this powder is now dusted on to a positively electrified body, the particles of

sulphur will be attracted and those of red lead repelled. The red lead will

therefore fall off, or be easily removed by a breath of air, while the sulphur
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particles will be retained. The positively electrified body will therefore

assume a yellow colour on being dusted with the powder, and similarly a
negatively electrified body would become red. It may sometimes be con-

venient to use this method of determining whether the electrification of a

body is positive or negative.

14. The attraction and repulsion of two charged bodies is in many
respects different from the force between one charged and one uncharged

body. The latter force, as we have explained, was known to the Greeks : it

must be attributed, as we shall see, to what is known as “electric induction,”

and is invariably attractive. The forces between two bodies both of which

.are charged, forces which may be either attractive or repulsive, seem hardly

to have been noticed until the eighteenth century.

The observations of Robert Symmer (1759) on the attractions and

repulsions of charged bodies are at least amusing. He was in the habit

of wearing two pairs of stockings simultaneously, a worsted pair for comfort

and a silk pair for appearance. In pulling off his stockings he noticed that

they gave a crackling noise, and sometimes that they even emitted sparks

when taken off in the dark. On taking the two stockings off together from

the foot and then drawing the one from inside the other, he found that both

bec.ame inflated so as tb reproduce the shape of the foot, and exhibited

attractions and repulsions at a distance of as much as a foot and a half.

“When this experiment is performed with two black stockings in one

hand, and two white in the other, it exhibits a veiy curious spectacle
; the

repulsion of those of the same colour, and the attraction of those of different

colours, throws them into an agitation that is not unentertaining, and

makes them catch each at that of its opposite colour, and at a greater

distance than one would expect. When allowed to come together they all

unite in one mass. When separated, they resume their former appearance,

and .admit of the repetition of the experiment as often as you please, till

their electricity, gradually wasting, stands in need of being recruited.”

The Law of Force between charged Particles.

15. The Torsion Balance. Coulomb (1785) devised an instrument known

as the Torsion Balance, which enabled him not only to verify the laws of

attraction and repulsion qualitatively, but also to form an estimate of the

actual magnitude of these forces.

The apparatus consists essentiiilly of two light balls A, 0, fixed at the two

ends of a rod which is suspended at its middle point R by a very fine thread

of silver, quartz or other material. The upper end of the thread is fastened

to a movable head D, so that the thread and the rod can be made to

rotate by screwing the head. If the rod is acted on only by its weight, the
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condition for equilibrium is obviously that there shall be no torsion in

the thread. If, however, we fix a third small ball E in the same plane as

the other two, and if the three balls are elec-

trified, the forces between the fixed ball and

the movable ones will exert a couple on the

moving rod, and the condition for equilibrium

is that this couple shall exactly balance that

due to the torsion. Coulomb found that the

couple exerted by the torsion of the thread

was exactly proportional to the angle through

which one end of the thread had been turned

relatively to the other, and in this way was

enabled to measure his electric forces. In

CoulomVs experiments one only of the two

movable balls was electrified, the second serv-

ing merely as a counterpoise, and the fixed

ball was at the same distance from the torsion

thread as the two movable balls.

Suppose that the head of the thread is

turned to such a position that the balls when uncharged rest in equilibrium,

just touching one another without pressure. Let the balls receive charges

e, e\ and let the repulsion between them result in the bar turning through

an angle Q, The couple exerted on the bar by the torsion of the thread

is proportional to and may therefore be taken to be kQ, If a is the

radius of the circle described by the movable ball, we may regard the couple

acting on the rod from the electric forces as made up of a force equal

to the force of repulsion between the two balls, multiplied by a cos

the arm of the moment. The condition for equilibrium is accordingly

aFcos = kO.

Let us now suppose that the torsion head is turned through an angle

in such a direction as to make the two charged balls approach each other

;

after the turning has ceased, let us suppose that the balls are allowed to

come to rest. In the new position of equilibrium, let us suppose that the

two charged balls subtend an angle S' at the centre, instead of the former

angle d. The couple exerted by the torsion thread is now -k- <f>),
so that

if is the new force of repulsion we must have

aF' cos ^6' = K (0' 4-
(f)).

By observing the value of <(> required to give definite values to O' we can

calculate values of F' corresponding to any series of values of O', From a

series of experiments of this kind it is found that so long as the charges on

the two balls remain the same, F' is proportional to cosec* ^0', from which

it is easily seen to follow that the force of repulsion varies inversely as the
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square of the distance. And when the charges on the two balls are varied

it is found that the force varies as the product of the two charges, so long as

their distance apart remains the same. As the result of a series of experi-

ments conducted in this way Coulomb was able to enunciate the law

:

The f(yrce between two small charged bodies is proportional to the product

of their charges^ and is inversely proportional to the square of their distance

apart, the force being one of repulsion or attraction according as the two

charges are of the same or of opposite kinds,

16. In mathematical language we may say that there is a force of repul-

sion of amount

where e, s' are the charges, r their distance apart, and c is a positive

constant.

If e, e are of opposite signs the product ee* is negative, and a negative

repulsion must be interpreted as an attraction.

Although this law was first published by Coulomb, it subsequently

appeared tliat it had been discovered at an earlier date by Cavendish,

whose experiments were much more refined than those of Coulomb. Caven-

dish was able to satisfy himself that the law was certainly intermediate

between the inverse 2 + 2 — 3'^th power of the distance (see below,

§§
46—48). Unfortunately his researches remained unknown until his

manuscripts were published in 1879 by Clerk Maxwell.

The experiments of Coulomb and Cavendish, it need hardly be said,

were very rough compared with those which are rendered possible by modern

refinements of theory and practice, so that these experiments are no longer

the justification for using the law expressed by formula (1 ) as the basis of

the IMathcmatical Theory of Electricity. More delicate experiments with the

apparatus used by Cavendish, which will be explained later, have, however,

been found to give a complete confirmation of Coulomb's Law, so long as

the charged bodies may both be regarded as infinitely small compared with

their distance apart. Any deviation from the law of Coulomb must accord-

ingly be attributed to the finite sizes of the bodies which carry the charges.

As it is only in the case of infinitely small bodies that the symbol r of

formula ( 1 ) has had any meaning assigned to it, we may regard the law' (1 )

as absolutely true, at any rate so long as r is large enough to be a measurable

quantity.
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r/ic Unit of Electricity,

17. The law of Coulomb supplies us with a convenient unit in which

to measure electric charges.

The unit of mass, the pound or gramme, is a purely arbitrary unit, and

all quantities of mass are measured simply by comparison with this unit.

The same is true of the unit of space. If it were possible to keep a charge

of electricity unimpaired through all time we might take an arbitrary charge

of electricity as standard, and measure all charges by comparison with this

one standard charge, in the way suggested in § 8. As it is not possible to do

this, we find it convenient to measure electricity with reference to the units

of mass, length and time of which we are already in possession, and Coulomb's

Law enables us to do thia We define as the unit charge a charge such that

when two unit charges are placed one on each of two small particles at

a distance of a centimetre apart, the force of repulsion between the particles

is one dyne. With this definition it is clear that the quantity c in the

formula (1) becomes equal to unity, so long as the c.o.s. system of units

is used.

In a similar way, if the mass of a body did not remain constant, we might

have to define the unit of mass with reference to those of time and length

by saying that a mass is a unit mass provided that two such masses, placed

at a unit distance apart, produce in each other by their mutual gravitational

attraction an acceleration of a centimetre per second per second. In this

case we should have the gravitational acceleration / given by an equation

of the form

and this equation would determine the unit of mass.

18. Physical dimensions. If the unit of mass were determined by

equation (2), m would appear to have the dimensions of an acceleration

multiplied by the square of a distance, and therefore dimensions

L*T-*,

As a matter of fact, however, we know that mass is something entirely apart

from length and time, except in so far as it is connected with them through

the law of gravitation. The complete gravitational acceleration is given by

m
7 ^ t

where 7 is the so-called “ gravitation constant.”

By our proposed definition of unit mass we should have made the value

of 7 numerically equal to unity
; but its physical dimensions are not those of
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a mere number, so that we cannot neglect the factor 7 when equating

physical dimensions on the two sides of the equation.

So also in the formula

we can and do choose our unit of charge in such a way that the nvmei'ical

value of c is unity, so that the numerical equation becomes

blit we must remember that the factor c still retains its physical dimensions.

Electricity is something entirely apart from mass, length and time, and it

follows that we ought to treat the dimensions of equation (3), by introducing

a new unit of electricity E and saying that c is of the dimensions of a force

divided by and therefore of dimensions

If, however, we compare dimensions in equation (4), neglecting to take

account of the physical dimensions of the suppressed factor c, it appears as

though a charge of electricity can be expressed in terms of the units of

mass, length and time, just as it might appear from equation (2) as though

a mass could be expressed in terms of the units of length and time. The
apparent dimensions of a charge of electricity are now

M^L^T-^ (5).

It will be readily understood that these dimensions are merely apparent

and not in any way real, when it is stated that other systems of units are

also in use, and that the apparent physical dimensions of a charge of

electricity are found to be different in the different systems of units. The

system which we have just described, in which the unit is defined as

the charge which makes c numerically equal to unity in equation (3), is

known as the Electrostatic system of units.

There will be ditierent electrostatic systems of units corresponding to

different units of length, mass and time. In the C.G.s. system these units

are taken to be the centimetre, gramme and second. In passing from one

system of units to another the unit of electricity will change as if it were

a physical quantity having dimensions so long as we hold to the

agreement that equation (4) is to be numerically true, i.e, so long as the

units remain electrostatic. This gives a certain importance to the apparent

dimensions of the unit of electricity, as expressed in formula (5).
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V. Electrification by Induction.

19. Let us suspend a metal rod by insulating supports. Suppose that

the rod is originally uncharged, and that we bring a small body charged

with electricity near to one end of the rod, without allowing the two bodies

to touch. We shall find on sprinkling the rod with electrified powder of the

kind previously described (§ 13), that the rod is now electrified, the signs of

the charges at the two ends being different. This electrification is known as

electrification by induction. We speak of the electricity on the rod as an

induced charge, and that on the originally electrified body as the inducing or

exciting charge. We find that the induced charge at the end of the rod

nearest to the inducing charge is of sign opposite to that of the inducing

charge, that at the further end of the rod being of the same sign as the

inducing charge. If the inducing charge is removed to a great distance

from the rod, we find that the induced charges disappear completely, the rod

resuming its original unelectrified state.

If the rod is arranged so that it can be divided into two parts, we can

separate the two parts before removing the inducing charge, and in this way

can retain the two parts of the induced charge for further examination.

If we insert the two induced charges into the vessel of the electroscope,

we find that the total electrification is nil: in generating electricity by

induction, as in generating it by friction, we can only generate equal

quantities of positive and negative electricity; we cannot alter the algebraic

total charge. Thus the generation of electricity by induction is in no way

a violation of the law that the total charge on a body remains unaltered

except in so far as it is removed by conduction.

20. If the inducing charge is placed on a sufficiently light conductor, we

notice a violent attraction between it and the rod which carries the induced

charge. This, how'ever, as we shall now shew, is only in accordance with

CoulomVs Law. Let us, for the sake of argument, suppose that the

inducing charge is a positive charge e. Let us divide up that part of the

ABC C B A'

(

Pio. 3.

rod which is negatively charged into small parts AB, BG, ... ,
beginning from

the end A which is nearest to the inducing charge /, in such a way that each

part contains the same small charge — €, of negative electricity. Let us

similarly divide up the part of the rod which is positively charged into
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sections A'B\ B*G\
,
beginning from the further end, and such that each of

these parts contains a charge +6 of positive electricity. Since the total

induced charge is zero, the number of positively charged sections A'B\
B'G\ ... must be exactly equal to the number of negatively charged sections

AB, BG, .... The whole series of sections can therefore be divided into a

series of pairs

AB and A'B '
;
BC and BV '

; etc.

such that the two sections of any pair contain equal and opposite, charges.

The charge on A'B' being of the same sign as the inducing charge e, repels

the body I which carries this charge, while the charge on AB, being of a

difi’orent sign from the charge on /, attracts /. Since AB is nearer to I than

A*B\ it lollows from Coulomb’s Law that the attractive force ee/r* between

AB and I is numerically greater than the repulsive force ee/r® between A'B'

and /, so that the resultant action of the pair of sections AB, A'B' upon

I is an attraction. Obviously a similar result is true for every other pair

of sections, so that we arrive at the result that the whole force between the

two bodies is attractive.

This result fully accounts for the fundamental property of a charged body

to attract small bodies to which no charge has been given. The proximity of

the charged body induces charges of different signs on those parts of the body

which are nearer to, and further away from, the inducing charge, and although

the total induced chaige is zero, yet the attractions will always outweigh the

repulsions, so that the resultant force is always one of attraction.

21. The same conceptions explain the divergence of the gold-leaves of

the electroscope which occurs when a charged body is brought near to the

plate of the electroscope or introduced into a closed vessel standing on this

plate. All the conducting parts nf the electroscope—gold-leaves, rod, plate

and vessel if any—may be regarded as a single conductor, and of this the

gold -leaves form the part furthest removed from the charged body. The
leaves accordingly become charged by induction with electricity of the same

sign as that of the chargoil body, and as the charges on the two gold-leaves

arc of similar sign, they repel one another.

22. On separating the two parts of a conductor while an induced charge

is on it, and then removing both from the influence of the induced charge,

we gain two charges of electricity without any diminution of the inducing

cliarge. We can store or utilise these charges in any way and on replacing

the two parts of the conductor in position, we shall again obtain an induced

charge. This again may be utilised or stored, and so on indefinitely. There

is therefore no limit to the magnitude of the charges which can be obtained

from a small initial charge by repeating the process of induction.

This principle underlies the action of the Electrophorus. A cake of resin

is electrified by friction, and for convenience is placed with its electrified
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surface uppermost on a horizontal table. A metal disc is held by an insulating

handle parallel to the cake of resin and at a slight distance above it. The

operator then touches the upper surface of the disc with his finger. When
the process has reached this stage, the metal disc, the body of the operator

and the earth itself form one conductor. The negative electricity on the resin

induces a positive charge on the nearer parts of this conductor—primarily

on the metal disc—^and a negative charge on the more remote p<arts of the

conductor—the further region of the earth. When the operator removes

his finger, the disc is left insulated and in possession of a positive charge.

As already explained, this charge may be used and the process repeated

indefinitely.

In all its essentials, the principle utilised in the generation of electricity

by the '* influence machines’* of Voss, Holtz, Wimshurst and others is identical

with that of the electrophorus. The machines are arranged so that by the

turning of a handle, the various stages of the process are repeated cyclically

time after time.

23. Electric EquilihHum, Returning to the apparatus illustrated in

fig. 3, p. 16, it is found that if we remove the inducing charge without

allowing the conducting rod to come into contact with other conductors,

the charge on the rod disappears gradually as the inducing charge recedes,

positive and negative electricity combining in equal quantities and neutral-

ising one another. This shews that the inducing charge must be supposed

to act upon the electricity of the induced charge, rather than upon the

matter of the conductor. Upon the same principle, the various parts of the

induced charge must be supposed to act directly upon one another. Moreover,

in a conductor charged with electricity at rest, there is no reaction between

matter and electricity tending to prevent the passage of electricity through

the conductor. For if there were, it would be possible for parts of the induced

charge to be retained, after the inducing charge had been removed, the parts

of the induced charge being retained in position by their reaction with the

matter of the conductor. Nothing of this kind is observed to occur. We
conclude then that the elements of electrical charge on a conductor are each

in equilibrium under the influence solely of the forces exerted by the remaining

elements of charge.

24. An exception occurs when the electricity is actually at the surface

of the conductor. Here there is an obvious reaction between matter and

electricity—the reaction which prevents the electricity from leaving the

surface of the conductor. Clearly this reaction will be normal to the surface,

so that the forces acting upon the electricity in directions which lie in the

tangent plane to the surface must be entirely forces from other charges of

electricity, and these must be in equilibrium. To balance the action of the

matter on the electricity there* must be an equal and opposite reaction of
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electricity on matter. This, then, will act normally outwards at the surface of

the conductor. Experimentally it is best put in evidence by the electrification

of soap-bubbles. A soap-bubble when electrified is observed to expand, the

normal reaction between electricity and matter at its surface driving the

surface outwards until equilibrium is reestablished (see below, § 94).

25. Also when two conductors of different material are placed in con-

tact, electric phenomena are found to occur which have been explained by

Helmholtz as the result of the operation of reactions between electricity and

matter at the surfaces of the conductors. Thus, although electricity can pass

quite freely over the different parts of the same conductor, it is not strictly

true to say that electricity can pass freely from one conductor to another of

different material Avith which it is in contact. Compared, however, with the

forces with Avhich we shall in general be dealing in electrostatics, it will be

legitimate to disregard entirely any forces of the kind just described. We
shall therefore neglect the difference between the materials of different con-

ductors, so that any number of conductors placed in contact may be regarded

^ a single conductor.

Theories to explain Electrical Phenomena.

26. Onefold Theory. Franklin, as far back as 1751, tried to include

all the electrical phenomena with which he was acquainted in one simple

explanation. He suggested that all these phenomena could be explained by

supposing the existence of an indestructible “ electric fluid,** which could be

associated with matter in different degrees. Corresponding to the normal

state of matter, in which no electrical properties are exhibited, there is

a definite normal amount of ‘‘electric fluid." When a body was charged

with positive electricity, Franklin explained that there was an excess of

“ electric fluid” above the normal amount, and similarly a charge of negative

electricity represented a deficiency of electric fluid. The generation of equal

quantities of positive and negative electricity was now explained: for instance,

in rubbing two bodies together we simply transfer “ electric fluid ** from one

to the other. To explain the attractions and repulsions of electrified bodies,

Franklin supposed that the particles of ordinary matter repelled one another,

while attracting the “ electric fluid.** In the normal state of matter the

quantities of " electric fluid ** and ordinary matter were just balanced, so that

there was neither attraction nor repulsion between bodies in the normal state.

According to a later modification of the theory the attractions just out-balanced

the repulsions in the normal state, the residual force accounting for gravitation.

27. Two-fluid Theory. A further attempt to explain electric phenomena

was made by the two-fluid theory. In this there were three things concerned,

ordinary matter and two electric fluids—positive and negative. The degree

of electrification was supposed to be the mejxsure of the excess of positive
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electricity over negative, or of negative over positive, according to the sign

of the electrification. The two kinds of electricity attracted and repelled,

electricities of the same kind repelling, and of opposite kinds attracting, and

in this way the observed attractions and repulsions of electrified bodies were

explained without having recourse to systems of forces between electricity

and ordinary matter. It is, however, obvious that the two-fluid theory was

too elaborate for the facts. On this theory ordinary matter devoid of both

kinds of electricity would be physically different from matter possessing

equal quantities of the two kinds of electricity, although both bodies would

equally shew an absence of electrification. There is no evidence that it is

possible to establish any physical difference of this kind between totally

unelectrified bodies, so that the two<fluid theory must be dismissed as

explaining more than there is to be explained.

28. Modem view of Electricity. The two theories which have just been

mentioned rested on no experimental evidence except such as is required

to establish the phenomena with which they are directly concerned. The
modem view of electricity, on the other hand, is based on an enormous mass
of experimental evidence, to which contributions are made, not only by the

phenomena of electrostatics, but also by the phenomena of almost every

branch of physics and chemistry. The modem explanation of electricity is

found to bear a very close resemblance to the older explanation of the one-

fluid theory—so much so that it will be convenient to explain the modern
view of electricity simply by making the appropriate modifications of the

one-fluid theory.

We suppose the “electric-fluid” of the one-fluid theory replaced by a

crowd of small particles—“ electrons,” it will be convenient to call them—all

exactly similar, and each having exactly the same charge of neqative electricity

permanently attached to it. According to the best recent determinations, the

amount of this charge is 4-803 x 10“*° electrostatic units, while the mass of

each electron is 9-12 x 10“^ grammes. These det<*rminatioris, which are due

to Millikan and Bucherer, are probably accurate to about one part in a thou-

sand. To a lower degree of accuracy the radius of the electron is probably

about 2 X 10“** cms. We can form some conception of the intense concentra-

tion of mass and electrification in the electron by noticing that a gramme of

electrons, crammed together in cubical piling, would occupy only 7 x 10”**

cubic centimetres, while two grammes of electrons placed at a distance of a

metre apart would repel one another with a force equal to the weight of

3 X 10” tons. The electric force of repulsion outweighs the gravitational force

of attraction in the ratio of 4*2 x 10” to one.
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this condition in fact defines the unelectrified state. A piece of matter appears

to be charged with negative or positive electricity according as the number of

negatively-charged electrons it possesses is in excess or defect of the number

it would possess in its unelectrified state.

From this it follows that we cannot go on dividing a charge of electricity

indefinitely—a natural limit is imposed by the charge of one electron, just as

in chemistry we suppose a natural limit to be imposed on the divisibility of

matter by the mass of an atom. The modern view of electricity may then be

justly described as an “atomic” view. And of all the experimental evidence

which supports this view none is more striking than the circumstance that

these “atoms” continually reappear in experiments of the most varied kinds, and

that the atomic charge of electricity appears always to be precisely the same.

It also follows that in charging a body with electricity we either add to

or subtract from its mass according as we charge it with negative electricity

{i.e.y add to it a number of electrons), or charge it with positive electricity

(i.e., remove from it a number of electrons). Since the mass of an electron is

so minute in comparison with the charge it carries, it will readily be seen

that the change in its mass is very much too small to be perceptible by any

methods of measurement which are at our disposal. Maxwell mentions, as

an example of a body possessing an electric charge large compared with its

mass, the case of a gramme of gold, which may be beaten into a gold-leaf one

s(piare metre in area, and can, in this state, hold a charge of 60,000 electro-

static units of negative electricity. The mass of the number of negatively

electrified electrons necessary to carry this charge will be found, as the result

of a brief calculation from the data alreiidy given, to be about 10“^* grammes.

The change of weight by electrification is therefore one which it is far beyond

the power of the most sensitive balance to detect.

On this view of electricity, the electrons must repel one another, and

must be attracted by matter which is devoid of electrons, or in which there is

a deficiency of electrons. The electrons move about freely through conductors,

but not through insidators. The reactions which, as we have seen, must be

supposed to occur at the surface of charged conductors between “matter” and

“ehictricity,” can now be interpreted simply as systems of forces between the

electrons and the remainder of the matter. Up to a certain extent these

forces will restrain the electrons from leaving the conductor, but if the electric

forces acting ou the electrons exceed a certain limit, they will overcome the

forces acting between the electrons and the remainder of the conductor, and

an electric discharge takes place from the surface of the conductor.

us an essential feature of the modern view of electricity is that it

regards the flow of electricity jxs a material flow of charged electrons. Good

conductors and good insulators are now seen to mean simply substances in

which the electrons move with extreme ease and extreme difficulty respectively.
^
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The law that equal quantities of positive and negative electricity are generated,

simultaneously means that electrons may flow about, but cannot be created

or annihilated.

The modem view enables us also to give a simple physical interpretation

to the phenomenon of induction. A positive charge placed near a conductor

will attract the electrons in the conductor, and these will flow through the

conductor towards the charge until electrical equilibrium is established.

There will be then an excess of negative electrons in the regions near the

positive charge, and this excess will appear as an induct'd negative charge.

The deficiency of electrons in the more remote parts of the conductor will

appear as an induced positive charge. If the inducing charge is iiegiitive,

the flow of electrons will be in the opposite direction, so that the signs of the

induced charges will be reversed. In an insulator, no flow of electrons ca?i take

place, so that the phenomenon of electrification by induction docs not occur.

On this view of electricity, negative electricity is essentially different in

its nature from positive electricity: the difference is something more funda-

mental than a mere difference of sign. Experimental proof of this difft'ivnce

is not wanting, e.g,^ a sharply pointed conductor can hold a greater charge of

positive than of negative electricity before reaching the limit at which a

discharge begins to take place from its surface. But until we come to those

parts of electric theory in which the flow of electricity has to be definitely

regarded as a flow of electrons, this essential difference between positive and

negative electricity will not appear, and the difference between the two will

be adequately represented by a difference of sign.

In the last chapter of the book, it will be explained how recent experi-

mental work has traced this essential difference between positive and negative

electricity down to its source. We shall see that the positive electricity

occurs only in the central cores or “ nuclei ” of the atom of which matter is

constituted, while the outer regions of these atoms consist of negatively-

charged particles, the “electrons” alrerady described. For this reason the

negative electricity can run about from one atom to another, and even from

one conductor to another, but the positive electricity necessarily remains per-

manently associated with the same atoms of matter.

Summary.

29. It will be useful to conclude the chapter by a summary of the results

which are arrived at by experiment, independently of all hypotheses as to the

nature of electricity.

These have been stated by Maxwell in the form of laws, as follows:

Law /. The total electrification of a body, or system of bodies,

remains always the same, except in so far as it receives electrification

from or gives electrification to other bodies.
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Law II. When one body electrifies another by conduction, the

total electrification of the two bodies remains the same ;
that is, the

one loses as much positive or gains as much negative electrification as

the other gains of positive or loses of negative electrification.

Law III. When electrification is produced by friction, or by any

other known method, equal quantities of positive and negative electrifi-

cation are produced.

Definition. The electrostatic unit of electricity is that quantity of

positive electricity which, when placed at unit distance from an equal

quantity, repels it with unit of force.

Law IV. The repulsion between two small bodies charged respect-

ively with e and e* units of electricity is numerically equal to the

product of the charges divided by the square of the distance.

These are the forms in which the laws are given by Maxwell. Law I, it

will be seen, includes II and III. As regards the Definition and Law IV,

it is necessary to specify the medium in which the small bodies are placed,

since, as we shall see later, the force is different when the bodies are in air,

or in a vacuum, or surrounded by other non-conducting media. It is usual

to assume, for purposes of the Definition and Law IV, that the bodies are in

air. For strict scientific exactness, we ought further to specify the density,

the temperature, and the exact chemical composition of the air. Also we

have seen that when the electricity is not insulated on small bodies, but is

free to move on conductors, the forces of Law IV must be regarded as acting

on the charges of electricity themselves. When the electricity is not free to

move, there is an action and reaction between the electricity and matter, so

that the forces which really act on the electricity appear to act on the bodies

themselves which carry the charges.



CHAPTER II

THE ELECTROSTATIC FIELD OF FORCE

Conceptions used in the Survey of a Field of Force

I. The Intensity at a paint

30. The space in the neighbourhood of charges of electricity, considered

with reference to the electric phenomena occurring in this space, is spoken of

as the electric field.

A new charge of electricity, placed at any point 0 in an electric field,

will experience attractions or repulsions from all the charges in the field.

The introduction of a new charge will in general disturb the arrangement

of the charges on all the conductors in the field by a process of induction.

If, however, the new charge is supposed to be infinitesimal, the effects of

induction will be negligible, so that the forces acting on the new charge may

be supposed to arise from the charges of the original field.

Let us suppose that we introduce an infinitesimal charge € on an infinitely

small conductor. Any charge e, in the field at a distance from the point 0
will repel the charge with a force ee,/ri*. The charge 6 will experience a

similar repulsion from every charge in the field, so that each repulsion will be

proportional to €.

The resultant of these forces, obtained by- the usual rules for the com-

position of forces, will be a force proportional to €—say a force Re in some

direction OP, We define the electric intensity at 0 to be a force of which

the magnitude is R, and the direction is OP, Thus

The electric intensity at any point is given, in magnitude and direction, by

the force per unit charge which would act on a charged particle placed at this

point, the charge on the particle being supposed so small that the distribution

of electricity on the conductors in the field is not affected by its presence.

The electric intensity at 0, defined in this way, depends only on the

permanent field of force, and has nothing to do with the charge, or the size,

or even the existence of the small conductor which has been used to explain
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the meaning of the electric intensity. There will be a definite intensity at

every point of the electric field, quite independently of the presence of small

charged bodies.

A small charged body might, however, conveniently be used for exploring

the electric field and determining experimentally the direction of the electric

intensity at any point in the field. For if we suppose the body carrying a

charge 6 to be held by an insulating thread, both the body and thread being

so light that their weights may be neglected, then clearly all the forces

acting on the charged body may be reduced to two:

—

(i) A force Re in the direction of the electric intensity at the point

occupied by 6,

(ii) the tension of the thread acting along the thread.

For equilibrium these two forces must be equal and opposite. Hence the

direction of the intensity at the point occupied by the small charged body is

obtained at once by producing the direction of the thread through the charged

body. And if we tie the other end of the thread to a delicate spring balance,

we can measure the tension of the spring, and since this is numerically equal

to Re, we should be able to determine jR if e were known. We might in

this way determine the magnitude and direction of the electric intensity at

any point in the field.

In a similar way, a float at the end of a flsbing-line might be used to determine the

strength and direction of the current at any point on a small lake. And, just as with the

electric intensity, wc should only get the true direction of the current by supposing the

float to be of infinitesimal size. We could not imagine the direction of the current

obtained by anchoring a battleship in the lake, because the presence of the ship would

disturb the whole system of currents.

II. Lines of Force.

31. Let us start at any point 0 in the electric field, and move a short

distance OP in the direction of the electric intensity at 0. Starting firom P
let us move a short distance PQ in the direction of the intensity at P,

O

and so on. In this way we obtain a broken path OPQP..., formed of

a number of small rectilinear elements. Let us now pass to the limiting

case in which each of the elements OP, PQ, QR, ... is infinitely small.

The broken path becomes a continuous curve, and it has the property that

at every point on it the electric intensity is in the direction of the tangent
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bo the curve at that point. Such a curve is called a Line of Force. We
may therefore define a line of force as follows:

—

A line of force is a curve in the electric field, such that the tangent at every

point is in the direction of the electric intensity at that point.

If we suppose the motion of a charged particle to be so much retarded by frictional

resistance that it cannot acquire any appreciable momentum, then a charged particle set

free in the electric field would trace out a line of force. In the same way, we should have

lines of current on the surface of a lake, such that the tangent to a line of current at any

point coincided with the direction of the current, and a small float set free on the lake

would describe a current-line.

32. The resultant of a number of known forces has a definite direction,

so that there is a single direction for the electric intensity at every point of

the field. It follows that two lines of force can never intersect ; for if they

did there would be two directions for the electric intensity at the point of

intersection (namely, the two tangents to the lines of force at this point) so

that the resultant of a number of known forces would be acting in two

directions at once. An exception occurs, as we shall see, when the resultant

intensity vanishes at any point.

The intensity R may be regarded as compounded of three components

X, Y, Zy parallel to three rectangular axes Ox, Oy, Oz.

The magnitude of the electric intensity is then given by

= Z* + F» + Z\

and the direction cosines of its direction are

X Y Z
R* R* R'

These, therefore, are also the direction cosines of the tangent at x, y, z

to the line of force through the point. The differential equation of the

system of lines of force is accordingly

dx ^dy ^dz

III. The Potential.

33. In moving the small test-charge e about in the field, we may either

have to do work against electric forces, or we may find that these forces

will do work for us. A small charged particle which has been placed at a

point 0 in the electric field may be regarded as a store of energy, this

energy being equal to the work (positive or negative) which has been done

in taking the charge to 0 in opposition to the repulsions and attractions of

the field. The energy can be reclaimed by allowing the particle to retrace

its path. Assume the charge on the moving particle to be so small that
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the distribution of electricity on the conductors in the field is not affected

by it. Then the work done in bringing the charge e to a point 0 is pro-

portional to e, and may be taken to be Ve. The amount of work done will

of course depend on the position from which the charged particle started.

It is convenient, in measuring Ve, to suppose that the particle started at a

point outside the field altogether, t.e. from a point so far removed from all

the charges of the field that their effect at this point is inappreciable—for

brevity, we may say the point at infinity. We now define V to be the

potential at the point 0. Thus

The potential at any point in the field ie the work per unit charge which

has to he dome on a charged particle to bring it to that point, ike charge on the

particle being supposed so small that the distribution of electricity on the

conductors in the field is not affected by its presence.

In moving the small charge € from x, y, z to x-^dx, y + dy, js + we

shall have to perform an amount of work

— {Xdx + Ydy + Zdz) e,

so that in bringing the charge e into position at x, y, z firom outside the field

altogether, we do an amount of work

—
€
j(Xdx + Ydy + Zdz),

where the integral is taken along the path followed by e.

Denoting the work done on the charge e in bringing it to any point

X, y, z in the electric field by Ve, we clearly have

V= f {Xdx + Ydy + Zdz) (6),
^ 00

giving a mathematical expression for the potential at the point x, y, z.

The same result can be put in a different form. If ds is any element of

the path, and if the intensity R at the extremity of this element makes an

angle 0 with ds, then the component of the force acting on e when moving

along ds, resolved in the direction of motion of e, is iZecosA The work

done in moving e along the element ds is accordingly

— Re cos dds,

so that the whole work in bringing e from infinity to x,y,zia

r*. y. *

j
Rcos Ods,

and since this is equal, by definition, to Ve, we must have

K = - f jR cos Bds (7).
J OB
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We see at once that the two expressions (6) and (7) just obtained for V
are identical, on noticing that 6 is the angle between two lines of which the

direction cosines are respectively

X F Z
, ^ ^ ^

R' R* R Ts* di' ds'

w ^ L ^ X dx Y du Z dz
We therefore have cos e? = ^ j- + 75 j- + -r; 3-

,

R ds R ds R ds
*

so that R cos Ods = Xdx + Ydy + Zdz,

and the identity of the two expressions becomes obvious.

If the Theorem of the Conservation of Energy is true in the Electro-

static Field, the work done in bringing a small charge e from infinity to any

point P must be the same whatever path to P we choose. For if the

amounts of work were difierent on two different paths, let these amounts

be and Vpe, and let the former be the greater. Then by taking the

charge from P to infinity by the former path and bringing it back by the

latter, we should gain an amount of work (Vp - Vp) e, which would be

contrary to the Conservation of Energy. Thus Vp and Vp must be equal,

and the potential at P is the same, no matter by what path we reach P.

The potential at P will accordingly depend only on the coordinates y, z

of P,

As soon as we introduce the special law of the inverse square, we shall

find that the potential must be a single-valued function of x, y, z, as a

consequence of this law (§ 39), and hence shall be able to prove that the

Theorem of Conservation of Energy is true in an Electrostatic field. For

the moment, however, we assume this.

34. Let us denote by W the work done in moving a charge e from P
to Q. In bringing the charge from infinity to P, we do an amount of work

Fia. 5.

which by definition is equal to Vpe where Vp denotes the value of V at the

point P. Hence in taking it from infinity to Q, we do a total amount of

work Vpe-^-W. This, however, is also equal by definition to Vq e. Hence
we have

or

Vp € -I- 6,

Tr = (FQ-Fp)e
(8).
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36. Definition. A surface in the electric field such that at every point

on it the potential has the same value, is called an Equipotential Surface,

In discussing the phenomena of the electrostatic field, it is convenient to think of the

whole field as mapped out by systems of equipotential surfaces and lines of force, just as

in geography we think of the earth's surface as divided up by parallels of latitude and of

longitude. A more exact parallel is obtained if we think of the earth’s surface as mapped

out by ''contour-lines” of equal height above sea-level, and by lines of greatest slope.

These reproduce all the properties of equipotentials and lines of force, for in point of fact

they are actual equipotentials and lines of force for the gravitational field of force.

Theorem. Equipotential surfaces cut lines of force at right angles.

Let P be any point in the electric field, and let Q be an adjacent point

on the same equipotential as P, Then, by definition, Vp = Vq, so that by

equation (8) W = 0, W being the amount of work done in moving a charge e

from P to Q. If P is the intensity at Q. and 6 the angle which its direction

makes with QP, the amount of this work must be — Re cos $ x PQ, so that

Pf cos ^ = 0.

Hence cos 0 = 0, so that the line of force cuts the equipotential at right

angles. As in a former theorem, an exception has to be made in favour of

the case in which P = 0.

36. Instead of P, Q being on the same equipotential, let them now be

on a line parallel to the axis of x, their coordinates being x, y, z and x^^dx,

3/,
z respectively. In moving the charge e from P to Q the work done is

— Xedx, and by equation (8) it is also (T^ — T5>)e. Hence

--Xdx^Yq-Vp.

Since Q and P are adjacent, we have, from the definition of a differential

coefficient,

dV Vq^Vp
dx dx *

hence we have the relations

Z = -
dv
dx*

r->r, z.Jf
dy dz

.(9).

results which are of course obvious on differentiating equation (6) with

respect to x, y and z respectively.

Similarly, if we imagine P, Q to be two points on the same line of force

we obtain

0
where denotes differentiation along a line of force. Since P is necessarily

3V .

positive, it follows that is negative, i,e, V decreases os s increases, or the
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intensity is in the direction of V decreasing. Thus the lines of force run

from higher to lower values of V, and, as we have already seen, cut all

equipotentials at right angles.

37. At a point which is occupied by conducting material, the electric

charges, as has already been said, must be in equilibrium under the action of

the forces brom all the other charges in the field. The resultant force from

all these charges on any element of charge e is however Re, so that we must

have ii =* 0. Hence X = F = Z = 0, so that

dV dV dV ^

In other words, V must be constant throughout a conductor for electro-

static equilibrium to be possible. And in particular the surface of a

conductor must be an equipotential surface, or part of one. The equi-

potential of which the surface of a conductor is part has the peculiarity

of being three-dimensional instead of two-dimensional, for it occupies the

whole interior as well as the surface of the conductor.

In the same way, in considering the analogous arrangement of contour-lines and lines

of greatest slope on a map of the earth’s surface, we find that the edge of a lake or sea

must be a contour-line, but that in strictness this particular contour must be regarded as

two-dimensional rather than one-dimensional, since it coincides with the whole surface of

the lake or sea.

If V is not constant in any conductor, the intensity is in the direction of

V decreasing. Hence positive electricity tends to flow in the direction of V
decreasing, and negative electricity in the direction of F increasing. If two

conductors in which the potential has different values are joined by a third

conductor, the intensity in the third conductor will be in direction from

the conductor at higher potential to that at lower potential. Electricity will

flow through this conductor, and will continue to flow until the redistribution

of potential caused by the transfer of this electricity is such that the potential

is the same at all points of the conductors, which may now be regarded as

forming one single conductor.

Thus although the potential has been defined only with reference to

single points it is possible to speak of the potential of a whole conductor.

In fact, the mathematical expression of the condition that equilibrium shall

be possible for a given system of charges is simply that the potential shall

be constant throughout each conductor. And when electric contact is

established between two conductors, either by joining them by a wire or by

other means, the new condition for equilibrium which is made necessary by

the new physical condition introduced, is simply that the potentials of the

two conductors shall be equal.
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The earth is a conductor, and is therefore at the same potential through-

out. In all practical applications of electrostatics, it will be legitimate to

regard the potential of the earth as zero, a distant point on the earth’s

suiface replacing the imaginary point at infinity, with reference to which

potentials have so far been measured. Thus any conductor can be reduced

to potential zero by joining it by a metallic wire to the earth.

Mathematical expressions of the Law of the Inverse Square.

I. Values of Potential and Intensity,

38. We now discuss the values of the potential and components of

electric intensity when the spiice between the conductors is air, so that

the electric forces are determined by Coulomb’s Law.

If we have a single point charge Si at a point P, the value of P, the

resultant intensity at any point 0, is

gj

PO*'

and its direction is that of PO. Hence if ^ is the angle between OP and

00', the line joining 0 to an adjacent point O', the work done in moving a

charge e from 0 to O'

= eP cos 6 . Off

^€R(0P-0T)
^--^eRdr,

where OP » r, O'P ^r-\-dr. Hence the work done against the repulsion

of the charge in bringing ^ from infinity to 0' by any path is

where rj =» O'P,

rrmOFP r
-el Rdr = — el

i/r*a# Ji

r^O^P

r/

If there are other charges S|, e,, ... the work done against all the

repulsions in bringing a charge e to 0' will be the sum of terms such as the

above, say

-|.?! +1»
' r, r,
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where r„ ... are the distances from O' to e,, e, so that by definition

7 = ^ + + (10).
Vi ra r.

39. It is now clear that the potential at any point depends only on the

coordinates of the point, so that the work done in bringing a small charge

from infinity to a point P is always the same, no matter what path we

choose, the result assumed in § 33.

It follows that we cannot alter the amount of energy in the field by

moving charges about in such a way that the final state of the field is the

same as the original state. In other words, the Conservation of Energy is

true of the Electrostatic* Field.

40. Analytically, let us suppose that the charge e, is at iTi, yi, at

^2 . ^2 .
-^2 1

and so on. The repulsion on a small charge € at a, y, z resulting

from the presence of at y,. is

(x - + (y - y,)* +

and the direction-cosines of the direction in which this force acts on the

charge c, are

^

V -
^etc.

+ + [(«-«,)» + (y - + (j
-

’

Hence the component parallel to the axis of x is

6x6 (a; — Xi)

[(a: - + (y - yO* + (* -

By adding all such components, we obtain as the component of the

electric intensity at x, y, z,

X = 2 e,(.r-x,)

[(« - + (!/- Vif + (a - ZifV

and there are similar equations for Y and Z.

We have as the value of V at x, y, z, by equation (6),

F = — f {Xdx + Ydy H- Zdz)
J 00

^ ^
r.r.y,z Sg, {(x - gj) rfa? -f (y — yQ dy + (z - z^) dz]

i • [(a; - X,)- -h (y - y,)- + (z- z^y]^

= 2 ^
[(X- a;,)- + (y - yx)* +

giving the same result as equation (10).
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41. If the electric distribution is not conRned to points, we can imagine

it divided into small elements which may be treated as point charges. For

instance if the electricity is spread throughout a volume, let the charge on

any element of volume dxdydz* be pdxdy'dz' so that p may be spoken of as

the “ density ” of electricity at ®
, y\ Then in formula (11) we can replace

e, by pdx'dy*dz\ and a?,, yi, ^i, by x\ y\ z\ Instead of summing the charges

ej, ... we of course integrate pdx dy*dz through all those parts of the space

which contain electrical charges. In this way we obtain

ir f f f p (fl! — a?') dxdi/dz^

and

I [(x - a?')* + (y - y')* + (^ - /)»]*

y_fff
P^'dy*d^

JjJ[(x-ie')‘+(y-yy‘ + (z- «')*]*

These equations are one form of mathematical expression of the law of

the inverse square of the distance. An attempt to perform the integration,

in even a few simple cases, will speedily convince the student that the form

is not one which lends itself to rapid progress. A second form of mathe-

matical expression of the law of the inverse square is supplied by a Theorem

of Gauss which we shall now prove, and it is this expression of the law which

will form the basis of our development of electrostatical theory.

II. Gauss' Theorem,

42. Theorem. If any closed surface is taken in the electric field, and

ifN denotes the component of the electric intensity at any point of this surface

in the direction of the outward normal, then

where the integration extends ovei' the whole of the surface, and E is the total

charge enclosed hy the surface.

Let us suppose the charges in the field, both inside and outside the closed

surface, to be s, at /?, e^ at ft, and so on. The intensity at any point is

the resultant of the intensities due to the charges separately, so that at any

point of the surface, we may write

N = ^\-h^\+ (12).

where Ni, N^, ... are the normal components of intensity due to e^, e„ ...

separately.

Instead of attempting to calculate j^JudS directly, we shall calculate

separately the values of jj^idS, JJn^dS, .... The value of JJjf^dS will,

by equation (12), be the sum of these integrals.
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Let us take any small element dS of the closed surface in the neighbour-

hood of a point Q on the surface and join each point of its boundary to the

point Let the small cone so formed cut off an element of area d<r from

a sphere drawn through Q with /? as centre, and an element of area dto from

a sphere of unit radius drawn about as centre. Let the normal to the

closed surface at Q in the direction away from ^ make an angle 6 with I{Q.

The intensity at Q due to the charge e, at /? is in the direction

PxQ, so that the component of the intensity along the normal to the surface

in the direction away from P is

The contribution to JJ^idS from the element of surface is accordingly

± cos ddS,

the + or — sign being taken according as the normal at Q in the direction

away from JJ is the outward or inward normal to the surface.

Now cos d dS is equal to d<r, the projection of dS on the sphere through Q
having as centre, for the two normals to dS and da- are inclined at an

angle ff. Also da = P^Q^dw. For da, dw are the areas cut off by the same

cone on spheres of radii P^Q and unity respectively. Hence

If P is inside the closed surface, a line from 7? to any point on the unit

sphere surrounding P may either cut the closed surface only once as at

Q (hg. 8)—in which case the normal to the surface at Q in the direction

away from P is the outward normal to the surface—or it may cut three

times, as at Q\ Q", Q'"—in which case two of the normals away from P (those

at Q, Q'" in fig. 8) are outward normals to the surface, while the third normal

away from /J (that at Q" in the figure) is an inward normal—or it may
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cut five, seven, or any odd number of times. Thus a cone through a small

element of area deo on a unit sphere about li may cut the closed surface any

odd number of times. However many times it cuts, the first small area cut

off will contribute Bidw to the second and third small areas if they

Fio. 8.

occur will contribute — Sid® and +eid(o respectively, the fourth and fifth if

they occur will contribute — Sid® and +eida) respectively, and so on. The

total contribution from the cone surrounding da is, in every case, +eida>.

Fia. 9.

Summing over all cones which can be drawn in this way through i? we obtain

the whole value of JJ^idS, which is thus seen to be simply Sj multiplied by

the total surface area of the unit sphere round If. and therefore 47rS|.
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On the other hand if is outside the closed surface, as in fig. 9,
the

cone through any element of area dta on the unit sphere may either not cut

the closed surface at all, or may cut twice, or four, six or any even number
of times. If the cone through dta intersects the surface at all, the first pair

of elements of surface which are cut off by the cone contribute — Bxdto and

-f eidta respectively
JJ

A^xdS. The second pair, if they occur, make a similar

contribution and so on. In every case the total contribution from any small

cone through If is nil. By summing over all such cones we shall include

the contributions from all parts of the closed surface, so that if is outside

the surface JjFidS is ecpial to zero.

We have now se^n that fJ^jdS is equal to 47rei when the charge Ci is

inside the closed surface, and is equal to zero when the charge 6i is outside

the closed surface. Hence

jjNdS^ljN,dS + jjN,dS+ ...

a= 47r X (the sum of all the charges inside the surface)

ss 4i7rE,

which proves the theorem.

Obviously the theorem is true also when there is a continuous distribution

of electricity in addition to a number of point charges. For clearly we can

divide up the continuous distribution into a number of small elements and

treat each as a point charge.

dV
Since iV", the normal component of intensity, is equal by § 36 to —^

,

o

where 5- denotes differentiation along the outward normal, it appears that
on

we can also express Gauss' Theorem in the form

(dVm dS = — 47r.^.

Gauss* theorem forms the most convenient method at our disposal, of

expressing the law of the inverse square.

We can obtain a preliminary conception of the physical meaning under-

lying the theorem by noticing that if the surface contains no charge at all,

the theorem expresses that the average normal intensity is nil. If there is

a negative charge inside the surface, the theorem shews that the average

normal intensity is negative, so that a positively charged particle placed at

a point on the imaginary surface will be likely to experience an attraction to

the interior of the surface rather than a repulsion away from it, and vice

versd if the surface contains a positive charge.
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Corollaries to Gauss* Theorem.

43. Theorem. If a closed surface he drawn, such that every point on it

is occupied by conducting material, the total charge inside it is nil.

We have seen that at any point occupied by conducting material, the

electric intensity must vanish. Hence at every point of the closed surface,

i\r= 0, so that JJl/'dS= 0, and therefore, by Gauss’ Theorem, the total charge

inside the closed surface must vanish.

The two following special cases of this theorem are of the greatest

importance.

44. Theorem. There is no charge at any point which is occupied hy com-

ducting mxiteHal, unless this point is on the surface of a conductor.

For if the point is not on the surface, it will be possible to surround the

point by a small sphere, such that every point of this sphere is inside the

conductor. By the preceding theorem the charge inside this sphere is nil,

hence there is no charge at the point in question.

This theorem is often stated by saying :

—

The charge of a conductor resides on its surface.

46. Theorem. If we have a hollow closed conductor, and place any

number of charged bodies inside it, the charge on its inner surface will be equal

in magnitude but opposite in sign, to the total charge on the bodies inside.

For we can draw^ a closed surface entirely inside the material of the

conductor, and by the theorem of § 43, the whole charge inside this surface

must be nil. This whole charge is, however, the sum of (i) the charge on the

inner surface of the conductor, and (ii) the charges on the bodies inside the

conductor. Hence these two must be equal and opposite.

This result explains the property of the electroscope which led us to the

conception of a definite quantity of electricity. The vessel placed on the

plate of the electroscope formed a hollow closed conductor. The charge on

the inner surface of this conductor, we now see, must be equal and opposite

to the total charge inside, and since the total charge on this conductor is nil,

the charge on its outer surface must be equal and opposite to that on the

inner surface, and therefore exactly equal to the sum of the charges placed

inside, independently of the position of these charges.

The Cavendish Proof of the Law of the Inverse Square.

46. We have deduced from the law of the inverse square, that the

charge inside a closed conductor is zero. We shall now shew that the

converse theorem is also true. Hence, in the known fact, revealed by the
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observations of Cavendish and Maxwell, that the charge inside a closed

conductor is zero, we have experimental proof of the law of the inverse

square which admits of much greater accuracy than the experimental proof

of Coulomb.

The theorem that if there is no charge inside a spherical conductor the

law of force must be that of the inverse square is due to Laplace. We need

consider this converse theorem only in its application to a spherical conductor,

this being the actual form of conductor used by Cavendish. The apparatus

illustrated in fig. 10 is not that used by Cavendish, but is an improved

form designed by Maxwell, who repeated Cavendish's experiment in a more

delicate form.

Two spherical shells are fixed by a ring of ebonite so as to be concentric

with one another, and insulated from one another.

Electrical contact can be established between the two

by letting down the small trap-door B through which

a wire passes, the wire being of such a length as just

to establish contact when the trap-door is closed. The

experiment is conducted by electrifying the outer

shell, opening the trap-door by an insulating thread

without discharging the conductor, afterwards dis-

charging the outer conductor and testing whether any

charge is to be found on the inner shell by placing it

in electrical contact with a delicate electroscope by

means of a conducting wire inserted through the trap-

door. It is found that there are no traces of a charge

on the inner sphere.

47. Suppose we start to find the law of electric

force such that there shall be no charge on the inner

sphere. Let us assume a law of force such that the repulsion between two

charges e, e* at distance r apart is ee'(j>(r). The potential, calculated as

explained in § 33, is

tej^ 4>(r)dr (13),

where the summation extends over all the charges in the field.

Let us calculate the potential at a point inside the sphere due to a charge

E spread entirely over the surface of the sphere. If the sphere is of radius a,

the area of its surface is 47ra^, so that the amount of charge per unit area is

EjAnra?, and the expression for the potential becomes

II4^' (I^
0 a* Bin 0d0d^ (14),

the summation of expression (13) being now replaced by an integration which
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extends over the whole sphere. In this expression r is the distance from the

point at which the potential is evaluated, to the element a^smSdOd^ of

spherical surface.

If we agree to evaluate the potential at a point situated on the axis 0=0
at a distance c from the centre, we may write

r* = a*+ c* - 2ac cos 0.

Since c is a constant, we obtain as the relation between d/r and €20, by

differentiation of this last equation,

rdr = acmi0d6 (15).

If we integrate expression (14) with respect to 4>, the limits being of

course
<f>
= 0 and ^ = 27r, we obtain

V=^eI <f>(r)dr^ain0dff,

or, on changing the variable from 0 to r, by the help of relation (15)

If we introduce a new function /(r), defined by

/(»•)=
I(1^ <f>

(r) dr^ rdr,

we obtain as the value of F,

If the inner and outer spheres are in electrical contact, their potentials

are the same
;
and if, as experiment shews to be the case, there is no charge

on the inner sphere, then the whole potential must be that just found. This

expression must, accordingly, have the same value whether c represents the

radius of the outer sphere or that of the inner. Since this is true whatever

the radius of the inner sphere may be, the expression must be the same for

all values of c. We must accordingly have

+ c) -/(ft - c),

where F is the same for all values of c. Differentiating this equation twice

with respect to c, we obtain

0 =/" (a + c) -/" (a - c).

Since by definition, /(r) depends only on the law of force, and not on a or c

it follows from the relation

r(a + c)=/"(a-c),

that /" (r) must be a constant, say G,
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Hence /(r) e A + Br +

and by definition f(r) =/([ •#•(»*)

so that on equating the two values of/" (r).

B-\-Cr = rj dr.

Therefore iy(r)dr = C+?,

or

so that the law of force is that of the inverse square.

48. Maxwell has examined what charge would be produced on the inner

sphere if, instead of the law of force being accurately Bjr^, it were of the

form where q is some small quantity. In this way he found that if q
were even so great as charge on the inner sphere would have been

too great to escape observation. As we have seen, the limit which Cavendish

was able to assign to q was 3'^.

It may be urged that the form Blr^'^9 is not a sufficiently general

law of force to assume. To this Maxwell has replied that it is the most

general law under which conductors which are of different sizes but geometri-

cally similar can be electrified similarly, while experiment shews that in point

of fact geometrically similar conductors are electrified similarly. We may
say then with confidence that the error in the law of the inverse square, if

any, is extremely small. It should, however, be clearly understood that

experiment has only proved the law B/r* for values of r which are great

enough to admit of observation. The law of force between two electric

charges which are at very small distances from one another still remains

entirely unknown to us.

^ III. The Equations of Poisson and Laplace,

49. There is still a third way of expressing the law of the inverse

square, and this can be deduced most readily from

Gauss* Theorem.

Let us examine the small rectangular parallel-

epiped, of volume dxdydz, which is bounded by

the six plane faces

We shall suppose that this element does not con-

tain any point charges of electricity, or part of

Fio, 11.
any charged surface, but for the sake of generality

we shall suppose that the whole space is charged
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with a continuous distribution of electricity, the volume-density of electrifi-

cation in the neighbourhood of the small element under consideration being

p. The whole charge contained by the element of volume is accordingly

pdxdydz, so that Gauss’ Theorem assumes the form

JJ^dS = 47rpda!dydz (16).

The surface integral is the sum of six contributions, one from each face of

the parallelepiped. The contribution from that face which lies in the plane

— ^dx is equal to dydz, the area of the face, multiplied by the mean
value of N over this face. To a sufficient approximation, this may be

supposed to be the value of N at the centre of the face, ).s. at the point

f — ^dxy ?7 , f, and this again may be written

so that the contribution to from this face is

Similarly the contribution from the opposite face is

- (^) .

the sign being different because the outward normal is now the positive axis

of X, whereas formerly it was the negative axis. The sum of the contributions

from the two faces perpendicular to the axis of x is therefore

-dydz\(^-^) -(^) I
(17)

The expression inside curled brackets is the increment in the function ^
when X undergoes a small increment dx. This we know is

that expression ^17) can be put in the form

— dxdydz.

a (dv\

\dx)*

dV
dx

so

The whole value of jjNdS is accordingly

/0*7 a*F 0*r\ , , ,

and equation (16) now assumes the form

d^v 0»r 0*r
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This is known as Poisson’s Equation; clearly if we know the value of the

potential at every point, it enables us to find the charges by which this

potential is produced.

60. In free space, where there are no electric charges, the equation

assumes the form

3^ yr
(iQ)

Sa* 3-2®
^ ''

and this is known as Laplace’s Equation. We shall denote the operator

^ ^ ^
3y® dz*

by V®, so that Laplace’s equation may be written in the abbreviated form

V®7 = 0 (20).

Equations (18) and (20) express the same fact as Gauss' Theorem, but

express it in the form of a differential equation. Equation (20) shews that

in a region in which no charges exist, the potential satisfies a differential

equation which is independent of the charges outside this region by which

the potential is produced. It will easily be verified by direct differentiation

that the value of V given in equation (10) is a solution of equation (20).

We can obtain an idea of the physical meaning of this differential

equation as follows.

Let us take any point 0 and construct a sphere of radius r about this

point. The mean value of V averaged over the surface of the sphere is

^^jfvsm0d0d^.

where r, 0, ^ are polar coordinates, having 0 as origin. If we change the

radius of this sphere from r to r + dr, the rate of change of 7 is

dV
dr

= 0, by Gauss' Theorem,

shewing that_7 is independent of the radius r of the sphere. Taking r= 0,

the value of 7 is seen to be equal to the potential at the origin 0.

This gives the following interpretation of the differential equation

:

V varies from point to point in such a way that the average value of 7
taken over any sphere surrounding any point 0 is equal to the valve of V at 0.
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Deductions from Law of Inverse Square.

61. Theorem. The potential cannot have a maximum or a minimum
value at any point in space which is not occupied by an electric charge.

For if the potential is to be a maximum at any point 0, the potential at

every point on a sphere of small radius r surrounding 0 must be less than

that at 0. Hence th^ average value of the potential on a small sphere

surrounding 0 must be less than the value at 0, a result in opposition to

that of the last section.

A similar proof shews that the value of V cannot be a minimum.

52. A second proof of this theorem is obtained at once from Laplace’s

equation. Regarding V simply as a function of x, y, z, a necessary condition

0*F d*V
for V to have a maximum value at any point is that and shall

each be negative at the point in question, a condition which is inconsistent

with Laplace’s equation

dx^
^ ^ 0^*

*

So also for F to be a minimum, the three differential coefficients would

have to be all positive, and this again would be inconsistent with Laplace’s

equation.

63. If F is a maximum at any point 0, which as we have just seen

0F
must be occupied by an electric charge, then the value of must be

negative as we cross a sphere of small radius Thus is negative

where the integration is taken over a small sphere surrounding 0, and by

Gauss’ Theorem the value of the surface integral is — 47rs, where e ia the

total charge inside the sphere. Thus e must be positive, and similarly if F
is a minimum, e must be negative. Thus

:

If V is a maximum at any point, the point must he occupied by a positive

charge, and if V is a minimum at any point, the point must be occupied by a

negative charge.

64. We have seen (§ 36) that in moving along a line of force we are

moving, at every point, from higher to lower potential, so that the potential

continually decrejises as we move along a line of force. Hence a line of

force can end only at a point at which the potential is a minimum, and

similarly by tracing a line of force backwards, we see that it can begin only

at a point of which the potential is a ma.ximum. Combining this result

with tliat of the previous theorem, it follows that:

Lines of force can begin only on positive charges, and can end only

negative charges.

on
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It is of course possible for a line of force to begin on a positive charge,

.

and go to infinity, the potential decreasing all the way, in which case the

line of force has, strictly speaking, no end at all. So also, a line of force may

come firom infinity, and end on a negative charge.

Obviously a line of force cannot begin and end on the same conductor,

for if it did so, the potential at its two ends would be tlie same. Hence there

can be no lines of force in the interior of a hollow conductor which contains

no charges
;
consequently there can be no charges on its inner surface.

Tubes of Force.

65 . Let us select any small area dS in the field, and let ns draw tht*

lines of force through every point of the boundary of this small area. If

dS is taken sufficiently small, we can suppose the electric intensity to be the

same in magnitude and direction at every point of dS, so that the directions

of the lines of force at all the points on the boundary will be approximately

all parallel. By drawing the lines of force, then, we shall obtain a “ tubular’*

surface—i.e., a surface such that in the neighbourhood of any point the

surface may be regarded as cylindrical. The surface obtained in this way

is called a “ tube of force.” A normal cross-section of a “ tube of force ” is a

section which cuts all the lines of force through its boundary at right angles.

It therefore forms part of an equipotential surface.

66. Theorem. // o)i, cua be the areas of two normal cross-sections of the

same tube offorce, and Ri, the intensities at these sections, then

R^(Oi = R^fo^,

Consider the closed surface furmed by the two cross-scctions of areas

0)1, 0)2, and of the part of the tube of force

joining them. There is no charge inside this

surface, so that by Gauss’ theorem, JjR’dS = 0.

If the direction of the lines of force is from

o)i to 0)2, then the outward normal intensity

over 0)9 is R^, so that the contribution from this

area to the surface integral is i^sO),. So also

over o)i the outward normal intensity is — /^i, so that o)i gives a contribution

— i2iO)i. Over the rest of the surface, the outward normal is perpendicular to

the electric intensity, so that ATsQ, and this part of the surlace contributes

nothing to
Jj
NdS, The whole value of this integral, then, is

Ri^2 ”

and since this, as we have seen, must vanish, the theorem is proved.
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57. Coulomb's Law. If R is the outward intensity ai a point just

outside a conductor, then R = 49r<r, where a is the surface density of electri-

fication on the conductor.

We have already seen that the whole electrification of a conductor must

reside on the surface. Therefore we no longer deal with a volume density

of electrification p, such that the charge in the element of volume dxdydz is

p dxdydz, but with a surface-density of electrification a such that the charge

on an element dS of the surface of the conductor is ad8.

The surface of the conductor, as we have seen, is an equipotential, so that

by the theorem of p. 29, the intensity is in a direction normal to the

surface. Let us draw perpendiculars to the surface at every

point on the boundary of a small element of area dS, these per-

pendiculars each extending a small distance into the conductor

in one direction and a small distance away from the conductor

in the other direction. We can close the cylindrical surface so

formed, by two small plane areas, each equal and parallel to the

original element of area dS. Let us now apply Gauss* Theorem

to this closed surface. The normal intensity is zero over every

part of this surface except over the cap of area dS which is

outside the conductor. Over this cap the outward normal in-

tensity is R, so that the value of the surface integral of normal

intensity taken over the closed surface, consists of the single term RdS.

The total charge inside the surface is adS, so that by Gauss* Theorem,

RdS^^adS (21 ),

and Coulomb's Law follows on dividing by dS.

68. Let us draw the complete tube of force which is formed by the

lines of force starting from points on the boundary of the element dS of the

surface of the conductor. Let us suppose that the surface density on this

element is positive^ so that the aiea dS forms the normal cross-section at

Fio. 14.

the positive end, or beginning, of the tube of force. Let us suppose that at

the negative end of the tube of force, the normal cross-section is d8\ that



46 Electrostatics—Field of Force [oh. ii

the surface density of electrification is <r\ a being of course negative, and

that the intensity in the direction of the lines of force is E. Then, as in

equation (21),

since the outward intensity is now — R\

Since R, R are the intensities at two points in the same tube of force

at which the normal cross-sections are dS, dS\ it follows from the theorem

of § 56, that
RdS = RdS'

and hence, on comparing the values just found for RdS and R'dS', that

(rdS = — ad8\

Since adS and adS' are respectively the charges of electricity from which

the tube begins and on which it terminates, we see that

:

The negative charge of electricity on which a tube of force terminates is

numerically equal to the positive charge from which it starts.

If we close the ends of the tube of force by two small caps inside the

conductors, as in fig. 14, we have a closed surface such that the normal

intensity vanishes at eveiy point. Thus, by Gauss’ Theorem, the total

charge inside must vanish, giving the result at once.

60 . The numerical value of either of the charges at the ends of a

tube of force may conveniently be spoken of as the strength of the tube. A
tube of unit strength is spoken of by many writers as a unit tube offeree.

The strength of a tube of force is cdS in the notation already used, and

this, by Coulomb's Law, is equal to ~ RdS where R is the intensity at the

end dS of the tube. By the theorem of § 66, RdS is equal to where

i^i, Wi are the intensity and cross-section at any point of the tube. Hence

Ria)i= 4nr times the strength of the tube. It follows that:

The intensity at any point is equal to 47r times the aggregate strength per

unit area of the tubes which cross a plane drawn at right angles to the

direction of the intensity.

In terms of unit tubes of force, we may say that the intensity is 47r

times the number of unit tubes per unit area which cross a plane drawn at

right angles to the intensity.

The conception of tubes of force is due to Faraday: indeed it formed

almost his only instrument for picturing to himself the phenomena of the

Electric Field. It will be found that a number of theorems connected with

the electric field become almost obvious when interpreted with the help of

the conception of tubes of force. For instance we proved on p. o7 that
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when a number of charged bodies are placed inside a hollow conductor, they

induce on its inner surface a charge equal and opposite to the sum of all

their charges. This may now be regarded as a special case of the obvious

theorem that the total charge associated with the beginnings and termi-

nations of any number of tubes of force, none of which pass to infinity, must

be niU

Examples of Fields of Force.

60.

It will be of advantage to study a few particular fields of electric

force by means of drawing their lines of force and equipotential suifaces.

I. Two Equal Point Charges.

61.

Let A, B he two equal point charges, say at the points — a, +a.

The equations of the lines of force which are in the plane of a, y are

easily found to be

^ y
X ” iP&-PA\

where P is the point a?, y.

(22 ).

This equation admits of integration in the form

a; + a

~PA
-f

ar — a

pF = cons. (23).

From this equation the lines of force can be drawn, and will be found to lie

as in fig. 15.

62.

There are, however, only a few cases in which the differential

equations of the lines of force can be integrated, and it is frequently simplest

to obtain the properties of the lines of force directly from the differential

equation. The following treatment illustrates the method of treating lines

of force without integrating the differential equation.

From equation (22) we see that obvious lines of force are

• “dy
(i) y = 0, 0̂

— gi'ing the axis AB\

(ii) a?*r0, PA—PB, ^ = giving the line which bisects AB eX

right angles.

These lines intersect at C, the middle point of AB. At this point, then,

^ has two values, and since ^ ^ , it follows that we must have X = 0 ,

0X CX JL

Fs 0. In other words, the point C7 is a point of equilibrium, as is otherwise

obvious.
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The same result can be seen in another way. If we start from A and
draw a small tube surrounding the line AB, it is clear that the cross-section

of the tube, no matter how small it was initially, will have become infinite

by the time it reaches the plane which bisects AB dX right angles—in fact

the cross-section is identical with the infinite plane. Since the product of

the cross-section and the normal intensity is constant throughout a tube, it

follows that at the point G, the intensity must vanish.

Fio. 16.

At a great distance R from the points A and B, the fraction

F&-PA»
PB* -H PA*

vanishes to the order of 1/R, so that

dx X ’

except for terms of the order of 1/P*. Thus at infinity the lines of force

become asymptocic to straight lines passing through the origin.

Let us suppose that a line of force starts from A making an angle 0 with

BA produced, and is asymptotic at infinity to a line through 0 which makes

an angle
<f>

with BA produced. By rotating this line of force about the

axis AB we obtain a surface which may be regarded as the boundary of

a bundle of tubes of force. This surface cuts off an area

27r (1 - cos d) r*
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from a small sphere of radius r drawn about A, and at every point of

this sphere the intensity is ejr^ normal to the sphere. The surface again

cuts off an area

27r (1 - cos
<f>)

72*

from a sphere of very great radius R drawn about (7, and at every point

of this sphere the intensity is 2e/72*. Hence, applying Gauss’ Theorem
to the part of the field enclosed by the two spheres of radii r and 72,

and the surface formed by the revolution of the line of force about AB,
we obtain

27r (1 — cos X ^
— 27r (1 — cos 72* x ^ = 0,

from which follows the relation

sin J ^ = V2 sin ^

In particular, the line of force which leaves in a direction perpendicular

to AB is bent through an angle of SO*’ before it reaches its asymptote at

infinity.

The sections of the equipotentials made by the plane of xy for this case

are shewn in fig. 16 which is drawn on the same scale as fig. 15. The equa-

tions of these curves are of course

1 1

curves of the sixth degree. The equipotential which passes through G is

of interest, as it intersects itself at the point C, This is a necessary conse-

quence of the fact that C is a point of equilibrium,

for a point of equilibrium, namely

djr

dx
0.

Indeed the conditions

may be interpreted as the condition that the equipotential (F* constant)

through the point should have a double tangent plane or a tangent cone at

the point.
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II. Point charges + «, —e,

63. Let charges ± 0 be at the points af^±a {A, B) respectively. The
differential equations of the lines of force are found to be

^_y^Y y_
dx^X

0; +

a

and the integral of this is

[PB^-PA»)

flj + a « — a

PA TB
The lines of force are shewn in fig. 17.

= cona

III. Electric Doublet

64. An important case occurs when we have two large charges 4 0,
— e,

equal and opposite in sign, at a small distance apart. Taking Cartesian

coordinates, let us suppose we have the charge + 0 at a, 0, 0 and the charge

— 0 at — a, 0| 0, so that the distance of the charges is 2a.

The potential is

0 0

V(a? — a)* 4 y* 4 0* 4 a)* 4 y* 4 0
**

and when a is very small, so that squares and higher powers of a may be

neglected, this becomes

2000;

(a.* + y* +«>)*

If a is made to vanish, while 0 becomes infinite, in such a way that

20a retains the finite value /i, the system is described as an electric
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doublet of strength having for its direction the positive axis of a. Its

potential is

fix

(a* + y* +
’
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IV, Point charges +4e, —ft

65. Fig. 19 represents the distribution of the lines of force when the

electric field is produced hj two point charges, + 4s at il and — s at H.

At infinity the resultant force will be 3e/r*, where r is the distance from

a point near to A and B, The direction of this force is outwards. Thus no

lines of force can arrive at B from infinity, so that all the lines of force

which enter B must come from A, The remaining lines of force from A go

to infinity. The tubes of force from A Xo B form a bundle of aggregate

Fio. 19.

strength s, while those from A to infinity have aggregate strength 3s. The
two bundles of tubes of force are separated by the lines of force through G,

At C the direction of the resultant force is clearly indeterminate, so that G
is a point of equilibrium. As the condition that C is a point of equilibrium

we have

4s ^
AC* BG^

0,

So that AB = BG. At G the two lines of force from A coalesce and then

separate out into two distinct lines of force, one from G B, and the other

from G to infinity in the direction opposite to GB.

The equipotentials in this field, the system of curves

4 1

PA Pit

are represented in fig. 20, which is drawn on the same scale as fig. 19.
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Since (7 is a point of equilibrium the equipotential through the point Q
must of course cut itself at 0. . At (7 the potential

40 ^ ^

since CA = 2CB. From the loop of this equipotential which surrounds B,

the potential must fall continuously to — oo as we approach B, since, by the

theorem of § 61, there can be no maxima or minima of potential between

this loop and the point B. Also no equipotential can intersect itself since

there are obviously no points of equilibrium except G. One of the inter-

Fro. 20.

mediate equipotentials is of special interest, namely that over which the

potential is zero. This is the locus of the point P given by

PA PB

and is therefore a sphere. This is represented by the outer of the two

closed curvt s which surround B in the figure.

In the same way we see that the other loop of the equipotential through

G must be occupied by equipotentials for which the potential rises stetidily

to the value -f cao at A. So also outside the equipotential through G, the

potential falls steadily to the value zero at infinity. Thus the zero equi-

potential consists of two spheres—the sphere at infinity and the sphere

surrounding B which has already been mentioned.



54 Electrostatics—Fidd of Force [oh. n

y. Three equal charges at the earners of an equilateral triangle.

66. As a further example we may examine the disposition of equi-

potentials when the field is produced by three point charges at the comers

of an equilateral triangle. The intersection of these by the plane in which

the charges lie is represented in fig. 21, in which A, B^G era the points at

which the charges are placed, and D is the centre of the triangle ABG.

It will be found that there are three points of equilibrium, one on each

of the lines AjD, BD^ GD. Taking AD = a, the distance of each point of

equilibrium fmm D is just less than \a. The same equipotential passes

through all three points of equilibrium. If the charge at each of the points

Fio. 21.

304
A, B, 0 is taken to be unity, this equipotential has a potential . The

equipotential has three loops surrounding the points A, .8, 0. In each of

these loops the equipotentials are closed curves, which finally reduce to

small circles surrounding the points A, B, G. Those drawn correspond to

,
3-26 3-6 3-75 , 4

the potentials , — , , and - •^ a a a a

Outside the equipotential
804
a , the equipotentials are closed curves
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Burronnding the former equipotential, and finally reducing to circles at in-

2 2*25 2*5 2*75
finity. The curves drawn correspond to potentials -

, , —

,

and .

There remains the region between the point D and the equipotential

At D the potential is
, so that the potential falls as we recede from the

equipotential and reaches its minimum value at D. The potential at

D is of course not a minimum for all directions in space : for the potential

increases as we move away from D in directions which are in the plane

ABO, but obviously decreases as we move away from i) in a direction per-

pendicular to this plane. Taking D as origin, and the plane ABO as plane

of xy, it will be found that near D the potential is

Thus the equipotential through D is shaped like a right circular com in

the immediate neighbourhood of the point D, From the equation just

found, it is obvious that near D the 'sections of the equipotentials by the

plane ABO will be circles surrounding D.
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From a study of the section of the equipotentials as shewn in fig. 21, it is

easy to construct the complete surfaces. We see that each equipotential for

which V has a very high value consists of three small spheres surrounding the

points A, By G, For smaller values of F, which must, however, be greater

than
,
each equipotential still consists of three closed surfaces surround-

ing Ay By Gy but these surfaces are no longer spherical, each one bulging out

towards the point D. As F decreases, the surfaces continue to swell out,

3*04
until, when F = ,

the surfaces touch one another simultaneously, in a

way which will readily be understood on examining the section of this equi-

potential as shewn in fig. 21. It will be seen that this equipotential is

shaped like a flower of three petals from which the centre has been cut away.

3As F decreases further the surfaces continue to swell, and when F = -
, the

a

space at the centre becomes filled up. For still smaller values of F the

equipotentials are closed singly-connected surfaces, which finally become

spheres at infinity corresponding to the potential F= 0.

The sections of the equipotentials by a plane through DA perpendicular

to the plane ABC are shewn in fig. 22.

Special Properties op Equipotentials and Lines op Force.

The Equipotentials and Lines of Force aJb infinity,

67. In § 40, we obtained the general equation

p'— j
[(® - «i)* + (y - + (« -

’

If r denotes the distance of a?, y, z from the origin, and Tj the distance of

origin, we may write this in the form

V= 'S, -
[r> - 2 (aw, + yy, + xr«,) +

At a great distance fi:om the origin this may be expanded in descending

powers of the distance, in the form

Tr _ V f -I .
+ yyi + + yyj + zz^)* I )

+2 2;^+-}-

The term of order - is — .

r r

The term of order
^ is

^ Sci (xxi -f yy^ -h zzi).
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If the origin is taken at the centroid of s, at y„ s„ «, at y„ etc.,

we have

Xeia;, = 0, 2c,y, = 0,

Thus by taking the origin at this centroid, the term of order - will
r*

disappear.

The term of order 4 is
r*

3 1

gp
Se, (xx, + yy, + s5,)» - — Ee,n»

Let G, be the moments of inertia about the axes, of Si at yi,

etc., and let I be the moment of inertia about the line joining the origin to

X, y, z ; then
2^1^!* =

-J-
(^A B (7),

2e, (xx^ + yy, + zz^y = r* (2e,r,* - /),

and the terms of order - become
r*

A B •¥ 0— 3Jr

2r»

Thus taking the centroid of the charges as origin, the potential at a great

distance from the origin can be expanded in the form

IT-_ 2e
,

il + JB + C — 3/
,

Thus except when the total charge 26 vanishes, the field at infinity is

the same as if the total charge Xe were collected at the centroid of the

charges. Thus the equipotentials approximate to spheres having this point

ajB centre, and the asymptotes to the lines of force are radii drawn through

the centroid. These results are illustrated in the special fields of force

considered in §§ 61—66.

The Lines of Force from collinear charges,

68. When the field is produced solely by charges all in the same straight

line, the equipotentials are obviously surfaces of revolution about this line,

while the lines of force lie entirely in planes through this line. In this

important case, the equation of the lines of force admits of direct integration.

Let Tit Pa, !%»••• l>o the positions of the charges 6,, 6,, 6,, .... Let Q, O'

be any two adjacent points on a line of force. Let N be the foot of the

perpendicular from Q to the axis IJJi , ..., and let a circle be drawn perpen-

dicular to this axis with centre N and radius QJ\r. This circle subtends

at ii a solid angle

27r (1 — cos ^i).
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where $i is the angle QliN. Thus the surface integral of normal force

arising from Sj, taken over the circle QN, is

2wSi(l — cos^i)

and the total surfistce integral of normal force taken over this surface is

27r2ei(l — cos tfi).

If we draw the similar circle through we obtain a closed surface

bounded by these two circles and by the surface formed by the revolution

‘'-Q

of QQ'. This contains no electric charge, so that the surface integral of

normal force taken over it must be nil. Hence the integral of force over

the circle QN must be the same as that over the similar circle drawn

through Q, This gives the equations of the lines of force in the form

(integral of normal force through circle such as QN) = constant,

which as we have seen, becomes

2si cos » constant

Analytically, let the point ^ have coordinates Oi, 0, 0, let ^ have

coordinates a,, 0, 0, etc. and let Q be the point a, y, j. Then

a a?—
cos tr=T.-.

,— a?i)* + y* + s*

and the equation of the surfaces formed by the revolution of the lines of

force is

X constant.
v(a?-a?,)P + y*+s*

It will easily be verified by differentiation that this is an integral of the

differential equation

dy r
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Equipotentiala which intersect themselves.

69. We have seen that, in general, the equipotential through any point

of equilibrium must intersect itself at the point of equilibrium.

Let d?, y, ^ be a point of equilibrium, and let the potential at this point be

denoted by Let the potential at an adjacent point d;+ (, y + 17, s + J;;
be

denoted by By Taylor’s Theorem, if /{x^ y, z) is any function of

y* ^1 we have

/(»+f.y+i7.«+0=/(«.y.«)+f^+’?^+r^+i(f^+2fi7^ + ...),

where the differential coefficients of f are evaluated at «, y, z. Taking

/(^> y> to be the potential at x, y, z, this of course being a function of the

variables x, y, s, the foregoing equation becomes

a*F 0*7

dy

If «, y, « is a point of equilibrium.

00 dy 0s
'

Bothat +

Referred to a;, y, « as origin, the coordinates of the point x+ ^, y+fj,

z + ( become 17, (f,
and the equation of the equipotential V^O becomes

In the neighbourhood of the point of equilibrium, the values of f, 17, ( are

small, so that in general the terms containing powers of f, 17, ^ higher than

squares may be neglected, and the equation of the equipotential V^O
becomes

In particular the equipotential becomes identical, in the neighbourhood

of the point of equilibrium, with the cone

S*F 3*F
=0.

Let this cone, referred to its principal axes, become

af^ + 6V*+ cr»0 (26),

then, since the sum of the coefficients of the squares of the variables is an

invariant,

^ .

a»F
^
a*F ^ a*F .
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Now a + & + c= 0 is the condition that the cone shall have three per-

pendicular generators. Hence we see that at the point at which an

equipotential cuts itself, we can always find throe perpendicular tangents to

the equipotential. Moreover we can find these perpendicular tangents in an

infinite number of ways.

In the particular case in which the cone is one of revolution {e,g,, if the

whole field is symmetrical about an axis, as in figures 16 and 20), the

equation of the cone must become

f* + V»-2r* = 0,

where the axis of is the axis of symmetry. The section of the equipotential

made by any plane through the axis, say that of must now become

in the neighbourhood of the point of equilibrium, and this shews that the

tangents to the equipotentials each make a constant angle tan'~^ (=

with the axis of symmetiy.

In the more general cases in which there is not symmetry about an axis,

the two branches of the surface will in general intersect in a line, ^d the

cone reduces to two planes, the equation being

where the axis of f' is the line of intersection. We now have a 4-6 = 0, so

that the tangent planes to the equipotential intersect at right angles.

An analogous theorem can be proved when n sheets of an equipotential

intersect at a point. The theorem states that the n sheets make equal

angles w/n with one another. (Rankin’s Theorem, see Maxwell’s Electricity

and Magnetism, § 115, or Thomson and Tait’s Natural Philosophy, § 780.)

70. A conductor is always an equipotential, and can be constructed so as

to cut itself at any angle we please. It will be seen that the foregoing

theorems can fail either through the a, 6 and c of equation (24) all vanishing,

or through their all becoming infinite. In the former case the potential near

a point at which the conductor cuts itself, is of the form (cf. equation (25)),

SO that the components of intensity are of the forms

The intensity near the point of equilibrium is therefore a small quantity of

the second order, and since by Coulomb’s Law R = 47r<r, it follows that the
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Burface density is zero along the line of intersection, and is proportional to

the square of the distance from the line of intersection at adjacent points.

If, however, a, b and o are all infinite^ we have the electric intensity also

infinite, and therefore the surface density is infinite along the line of inter-

section.

It is clear that the surface density will vanish when the conducting

surface cuts itself in such a way that the angle less than two right angles

is external to the conductor; and that the surface density will become

infinite when the angle greater than two right angles is external to the

conductor. This becomes obvious on examining the arrangement of the

lines of force in the neighbourhood of the angle.

Fia. 24. Angle less than two right angles external to conductor.

Fxo. 26. Angle greater than two right angles external to conductor.

71. The arrangement shewn in fig. 25 is such as will be found at the

point of a lightning conductor. The object of the lightning conductor is

to ensure that the intensity shall be greater at its point than on any part

of the buildings it is designed to protect The discharge will therefore take
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place from the point of the lightning conductor sooner than from any part of

the building, and by putting the conductor in good electrical communication

with the earth, it is possible to ensure that no harm shall be done to the

main buildings by the electrical discharge.

An application of the same principle will explain the danger to a human
being or animal of standing in the open air in the presence of a thunder cloud,

or of standing under an isolated tree. The upward point, whether the head

ofman or animal, or the summit of the tree, tends to collect the lines of force

which pass from the cloud to the ground, so that a discharge of electricity

will take place from the head or tree rather than irom the ground.

72. The property of lines of force of clustering together in this way is

utilised also in the manufacture of electrical instruments. A cage of wire is

placed round the instrument and almost all the lines of force from any

charges which there may be outside the instrument will cluster together on

the convex surfaces of the wire. Very few lines of force escape through this

cage, so that the instrument inside the cage is hardly affected at all by any

electric phenomena which may take place outside it. Fig. 27 shews the

way in which lines of force are absorbed by a wire grating. It is drawn to

represent the lines of force of a uniform field meeting a plane grating placed

at right angles to the field of force.
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The protection of a wire cage is not adequate for the most sensitive in-

struments, and it is usual to enclose them entirely in a metal case, except

only for one small window through which readings can be taken. When this

arrangement is adopted, no lines of force at all can pass from external charges

to the instrument inside the metal case except for an infinitesimal number
passing through the window. Lines of force which encounter the case termi-

nate on it without in any way affecting the electric field inside, and the in-

strument is almost perfectly screened from any external electric field. (C£ § 114
below.)

EXAMPLES.

L Two particles each of mass m and charged with e units of electricity of the same

sign are suspended by strings each of length a from the same point; prove that the

inclination 0 of each string to the vertical is given by the equation

sin’ d— e’ cos d.

2. Chaiges +4e, -e are placed at the points and C is the point of equilibrium.

Prove that the line of force which passes through C meets AB at an angle of 60* at A and

at right angles at (7.

3. Find the angle at A (question 2) between AB and the line of force which leaves B
at right angles to AB.

4. Two positive charges Si and are placed at the points Jl and B respectively.

Shew that the tangent at infinity to the line of force which starts from making an angle

o with BA produced, makes an angle

with BA^ and passes through the point C in AB such that

AC i CB^t% : Si*

6. Point charges +e, -e are placed at the points A^ B. The line of force which leaves

A making an angle a with AB meets the plane which bisects AB at right angles, in P.

Shew that

• a /5 . PAB
8mg*V2 sin-y.

6. If any closed surface be drawn not enclosing a charged body or any part of one,

show that at every point of a certain closed line on the surface it intersects the equi-

potential surface through the point at right angles.

7. The potential is given at four points near each other and not all in one plane.

Obtain an approximate construction for the direction of the field in their neighbourhood.
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The potentials at the four corners of a small tetrahedron A, B, C, D are T}, 7^,

7,, 74 respectively. O is the centre of gravity of masses Mi at A, at M% at C,

Jfi at D, Shew that the potential at (7 is

M, 7, + 7,+ J/, 7s+ ^4

if,+jrj+if3+if4

9.

Cliarges 3e, -s^ —0 are placed at A^ B^ C respectively, where B is the middle

point of ^6'. Draw a rough diagram of the linos of force; shew that a line of force which

starts from A making an angle a with 41j9>co8~^( — will not reach B or (7, and shew

that the asymptote of the line of force for which ascos'^ (— ]) is at right angles to AC,

10.

If there are three electrified points il, Z?, C in a straight line, such that AC^fy

BC^yy and the charg^ ore e, and Va respectively, shew that there is always a

spherical equipotential surface, and discuss the position of the points of ec^uilibrium on

the line ABC when 7=« and when T—e
(J~aY (/+«)*

11.

A and (7 are spherical conductors with charges and — « respectively. Shew

that there is either a point or a line of equilibrium, depending on the relative size and

positions of the spheres, and on tfje. Draw a diagram for each case giving the lines of

force and the sections of the equipotentials by a plane through the centres.

12.

An electrified body is placed in the vicinity of a conductor in the form of a

surface of anticlastic curvature. Shew that at that point of any line of force passing from

the body to the conductor, at which the force is a minimum, the principal curvatures of

the equipotential surface are equal and opposite.

13.

Shew that it is not possible for every family of non-intersecting surfaces in free

space to be a family of equipotentials, and that the condition that the family of surfaces

shall be capable of being equipotentials is that

^ ^ ^
3y*

^
00*

shall be a function of X only.

14. In the last question, if the condition is satisfied find the potential.

15. Shew that the oonfocal ellipsoids

o*+X^A»+X^c»+X

can form a system of equipotentials, and express the potential as a Ainction of X.

16. If two charged concentric shells be connected by a wire, the inner one is wholly

discharged. If the law of force were
^5^* prove that there would bo a charge B on the

inner shell such that if A were the charge on the outer shell, and /, g the sum and dififor-

enoe of the radii,

approximately.

SgB- - Ap {(/-g) log (f+g) -/logf+glogffy
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Three infinite parallel wires out a plane perpendicular to them in the angular

points il, C of an equilateral triangle, and have charges s, s, -s' per unit length

respectively. Prove that the extreme lines of force which pass from d to (7 mnlrii at

starting angles — « “id dC, provided that 0
':f>

2s.
18.

A negative point charge -Sj lies between two positive point charges Si and eg on

the line joining them and at distances a, /3 from them respectively. Shew that, if the

magnitudes of the charges are given by

fi and if 1<X*<a+p

there is a circle at every point of which the force vanishes. Determine the general form

of the equipotential surface on which this circle lies.

19.

Charges of electricity Si, — S2 }
^3 i (^s>^i) placed in a straight line, the

negative charge being midway between the other two. Shew that, if lie between

“id (s|^+Si^)^ the number of unit tubes of force that pass from S| to S| is

i («i+«i- «i)

+

iH* - tih («i* - 8W

+



CHAPTER III

CONDUCTORS AND CONDENSERS

73. By a conductor, as previously explained, is meant any body or

system of bodies, such that electricity can flow freely over the whole. When
electricity is at rest on such a conductor, we have seen (§ 44) that the charge

will reside entirely on the outer surface, and (§ 37) that the potential will

be constant over this surface.

A conductor may be used for the storage of electricity, but it is found

that a much more efficient arrangement is obtained by taking two or more

conductors—generally thin plates of metal—and arranging them in a certain

way. This arrangement for storing electricity is spoken of as a con-

denser/* In the present Chapter we shall discuss the theory of single

conductors and of condensera, working out in full the theory of some of the

simpler cases.

Conductors.

A Spherical Conductor,

74. The simplest example of a conductor is supplied by a sphere, it

being supposed that the sphere is so &r removed from all other bodies that

their influence may be neglected. In this case it is obvious from symmetry

that the charge will spread itself uniformly over the surfaca Thus if 6 is

the charge, and a the radius, the surface density a is given by

_ total charge _ e

total area of surface

’

The electric intensity at the surface being, as we have seen, equal to

47r<r, is s/a*.

From symmetry the direction of the intensity at any point outside the

sphere must be in a direction passing through the centre. To find the

amount of this intensity at a distance r from the centre, let us draw a sphere

of radius r, concentric with the conductor. At every point of this sphere

the amount of the outward electric intensity is by symmetiy the same, say R,
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and its direction as we have seen is normal to the surface. Applying Gauss’

Theorem to this sphere, we find that the surface integral of normal intensity

becomes simply multiplied by the area of the surface so that

47rr®i2 = 4i7re,

or

This becomes s/a* at the surfcuse, agreeing with the value previously

obtained.

Thus the electric force at any point is the same as if the charged sphere

were replaced by a point charge e, at the centre of the sphere. And, just

as in the case of a single point charge s, the potential at a point outside the

sphere, distant r from its centre, is

/:
£

so that at the surface of the sphere the potential is
e

a ’

Inside the sphere, as has been proved in § 37, the potential is constant,

and therefore equal to s/a, its value at the surface, while the electric intensity

vanishes.

As we gradually charge up the conductor, it appears that the potential

at the surface is always proportional to the charge of the conductor.

It is customary to speak of the potential at the surface of a conductor as

" the potential of the conductor,” and the ratio of the charge to this potential

is defined to be the “ capacity ” of the conductor. From a general theorem,

which we shall soon arrive at, it will be seen that the ratio of charge to

potential remains the same throughout the process of charging any conductor

or condenser, so that in every case the capacity depends only on the shape

and size of the conductor or condenser in question. For a sphere, as we
have seen^

charge e

so that the capacity of a sphere is equal to its radius.

A Cylindrical Conductor,

76. Let us next consider the distribution of electricity on a circular

cylinder, the cylinder either extending to infinity, or else having its ends so

far away from the parts under consideration that their influence may be

neglected.

As in the case of the sphere, the charge distributes itself symmetrically,
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80 that if a is the radius of the cylinder, and if it has a charge s per unit

length, we have

s
^

27ra*

To find the intensity at any point outside the conductor, construct a Gauss’

surface by first drawing a cylinder of radius r, coaxal with the original

cylinder, and then cutting off a unit length by two parallel planes at

unit distance apart, perpendicular to the axis. From sym-

metry the force at every point is perpendicular to the axis

of the cylinder, so that the normal intensity vanishes at

every point of the plane ends of this Gauss’ surface. The
surface integral of normal intensity will therefore consist

entirely of the contributions from the curved part of the

surface, and this curved part consists of a circular band, of

unit width and radius r—hence of area 27rr. If 22 is the

outward intensity at every point of this curved surface,

Gauss’ Theorem supplies the relation

^irrR = 47rs,

so that 22 = ~

.

r

This, we notice, is independent of a, so that the intensity is the same as

it would be if a were very small, t.s., as if we had a fine wire electrified with

a charge e per unit length.

In the foregoing, we must suppose r to be so small, that at a distance r

from the cylinder the infiuence of the ends is still negligible in comparison

with that of the nearer parts of the cylinder, so that the investigation does

not hold for large values of r. It follows that we cannot find the potential

by integrating the intensity from infinity, as has been done in the cases of

the point charge and of the sphere. We have, however, the general

differential equation

so that in the present case, so long as r remains sufficiently small

dr T *

giving upon integration

F«(7-2e logr.

The constant of integration C cannot be determined without a knowledge

of the conditions at the ends of the cylinder. Thus for a long cylinder, the

intensity at points near the cylinder is independent of the conditions at the

ends, but the potential and capacity depend on these conditions, and are

therefore not investigated here.
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An Infinite Plane.

76. Suppose we have a plane extending to infinity in all directions, and

electrified with a charge a per unit area. From symmetiy it is obvious that

the lines of force will be perpendicular to the plane at every point, so that

the tubes of force will be of uniform cross-section. Let us take as Gauss’

surface the tube of force which has as cross-section any element o) of area

of the charged plane, this tube being closed by two cross-sections each of

area to at distance r from the plane. If R is the intensity over either of

these cross-sections the contribution of each cross-section to Gauss’ integral

is Rto, so that Gauss’ Theorem gives at once

2R(o = 47r<r<k),

whence R = 27ro-.

*

The intensity is therefore the same at all distances from the plane.

The result that at the surface of the plane the intensity is 27ro‘, may at

first seem to be in opposition to Coulomb’s Theorem (§ 57) which states that

the intensity at the surface of a conductor is 4^0*. It will, however, be seen

from the proof of this theorem, that it deals only with conductors in

which the conducting matter is of finite thickness; if we wish to regard

the electrified plane as a conductor of this kind we must regard the

total electrifics^tion as being divided between the two faces, the surface

density being on each, and Coulomb’s Theorem then gives the correct

result.

If the plane is not actually infinite, the result obtained for an infinite

plane will hold within a region which is sufficiently near to the plane for the

edges to have no influence. As in the former case of the cylinder, we can

obtain the potential within this region by integration. If r measures the

perpendicular distance from the plane

so that V—C— 27r(jr,

and, as before, the constant of integration cannot be determined without

a knowledge of the conditions at the edges.

77. It is instructive to compare the three expressions which have been

obtained for the electric intensity at points outside a charged sphere, cylinder

and plane respectively. Taking r to be the distance from the centre of the
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sphere, from the axis of the cylinder, and from the plane, respectively, we

have found that

outside the sphere, R is proportional to

outside the cylinder, R is proportional to

outside the plane, R is constant.

From the point of view of tubes of force, these results are obvious enough

deductions from the theorem that the intensity varies inversely as the cross-

section of a tube of force. The lines of force from a sphere meet in a point,

the centre of the sphere, so that the tubes of force are cones, with cross-

section proportional to the square of the distance from the vertex. The

lines of force from a cylinder all meet a line, the axis of the cylinder, at right

angles, so that the tubes of force are wedges, with cross-section proportional

to the distance from the edge. And the lines of force from a plane all meet

the plane at right angles, so that the tubes of force are prisms, of which the

cross-section is constant.

78. We may also examine the results from the point of view which

regards the electric intensity as the resultant of the attractions or repulsions

from different elements of the charged surface.

Let us first consider the charged plane. Let

distances r, r' from the plane, and let Q be the

foot of the perpendicular from either on to the

plane. If P is near to Q, it will be seen that

almost the whole of the intensity at P is due

to the charges in the immediate neighbourhood

of Q, The more distant parts contribute forces

which make angles with QP nearly equal to a

right angle, and after being resolved along QP
these forces hardly contribute anything to the

resultant intensity at P.

Owing to the greater distance of the point P',

the forces from given elements of the plane are

smaller at P' than at P, but have to be resolved

through a smaller angle. The forces from the

regions near Q are greatly diminished from the

funner cause and are hardly affected by the latter.

The forces from remote regions are hardly affected

by the former circumstance, but their effect is

greatly increased by the latter. Thus on moving

P, P' be two points at
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from P to P' the forces exerted by regions near Q decrease in efficiency,

while those exerted by more remote regions gain. The result that the

total resultant intensity is the same at P' as at P, shews that the

decrease of the one just balances the gain of the other.

If we replace the infinite plane by a sphere, we find that the force at

a near point P is as before contributed

almost entirely by the charges in the

neighbourhood of Q. On moving from P
to these forces are diminished just as

before, but the number of distant elements

of area which now add contributions to

the intensity at P* is much less than

before. Thus the gain in the contributions

from these elements does not suffice to

balance the diminution in the contributions from the regions near Q, so that

the resultant intensity falls off on withdrawing from P to P'

The case of a cylinder is oi course intermediate between that of a plane

and that of a sphere.

Condensers.

Spherical Condenser,

79. Suppose that we enclose the spherical conductor of radius a dis-

cussed in § 74, inside a second spherical conductor of internal radius b, the

two conductors being placed so as to be concentric and insulated from one

another.

It again appears from symmetry that the intensity at every point must

be in a direction passing through the common centre of the two spheres, and

must be the same in amount at eveiy point of any sphere concentric with

the two conducting spheres. Let us imagine a concentric sphere of radius r

drawn between the two conductors, and when the charge on the inner sphere

is e, let the intensity at every point of the imaginary sphere of radius r be

R. Then, as before. Gauss* Theorem, applied to the sphere of radius r, gives

the relation

47rr*P = 4nre,

so that

This only holds for values of r intermediate between a and h, so that to

obtain the potential we cannot integrate from infinity, but must use the

differential equation. This is

dV
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which upon integration gives

‘

(27).

We can determine the constant of integration as soon as we know the

potential of either of the spheres. Suppose for instance that the outer

sphere is put to earth so that 0 over the sphere r = 6, then we obtain at

once from equation (27)

o=c+J,

so that — ejh, and equation (27) becomes

On taking r == a, we find that the potential of the inner sphere is e

and its charge is e, so that the capacity of the condenser is

1 ah

T~l
a b

80. In the more general case in which the outer sphere is not put to

earth, let us suppose that Va, % are the potentials of the two spheres of

radii a and so that, from equation (27)

F. = (7+^,

F = C + |.

Then we have on subtraction

so that the capacity is v~~v *

Va Vb

The lines of force which start from the inner sphere must all end on the

inner surface of the outer sphere, and each line of force has equal and

opposite charges at its two ends. Thus if the charge on the inner sphere is

e, that on the inner surface of the outer sphere must be — e. We can there-

fore regard the capacity of the condenser as being the charge on either of

the two spheres divided by the difference of potential, the fraction being

taken always positive. On this view, however, we leave out of account any

charge which there may be on the outer surface of the outer sphere: this

is not regarded as part of the charge of the condenser.
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An examination of the expression for the capacity,

ah

will shew that it can be made as large as we please by making h — a
sufficiently small. This explains why a condenser is so much more

efficient for the storage of electricity than a single conductor.

81. By taking more than two spheres we can form more complicated

condensers. Suppose, for instance, we take concentric spheres of radii

a, 6, c in ascending order of magnitude, and connect both the spheres of

radii a and c to earth, that of radius h remaining insulated. Let V be the

potential of the middle sphere, and let Si and e, be the total charges on its

inner and outer surfaces. Regarding the inner surface of the middle sphere

and the surface of the innermost sphere as forming a single spherical

condenser, we have

_ Vah

and again regarding the outer surface of the middle sphere and the outermost

sphere as forming a second spherical condenser, we have

Vbc
^ c — 6’

Hence the total charge E of the middle sheet is given by

A = Si + Sf

SO that regarded as a single condenser, the system of three spheres has a

capacity

ah he

6 — — 6
’

which is equal to the sum of the capacities of the two constituent condensers

into which we have resolved the system. This is a special case of a general

theorem to be given later (§ 85).

Coaxal Cylinders,

82. A conducting circular cylinder of radius a surrounded by a second

coaxal cylinder of internal radius h will form a condenser. If e is the charge

on the inner cylinder per unit length, and if V is the potential at any point

between the two cylinders at a distance r from their common axis, we have,

as in § 75,

F =s (7 — 2e log r.
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and it is now possible to determine the constant 0 as soon as the potential of

either cylinder is known.

Let Vft be the potentials of the inner and outer cylinders, so that

as 0 - 2s log a,

TJ= C7- 2s log 6.

By subtraction Fa-7* = 2fllog(^).

so that the capacity is

per unit length.

Parallel Plate Condenser.

83. This condenser consists of two parallel plates facing one another,

say at distance d apart. Lines of force will pass from the inner face of one

to the inner &ce of the other, and in regions sufficiently far removed from

the edges of the plate these lines of force will be perpendicular to the plate

throughout their length. If o* is the surface density of electrification of one

plate, that of the other will be — o*. Since the cross-section of a tube

remains the same throughout its length, and since the electric intensity

varies as the cross-section, it follows that the intensity must be the same

throughout the whole length of a tube, and this, by Coulomb's Theorem,

will be 4^0-, its value at the surface of either plate. Hence the difference of

potential between the two plates, obtained by integrating the intensity 4770*

along a line of force, will be

The capacity per unit area is equal to the charge per unit area a

divided by this difference of potential, and is therefore

1

47r(i'

The capacity of a condenser formed of two parallel plates, each of area A,

is therefore

A
47rd’

except for a correction required by the irregularities in the lines of force

near the edges of the platea

Inductive Capcudty.

84. It was found by Cavendish, and afterwards independently by

Faraday, that the capacity of a condenser depends not only on the shape

and size of the conducting plates but also on the nature of the insulating

material, or dielectric to use Faraday’s word, by which they are separated.
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It is further found that on replacing air by some other dielectric, the

capacity of a condenser is altered in a ratio which is independent of the

shape and size of the condenser, and which depends only on the dielectric

itself. This constant ratio is called the specific inductive capacity of the

dielectric, the inductive capacity of air being taken to be unity.

We shall discuss the theoiy of dielectrics in a later Chapter. At present

it will be enough to know that if C is the capacity of a condenser when its

plates are separated by air, then its capacity, when the plates are separated

by any dielectric, will be KG, where K is the inductive capacity of the

particular dielectric used. The capacities calculated in this Chapter have all

been calculated on the supposition that there is air between the plates, so

that when the dielectric is different firom air each capacity must be multi-

plied by K
The following table will give some idea of the values of K actually observed for

different dielectrics. For a great many substances the value of if is found to vary widely

for different specimens of the material and for different physical conditions.

Sulphur 3*6 to 4*3. Methyl Alcohol at 13‘4* C. 35*4

Mica 6*7 to 7-0. Water at 17* C. 81
Glass 5 to 10. Ico at - 2* C. 93*9

Paraffin wax 2 0 to 2-3. Ice at -200*0. 2*43

The values of K for some gases are given on p. 132.

Compound Condensers.

Condensers in Parallel.

85. Let us suppose that we take any number of condensers of capacities

Cl, C7a, ... and connect all their high potential plates together by a conducting

wire, and all their low potential plates together in the same way. This is

known as connecting the condensers in parallel.

The high potential plates have now all the same potential, say Fi, while

the low potential plates have all the same potential, say F«. If Si, s^, ... are

the charges on the separate high potential plates, we have

Si =s Cl (Fi — Fo),

s, = C,(F,- Fo), etc..
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and the total charge E is given by

^ = 6i + ej + ...

-(C7, + a.+ ...)(F,-Fo).

Thus the system of condensers behaves like a single condenser of capacity

Ci + (7j + C, + ••••

It will be noticed that the compound condenser discussed in § 81 con-

sisted virtually of two simple spherical condensers connected in parallel.

Condensers in Cascade.

86. We might, however, connect the low potential plate of the first to

the high potential plate of the second, the low potential plate of the second

to the high potential plate of the third, and so on. This is known as

arrangmg the condensers in cascade.

Suppose that the high potential plate of the first has a charge s. This

induces a charge — 6 on the low potential plate, and since this plate together

with the high potential plate of the second condenser now form a single

insulated conductor, there must be a charge + s on the high potential plate

of the second condenser. This induces a charge - e on the low potential

plate of this condenser, and so on indefinitely
;
each high potential plate will

have a charge + s, each low potential plate a charge — s.

Thus the difference of potential of the two plates of the first condenser

will be elCl, that of the second condenser will be e/C^, and so on, so that the

total fall of potential from the high potential plate of the first to the low

potential plate of the last will be

We see that the arrangement acts like a single condenser of capacity

+ •••
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Practical Condensers.

Practical Units.

87. As will be explained more fully later, the practical units of

electricians are entirely different from the theoretical units in which we
have so far supposed measurements to be made. The practical unit of

capacity is called the farad, and is equal, very approximately, to 9 x 10*^ times

the theoretical c.o.s. electrostatic unit, t.a, is equal to the actual capacity

of a sphere of radius 9 x 10'^ cms. This unit is too large for most purposes,

so that it is convenient to introduce a subsidiary unit—the microfarad

—

equal to a millionth of the farad, and therefore to 9 x 10” C.G.S. electrostatic

units. Standard condensers can be obtained of which the capacity is equal

to a given fraction, frequently one-third or one-iifbh, of the microfarad.

The Leyden Jar,

88. For experimental purposes the commonest form of condenser is the

Leyden Jar. This consists essentially of a glass vessel, bottle-shaped, of

which the greater part of the surface is coated

inside and outside with tinfoil. The two coatings

form the two plates of the condenser, contact with

the inner coating being established by a brass

rod which comes through the neck of the bottle,

the lower end having attached to it a chain

which rests on the inner coating of tinfoil.

To form a rough numerical estimate of the

capacity of a Leyden Jar, let us suppose that the

thickness of the glass is ^cm., that its specific

inductive capacity is 7, and that the area covered

with tinfoil is 400 sq. cms. Neglecting corrections required by the irregu-

larities in the lines of force at the edges and at the sharp angles at the

bottom of the jar, and regarding the whole system as a single parallel plate

condenser, we obtain as an approximate value for the capacity

KA
7- -> electrostatic units,
47ra

in which we mu.st put K = 7, A= 400 and d = J. On substituting these

values the capacity is found to be approximately 450 electrostatic units,

or about microfarad.

arallel Plates,

89. A more convenient condenser for some purposes is a modification of

the parallel plate condenser. Let us suppose that we arrange n plates, each

¥iq. 83.
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of area A, parallel to one another, the distance between anj two adjacent

plates being d. If alternate plates are joined together so as to be in electrical

contact the space between each adjacent pair of plates may be regarded as

Fio. 34.

KA
forming a single parallel plate condenser of capacity ^ ,

so that the capacity

of the compound condenser is KAJ^ird. By making n large and d
small, we can make this capacity large without causing the apparatus to

occupy an unduly large amount of space. For this reason standard con-

densers are usually made of this pattern.

90. Quard Ring, In both the condensers described the capacity can

only be calculated approximately. Lord Kelvin has devised a modification

of the parallel plate condenser in which the error caused by the irregularities

of the lines of force near the edges is dispensed with, so that it is possible

accurately to calculate the capacity irom measurements of the plates.

Fio. 35.

The principle consists in making one plate B of the condenser larger than

the second plate A, the remainder of the space opposite B being occupied by
a guard ring ’* C which fits A so closely as almost to touch, and is in the

same plane with it. The guard ring C and the plate A, if at the same
potential, may without serious error be regarded as forming a single plate of

a parallel plate condenser of which the other plate is B, The irregularities

in the tubes of force now occur at the outer edge of the guard ring C, while

the lines of force from A to B are perfectly straight and uniform. Thus if A
is the area of the plate A its capacity may be supposed, with great accuracy,

to be

^ird
*

where d is the distance between the plates A and B,
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Submarine Cables,

91. Unfortunately for practical electricians, a submarine cable forms

a condenser, of which the capacity is frequently very considerabla The
effect of this upon the transmission of signals will be discussed later. A cable

consists generally of a core of strands of copper wire surrounded by a layer of

insulating material, the whole being enclosed in a sheathing of iron wire.

This arrangement acts as a condenser of the type of the coaxal cylinders

investigated in § 82, the core forming the inner cylinder whilst the iron

sheathing and the sea outside form the outer cylinder.

In the capacity formula obtained in § 82, namely

K

let us suppose that b = 2a, and that K = 3*2, this being about the value for

the insulating material generally used. Using the value log« 2 = *69315, we
find a capacity of 2*31 electrostatic units per unit length. Thus a cable

2000 miles in length has a cap<acity equal to that of a sphere of radius

2000 X 2*31 miles, %,e., of a sphere greater than the earth. In practical units,

the capacity of such a cable would be about 827 microfarads.

Mechanical Force on a Conductinq Surface.

92. Let Q be any point on the surface of a conductor, and let the

surface-density at the point Q be o*. Let us draw any small area dS

enclosing Q. By taking dS sufficiently small, we may regard the area as

perfectly plane, and the charge on the area will be adS. The electricity on

the remainder of the conductor will exert forces of attraction or repulsion on

the charge adS, and these forces will shew themselves as a mechanical force

acting on the element of area dS of the conductor. Wo require to find the

amount of this mechanical force.
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The electric intensity at a point near Q and just outside the conductor is

47r<r, by Coulomb's Law, and its direction is normally away from the surface.

Of this intensity, part arises from the charge on dS itself, and part from the

charges on the remainder of the conductor. As regards the first part, which

arises from the charge on dS itself, we may notice that when we are con-

sidering a point sufficiently close to the surface, the element dS may be

treated as an infinite electrified plane, the electrification being of uniform

density <r. The intensity arising from the electrification of dS at such a

point is accordingly an intensity 27r<r normally away from the surface. Since

the total intensity is 4^0* normally away from the surface, it follows that the

intensity arising from the electrification of the parts of the conductor other

than dS must also be 27ro- normally away from the surface. It is the forces

composing this intensity which produce the mechanical action on dS.

The charge on dS being adS, the total force will be 27ra^dS normally away

from the surface. Thus per unit area there is a force 27r<r* tending to repel

the charge normally away from the surface. The charge is prevented from

leaving the surface of the conductor by the action between electricity and

matter which has already been explained. Action and reaction being equal

and opposite, it follows that there is a mechanical force 27r<r* per unit area

acting normally outwards on the material surface of the conductor.

Remembering that B == 47r(r, we find that the mechanical force can also

be expressed as ^ per unit area.

93. Let us tiy to form some estimate of the magnitude of this mechanical

force as compared with other mechaniciil forces with which we are more

familiar. We have already mentioned Maxwell’s estimate that a gramme of

gold, beaten into a gold-leaf one square metre in area, can hold a charge of

60,000 electrostatic units. This gives 3 units per square centimetre as the

charge on each face, giving for the intensity at the surface,

B = 47rcr = 38 C.G.S. units,

and for the mechanical force

B*
27rcr* =— = 56 dynes per sq. cm.

Lord Kelvin, however, found that air was capable of sustaining a

tension of 9600 grains wt. per sq. foot, or about 700 dynes per sq. cm.

This gives B 130, tr = 10.

jK*
Taking B « 100 as a lar^e value of B, we find = 400 dynes per

sq. cm. The pressure of a normal atmosphere is

1,013,570 dynes per sq. cm..
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SO that the force on the conducting surface would be only about ^
atmosphere : say *3 mm. of mercury.

If a gold-leaf is heaten so thin that 1 gm. occupies 1 sq. metre of area,

the weight of this is *0981 dyne per sq. cm. In order that 27r<r* may be
equal to *0981, we must have o’ = *1249. Thus a small piece of gold-leaf

would be lifted up from a charged surface on which it rested as soon as the

surface acquired a charge of about ^ of a unit per sq. cm.

Electrified Soap-Bubble.

94. As has already been said, this mechanical force shews itself well on

electrifying a soap-bubble.

Let us first suppose a closed soap-bubble blown, of radius a. If the

atmospheric pressure is IT, the pressure inside will be somewhat greater than

n, the resulting outward force being just balanced by the tension of the

surface of the bubble. If, however, the bubble is electrified there will be an

additional force acting normally outwards on the surface of the bubble, namely

the force of amount 27ro^ per unit area just investigated, and the bubble will

expand until equilibrium is reached between this and the other forces acting

on the surface.

As the electrification and consequently the radius change, the pressure

inside wdll vary inversely as the volume, and therefore inversely as a*. Let

us, then, suppose the pressure to be /r/a*. Consider the equilibrium of the

small element of surfice cut off by a circular cone through the centre, of small

semi-vertical angle 6. This element is a circle of radius ad, and therefore

of area The forces acting are

:

(i) The atmospheric pressure normally inwaixia.

(ii) The internal pressure ^ 7ra®^ normally outwards.
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(iii) The mechanical force due to electiilication, 27r<r* x ira*^ normally

outwards.

(iv) The system of tensions acting in the surface of the bubble across

the boundary of the element.

If T is the tension per unit length, the tension across any element of

length ds of the small circle will be Tds acting at an angle 6 with the tangent

plane at P, ‘the centre of the circle. This may be resolved into Tdsoo^O in

the tangent plane, and Tds sin 6 along PO. Combining the forces all round

the small circle of circumference 27ra^, we find that the components in the

tangent plane destroy one another, while those along PO combine into a

resultant 2ira6 x Tsin.^. To a sufficient approximation this may be written

as 2wa^P.

The equation of equilibrium of the element of area is accordingly

n ^ ira^G^ — 27r<r*7ra*^ + 27ra^P = 0,
a*

K 2T
or, simplifying, 11 — - — 27r<T* +— = 0 (28).

Let Oo be the radius when the bubble is uncharged, and let the radius be

a, when the bubble has a charge e, so that

Then R-—,+ ^0,
a,* a,

n - — ^+— = 0.
Ui* SirOi* Oi

We can without serious error assume T to be the same in the two cases.

If we eliminate T from these two equations, we obtain

n(a, a,)
o,»)“87ro,**

giving the charge in terms of the radii in the charged and uncharged states.

95. We have seen (§ 93) that the maximum pressure on the surface

which electrification can produce is only about atmosphere : thus it is

not possible for electrification to change the pressure inside by more than

about atmosi)here, so that the increase in the size of the bubble is

necessarily very slight.

TTO-^
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As a rough approximation, we may still regard the bubble as a uniformly

charged sphere, so that if V is its potential,

<r = VI4iTra,

and the relation is V* = Idwa T,

giving V in terms of the radius of the bubble, if the tension T is known. In

this case the electrification can be made to produce a large change in the

radius, by using films for which T is very small

Energy of Discharge,

96. On discharging a conductor or condenser, a certain amount of

energy is set free. This may shew itself in various ways, e.g, as a spark or

sound (as in lightning and thunder), the heating of a wire, or the piercing

of a hole through a solid dielectric. The energy thus liberated has been

previously stored up in charging the conductor or condenser.

To calculate the amount of this energy, let us suppose that one plate of

a condenser is to earth, and that the other plate has a charge e and is at

potential V, so that if C is the capacity of the condenser,

e^GV (29).

If we bring up an additional charge de from infinity, the work to be

done is, in accordance with the definition of potential, Vde. This is equal

to d W, where W denotes the total work done in charging the condenser up

to this stage, so that

dW= Vde

=^ by equation (29).

On integration we obtain

= (30).

no constant of integration being added since W must vanish when 6 = 0.

This expression gives the work done in charging a condenser, and therefore

gives also the energy of discharge, which may be used in creating a spark,

in heating a wire, etc.

Clearly an exactly similar investigation will apply to a single conductor,

so that expression (30) gives the energy either of a condenser or of a single

conductor. Using the relation e = CV, the energy may be expressed in any

one of the forms

F=jJ=ier=icr‘ (31).

97. As an example of the use of this formula, let us suppose that we
have a parallel plate condenser, the area of each plate being A, and the
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distance of the plates being d, so that C=^AI4nrd, by § 83. Let <r be the

surface density of the high potential plate, so that 0 = <rA. Let the low

potential plate be at zero potential, then the potential of the high potential

plate is

F ^—4t'rrda,

and the electrical energy is

W = ^eV= 27rd<T^A»

Now let us pull the plates apart, so that d is increased to d'. The

electrical energy is now 2ird'c*A, so that there has been an increase of

electrical energy of amount

27r<T^A {d* — d).

It is easy to see that this exactly represents the work done in separating

the two plates. The mechanical force on either plate is 27ro^ per unit area,

so that the total mechanical force on a plate is 27r<j^A. Obviously, then,

the above is the work done in separating the plates through a distance

d'-A

It appears from this that a parallel plate condenser affords a ready means

of obtaining electrical energy at the expense of mechanical. A more valuable

property of such a condenser is that it enables us to increase an initial

difiference of potential. The initial difference of potential

4f7rd<r

is increased, by the separation, to

47rd'cr.

By taking d small and d' large, an initial small difference of potential

may be multiplied almost indefinitely, and a potential difference which is

too small to observe may be increased until it is sufficiently great to affect

an instrument. By making use of this principle, Volta first succeeded in

detecting the difference of electrostatic potential between the two terminals

of an electric batteiy.

There are practical difficultieswhich restrict the application of the principle.

For if the initial distance d is made too small the condenser may discharge itself

by a spark passing directly between the plates, while if d' is made large com-

pared with the size of the plates the formulae we have used are no longer true.

EXAMPLES.

1. The two plates of a parallel plate condenser are each of area if, and the distance

between them is J, this distance being small compared with the size of the plates. Find
the attraction between them when charged to potential difference F, neglecting the

irregularities caused by the edges of the platea Find also the energy set free when the

plates are connected by a wire.
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2. A sheet of metal of thickness t is introduced between the two plates of a parallel

plate condenser which are at a distance d apart, and is placed so as to be parallel to the

plates. Shew that the capacity of the condenser is increased by an amount

t

per unit area. Examine the case in which t is very nearly equal to d.

3. A high-pressure main consists first of a central conductor, which is a copper tube

of inner and outer diameters of^ and inches. The outer conductor is a second copper

tube coaxal with the first, from which it is separated by insulating material, and of

diameters 1)} and l^f inches. Outside this is more insulating material, and enclosing

the whole is an iron tube of internal diameter 2^ inches. The capacity of the conductor

is found to be *367 microfarad per mile : calculate the mductive capacity of the insulating

material.

A An infinite plane is charged to surface density o-, and P is a point distant half an

inch from the plane. Shew that of the total intensity 2^0- at P, half is due to the charges

at points which are within one inch of P, and half to the charges beyond.

6.

A disc of vulcanite (non-conducting) of radius 6 inches, is charged to a uniform

surface density a by friction. Find the electric intensities at points on the axis of the

disc distant respectively 1, 3, 5, 7 inches from the surface.

6. A condenser consists of a sphere of radius a surrounded by a concentric spherical

shell of radius b. The inner sphere is put to earth, and the outer shell is insulated.

Show that the capacity of the condenser so formed is •

7. Four equal large conducting plates d, P, C, D are fixed parallel to one another.

A and J) are connected to earth, B has a charge E per unit area, and C a charge E' per

unit area. The distance between A and P is a, between P and C is 6, and between C and

D is c. Find the potentials of P and C.

8. A circular gold-leaf of radius h is laid on the surface of a charged conducting

sphere of radius a, a being large compared to 6. Prove that the loss of electrical energy

in removing the leaf from the conductor—assuming that it carries away its whole charge^

is approximately where E is the charge of the conductor, and the caiiacity of the

leaf is comparable to h,

9. Two condensers of capacities Ci and 0], and possessing initially chaigcs Qi and Qi,

arc connected in parallel. Shew that there is a loss of eneigy of amount

2PA(^7i+C,)'

10. Two Leyden Jars A, B have capacities Cj respectively. A is charged and a

spark taken : it is then charged as before and a spark passed between the knobs of

A and P. A and P are then separated and are each discharged by a spark. Shew that

the energies of the four sparks are in the ratio

11. Assuming an adequate number of condensers of equal capacity P, shew how a

compound condenser can be formed of equivalent capacity 6C^ where $ is any rational

number.
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12. Three insulated concentric spherical conductors, whose radii in ascending order

of magnitude are h, have charges si, Ss* respectively, find their potentials and shew

that if the innermost sphere be connected to earth the potential of the outermost is

diminished by

13. A conducting sphere of radius a is surrounded by two thin concentric spherical

conducting shells of radii h and the intervening spaces being filled with dielectrics of

inductive capacities K and L respectively. If the shell h receives a charge the other

two being uncharged, determine the loss of energy and the potential at any point when

the spheres A and C are connected by a wire.

14. Three thin conducting sheets are in the form of concentric spheres of radii

a+dj a, a^e respectively. The dielectric between the outer and middle sheet is of

inductive capacity A, that between the middle and inner sheet is air. At first the outer

sheet is uninsulated, the inner sheet is uncharged and insulated, the middle sheet is

charged to potential V and insulated. The inner sheet is now uninsulated without

connection with the middle sheet Prove that the potential of the middle sheet falls to

KVc(a-^d)

Kc (a+ rf)+£f (a-c)*

15. Two insulated conductors A and B are geometrically similar, the ratio of their

linear dimensions being as Z to Z'. The conductors are placed so as to be out of each

other’s field of induction. The potential of A is V and its charge is Z, the potential

of B is V* and its charge is E‘. The conductors are then connected by a thin wire.

Prove that, after electrostatic equilibrium has been restored, the loss of electrostatic

energy is

* LatU

16. If two surfaces be taken in any family of equipotentials in free space, and two

metal conductors formed so as to occupy their positions, then the capacity of the

C C
condenser thus formed is 7^

-
'

^ ,
where Ci, Co are the capacities of the external and

O1-C2
internal conductors when existing alone in an infinite field.

17. A conductor (B) with one internal cavity of radius h is kept at potential U, A
conducting sphere (A), of radius a, at great height above B contains in a cavity water

which leaks down a very thin wire paF.*sing without contact into the cavity of B through

a hole in the top of B, At the end of the wire spherical drops are formed, concentric

with the cavity
; and, when of radius d, they fall passing without contact through a small

hole in the bottom of Z, and ara received in a cavity of a third conductor (C) of capacity e

at a great distance below B, Initially, before leaking commences, the conductors A and C
are uncharged. Prove that after the rth drop has fallen the potential of (7 is

Uoi+W-ad)'
where the disturbing effect of the wire and hole on the capacities is neglected.

18.

An insulated spherical conductor, formed of two hemispherical shells in contact,

whose inner and outer radii are h and V, has within it a concentric spherical conductor of

radius a, and without it another spherical conductor of which the internal radius is c.

These two conductors are earth-connected and the middle one receives a charge. Shew

that the two shells will not separate if

2ao>5o-|-6'ci.
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19. Outside a spherical charged conductor there is a concentric insulated but un-

charged conducting spherical shdl, which consists of two segments. Proye that the two
segments will not separate if the distance of the separating plane from the centre is less

than

ab

(o*+6^4’

where a, 6 are the internal and external radii of the shell

20. A soap-bubble of radius a is formed by a film of tension the external

atmospheric pressure being n. The bubble is touched by a wire from a large conductor

at potential F, and the film is an electrical conductor. Prove that its radius increases to

r, given by

n (r»-a*)+2r(r*-a»)=-^.

21. If the radius and tension of a spherical soap-bubble be a and T respectively,

shew that the charge of electricity required to expand the bubble to twice its linear

dimensions would be

4 V»ra*(6T-H7na),

n being the atmospheric pressure.

22. A thin spherical conducting envelope, of tension T for all magnitudes of its

radius, and with no air inside or outside, is insulated and charged with a quantity Q of

electricity. Prove that the total gain in mechanical energy involved in bringing a charge

q from an infinite distance and placing it on the envelope, which both initially and finally

is in mechanical equilibrium, is

f (2^7)1 {(Q+jr)4-«}}.

23. A spherical soap-bubble is blown inside another concentric with it, and the

former has a charge E of electricity, the latter being originally uncharged. The latter

now has a small charge given to it. Shew that if a and 2a were the original radii, the

new radii will be approximately a-i-j7, 2a -hy* where

12^(na+7)=^(24n«+l^

where n is the atmospheric pressure, and T is the surface-tension of each bubble.

24. Shew that the electric capacity of a conductor is less than that of any other

conductor which can completely surround it.

25. If the inner sphere of a concentric spherical condenser is moved slightly out of

position, so that the two spheres are no longer concentric, shew that the capacity is

increased.



CHAPTEK IV

SYSTEMS OF CONDUCTORS

98. In the present Chapter we discuss the general theory of an electro-

static field in which there are any number of conductors. The charge on

each conductor will of course influence the distribution of charges on the other

conductors by induction, and the problem is to investigate the distributions

of electricity which are to be expected after allowing for this mutual

induction.

We have seen that in an electrostatic field the potential cannot be a

maximum or a minimum except at points where electric charges occur. It

follows that the highest potential in the field must occur on a conductor, or

else at infinity, the latter case occurring only when the potential of every

conductor is negative. Excluding this case for the moment, there must be

one conductor of which the potential is higher than that anywhere else in

the field. Since lines of force run only from higher to lower potential (§ 36),

it follows that no lines of force can enter this conductor, there being no

higher potential from which they can come, so that lines of force must leave

it at every point of its surface. In other words, its electrification must be

positive at every point.

So also, except when the potential of every conductor is positive, there

must be one conductor of which the potential is lower than that anywhere

else in the field, and the electrification at every point of this conductor must

be negative.

If the total charge on a conductor is nil, the total strength of the tubes

of force which enter it must be exactly equal to the total strength of the

tubes which, leave it. There must therefore be both tubes which enter and

tubes which leave its surface, so that its potential must be intermediate

between the highest and lowest potentials in the field. For if its potential

were the highest in the field, no tubes could enter it, and vice versd. On
any such conductor the regions of positive electrification are separated from

regions of negative electrification by ** lines of no electrification,’* these lines

being loci along which o-sQ. In general the resultant intensity at any
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point of a conductor is 47r<r. At any point of a line of no electrification,

this intensity vanishes, so that every point of a line of no electrification

"

is also a point of equilibrium.

At a point of equilibrium we have already seen that the equipotential

through the point cuts itself. A line of no electrification, however, lies

entirely on a single equipotential, so that this equipotential must cut itself

along the line of no electrification. Moreover, by § 69, it must cut itself at

right angles, except when it consists of more than two sheets.

99. We can prove the two following propositions

:

I. If the potential of every conductor in the field is given, there is mly
one distribution of electric charges which will produce this distribvHon of

potential.

II. If the total charge of every conductor in the field is given, there is

only one way in which these charges can distribute themselves so as to be in

equilibrium.

If proposition I. is not true, let us suppose that there are two different

distributions of electricity which will produce the required potentials. Let

<r denote the surface density at any point in the first distribution, and o*' in

the second. Consider an imaginary distribution of electricity such that the

surface density at any point is o — cr\ The potential of this distribution

at any point P is

where the integration extends over the surfaces of all the conductors, and

T is the distance from P to the element dS. If P is a point on the surface

of any conductor,

and
1/7

dS

are by hypothesis equal, each being equal to the given potential of the

conductor on which P lies. Thus

r,^ll^ds-Jf^ds=o,

SO that the supposed distribution of density 0- — a' is such that the potential

vanishes over all the surfaces of the conductors. There can therefore be no

lines of force, so that there can be no charges, i.e., o- — o-' — 0 everywhere, so

that the two distributions are the same.

And again, if proposition II. is not true, let us suppose that there are

two different distributions a- and a-' such that the total charge on each

conductor has the assigned value. A distribution <r — <r' now gives zero

as the total charge on each conductor. It follows, as in § 98, that the
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potential of every conductor must be intermediate between the highest and

lowest potentials in the field, a conclusion which is obviously absurd, as

it prevents every conductor firom having either the highest or the lowest

potential. It follows that the potentials of all the conductors must be equal,

so that again there can be no lines of force and no charges at any point,

1.8., o- = <r' everywhere.

It is clear from this that the distribution of electricity in the field is fully

specified when we know either

(i) the total charge on each conductor,

or (ii) the potential of each conductor.

Superposition of Effects.

100. Suppose we have two equilibrium distributions

:

(i) A distribution of which the surface density is cr at any point,

giving total charges J^i, Ai, ... on the different conductors, and potentials

Ia» ••••

(ii) A distribution of surface density giving total charges -S/, ...

and potentials T?', ••••

Consider a distribution of surface density + Clearly the total

charges on the conductors will bo + E^ + E^, ...» and if is the

potential at any point P,

where the notation is the same as before. If P is on the first conductor,

however, we know that

so that = Ti + Tf' ; and similarly when P is on any other conductor. Thus

the imaginary distribution of surface density is an equilibrium distribution,

since it makes the surface of each conductor an equipotential, and the

potentials are

K+K', v+v:
The total charges, as we have seen, are Ei + E^ + E^, ...» and from

the proposition previously proved, it follows that the distribution of surface-

density d* + is the only distribution corresponding to these charges.

We have accordingly arrived at the following proposition

:

If duirges ... give rise to potentials Vi, TJ, ..., and if charges
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... give rise to potentials Vi', Vt, ..., then chargee E^ + E^', E^ +E^', ...

will give rise to potentials K + K + K'l ••••

In words: if we superpose two systems of charges, the potentials produced

can be obtained by adding together the potentials corresponding to the two

component systems.

Clearly the proposition can be extended so as to apply to the superposition

of any number of systems.

We can obviously deduce the following:

If charges E^, E^, ... give rise to potentials K. Ki •••» then charges

KEi, KE2 , ... give rise to potentials KV, KV, ....

101. Suppose now that we have n conductors fixed in position and

uncharged. Let us refer to these conductors as conductor (1), conductor (2),

etc. Suppose that the result of placing unit charge on conductor (1) and

leaving the others uncharged is to produce potentials

Put

on the n conductors respectively, then the result of placing E^ on (1) and

leaving the others uncharged is to produce potentials

Similarly, if placing unit charge on (2) and leaving the others uncharged

gives potentials

Pai, !>»»••• P2n>

then placing E2 on (2) and leaving the others uncharged gives potentials

P21E2 , P21E2 , ..,p2nE2 .

In the same way we can calculate the result of placing E^ on (3), E4 on

(4), and so on.

If we now superpose the solutions we have obtained, we find that the

effect of simultaneous charges E^, -S',. ••• is to give potentials Ii, ••• Ki*

where

V =PnEi + PnE!i-\- PnEs + ...
I

Vi= PyiEi’\’

P

22E2 +pnSf^ (32).

etc.
j

These equations give the potentials in terms of the charges. The
coefficients pu. Pui ••• not depend on either the potentials or charges,

being purely geometrical quantities, which depend on the size, shape and

position of the different conductors.
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OreevCs Reciprocation Theorem,102.

Let us suppose that charges Sp, ... on elements of conducting

surfaces at P, Q, ... produce potentials Vp, 1^, ... at P, Q, ..., and that

similarly charges Sp', Cq, ... produce potentials Vp\ Vqy .••• Then Green’s

Theorem states that

'lepVp — 'tepVpy

the summation extending in each case over all the charges in the field.

To prove the theorem, we need only notice that

the summation extending over all charges except Cp, so that in S^p'Tp the

coefficient of is Sp'eg from the term Cp'Tp, and epeq from the term

eqVq, Thus

^ ITT CpCn enCp

= '^epVp', from symmetry.

103. The following theorem follows at once

:

If total charges Pi, P, on the separate conductors of a system produce

potentials PT, TJi •••# dnd if charges P/, Pj', ... produce potentials Vi\
"^

2 , ••• t then

2PF' = 2P'F (33),

the summation extending in each case over all ike conductors.

To see the truth of this, we need only divide up the charges Pi, Pj, ...

into small charges 6p, Cq, ... on the different small elements of the surfaces

of the conductors, and the proposition becomes identical with that just

proved.

104. Let us now consider the special case in which

Pi = 1, P, = P, = P4 = . . . = 0,

so that etc.,

and Pi' = 0, P/ = l, P,' = P4'=...* 0.

so that Vi =P2if etc.

Then 2PF' =1)91 and 2P'F =^19, so that the theorem just proved becomes

P12 = Pn •

In words: the potential to which (1) is raised by putting unit charge on

(2), all the other conductors being uncharged, is equal to the potential to

which (2) is raised by putting unit charge on (1), all the other conductors

being uncharged.
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As a special case, let us reduce conductor (2) to a point P, and suppose

that the system contains in addition only one other conductor (1). Then

The potential to which the conductor is raised by placing a unit charge

at P, the conductor itself being uncharged, is equal to the potential al P when

unit charge is placed on the conductor.

For instance, let the conductor be a sphere, and let the point P be at a

distance r from its centre. Unit charge on the sphere produces potential

^
at P, so that unit charge at P raises the sphere to potential

Coefficients of Potential, Capacity and Induction.

105. The relations pia=Pn, etc. reduce the number of the coefficients

Pill Pw. ••• Pnn, which occur in equations (32), to Jn(n + 1). These coeffi-

cients are called the coefficients of potential of the n conductors. Knowing

the values of these coefficients, equations (31) give the potentials in terms

of the charges.

If we know the potentials Ki K, •••» we can obtain the values of the

charges by solving equations (32). We obtain a system of equations of

the form

-®i = $iiir

+

q^y^ +

Pa = qvaYx + +
etc.

.(34).

The values of the 7*8 obtained by actual solution of the equations (32), are

where

gii -qn 1

PmPw . ••Pna Pa Pm • '• Pni

Pa

P

m- -.Pns •• pns

PanPsn •• pnn PanPsn • •• Pnn

PiiP2i-..Pni .

Pii Pm • • • Pna

I Pin pan • • • Pnn

(35).

Thus q„ is the co-factor of p^ in A, divided by A.

The relation q^ = q^r

follows as an algebraical consequence of the relation p^g = ptr, or is at once

obvious from the relation

2PF' = 2P'F,

and equations (34), on taking the same sets of values as in § 104.
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There are n coefficients of the type qn, qnt ••• These are known as

coejfidenta of capacity. There are ^n(n — 1) coefficients of the type q^, and

these are known as coeffidenta of induoticn.

From equations (34), it is clear that is the value of Ei when

1^=1, This leads to an extended definition of the

capacity of a conductor, in which account is taken of the influence of the

other conductors in the field. We define the capacity of the conductor 1,

when in the presence of conductors 2, 3, 4, ..., to be q^, namely, the charge

required to raise conductor 1 to unit potential, all the other conductors being

put to earth.

Energy of a System of charged Conductors.

106. Suppose we require to find the energy of a system of conductors,

their charges being ... E^^ so that their potentials are 1[, •••

given by equations (32).

Let W denote the energy when the charges are kE^^ kE^, ... kEn»

Corresponding to these charges, the potentials will be kVi, kM^y ... It

we bring up an additional small charge dk . Ex from infinity to conductor 1,

the work to be done will be dkEx .kYi\ if we bring up dkE^ to conductor 2

the work will be dJcEJcV^ and so on. Let us now bring charges dkEx to 1,

dkE^ to 2, dkE^ to 3, ... dkE^ to n. The total work done is

kdk {ExVx + + ... + EuVn) (36).

and the final charges are

{k + dk) El, (k + dk) E^, ...{k + dk) E^.

The energy in this state is the same function of k-hdk aa W ia of k, and may

therefore 1^ expressed as

dW
Expression (36), the increase in energy, is therefore equal to dk, whence

dw;

dk
= k {E^i+ ... + -^nK)*

so that on integration

TT = J/t® {EJ^i +E^+ ••• + EiiY^.

No constant of integration is added, since W must vanish when £ « 0.

Taking k—\, we obtain the energy corresponding to the final charges

Ex, Ex,... En, in the form

W^^^EV (37).
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If we substitute for the F’'s their values in terms of the charges as given by
equations (32), we obtain

^ “ i {Pn^i + + pnEf + ...) (38),

and similarly from equations (34),

^ “ i (9ii^ 2^12^1* + ^*il? + • • •) (29).

107.

If W is expressed as a function of the E% we obtain by differ-

entiation of (38),

dW
dE,

“Pw^i +Pi2-B|+ ••• +Pin^n

» Ti by equations (32).

This result is clear from other considerations. If we increase the charge

dW
on conductor 1 by dE^ the increase of energy is dEi, and is also V^dEi

since this is the work done on bringing up a new charge dEi to potential V^.

Thus on dividing by dEi, we get

(40).

So also
dW _
SK

(41)

as is at once obvious on differentiation of (39).

108.

In changing the charges from Ei^E^, ... to Ei\ E^y ... let us suppose

that the potentials change from K, ••• to K', The work done,

W* — W, is given by

F'- F = i2(^'F'-^F).

Since, however, by § 103, 'lEV’ — ^E'V, this expression for the work done

can either be written in the form

i 2 {E'V' - EV--{EV' - E'V)],

which leads at once to

F'-F = i2(J^'-jEr)(r+ F) (42);

or in the form *2 {E'V' - ^F+ {EV' - E'V)},

which leads to F' - F = ^2 (F - F) (^' + ^) (43).

109.

If the changes in the charges are only small, we may replace E' by

E + dE, and find that equation (42) reduces to

dW^^VdE,

from which equation (40) is obvious, while equation (43) reduces to

dF = 2AWF,

leading at once to (41).
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110.

It is worth noticing that the coefficients of potential, capacity and

induction can be expressed as differential coefficients of the energy ; thus

8«Tr

P^'~dErdE.’

_ a*ir

^'•~dVrdr,'

and so on.

The last two equations give independent proofs of the relations

Pn “ Part Qra “

Properties of the Coefficients.

111. A certain number of properties can be deduced at once from the

fact that the energy must always be positive. For instance since the value

of W given by equation (38) is positive for all values of Ei, E^, ... E^, it

follows at once that

Pwt Put Pm. ••• are positive,

that pnPaa Pi** is positive, that

Pii Pri Pi3

PisPssPm is positive

Pi3PwPm

and so on. Similarly from equation (39), it follows that

?ii, </22 . Hsat ••• are positive,

and there are other relations similar to those above.

112. More valuable properties can, however, be obtained from a con-

sideration of the distribution of the lines of force in the field.

Let us first consider the field when

i7i = l, ^, = ^,*... = 0.

The potentials are K = Pn. K = Pw. etc.

Since conductors 2, 3, ... are uncharged, their potentials must be inter-

mediate between the highest and lowest potentials in the field. Thus the

potential of 1 must be either the highest or the lowest in the field, the other

extreme potential being at infinity. It is impossible for the potential of 1

to be the lowest in the field ; for if it were, lines of force would enter in at

every point, and its charge would be negative. Thus the highest potential

in the field must be that of conductor 1, and the other potentials must all
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be intermediate between this potential and the potential at infinity, and

must therefore all be positive. Thus pn.pw, pu, ... are all positive and

the first is the greatest.

Next let us put Ti = l» T3 = Tj=-*-=0,

so that the charges are ^isi •••

The highest potential in the field is that of conductor 1. Thus lines of

force leave but do not enter conductor 1. The lines may either go to the

other conductors or to infinity. No lines can leave the other conductors.

Thus the charge on 1 must be positive, and the charges on 2, 3, . .. all negative,

i.e., qii is positive and ^,2 , ... are all negative. Moreover the total strength

of the tubes arriving at infinity is gii + 9i2 + 9it + ... + 9ifi» so that this must

be positive.

113. To sum up, we have seen that

(i) All the coefficients of potential (p„, p,2 , ...) are positive,

(ii) All the coefficients of capacity (gn» -•) are positive,

(iii) All the coefficients of induction (^12 , ^isi •..) are negative,

and we have obtained the relations

(Pii - Pw) is positive,

(gn + gw + . . . + g,n) is positive.

In limiting cases it is of course possible for any of the quantities which

have been described as always positive or always negative, to vanish.

Values of the Coefficients in Special Cases.

Electric Screening.

114. The first case in which we shall consider the values of the

coefficients is that in which one conductor, say 1, is completely surrounded

by a second conductor 2.

Fio. 88.

If El = 0, the conductor 2 becomes a closed conductor with no charge

inside, so that the potential in its interior is constant, and therefore K=
Putting .^i»0, the relation gives the equation

(P» ““Pa) "h (Pw —Pa) A* + , = 0,
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This being true for all values of Et , ... we must have

Pit=P». etc.

Next let us put unit charge on 1, leaving the other conductors uncharged.

The energy is If we join 1 and 2 by a wire, the conductors 1 and 2

form a single conductor, so that the electricity will all flow to the outer

surface. This wire may now be removed, and the energy in the system is

Energy must, however, have been lost in the flow of electricity, so that p^
must be less than pa.

Since we have already seen that pn^pn and pa —pn cannot be negative,

it is clear that p^ cannot be greater than pa. The foregoing argument,

however, goes further and enables us to prove that pu—pa is actually

positive.

Let us next suppose that conductor 2 is put to earth, so that

Then if Ei = 0, it follows that Hence from the equations

+ ••• + VinKi ....(44)

we obtain in this special case that

VwK+

V

mK+ ... + VinKi = 0.

This is true, whatever the values of IJ, TJ, so that

9ii
” ~ “ 0.

Suppose that conductor 1 is raised to unit potential while all the other

conductors are put to earth. The aggregate strength of the tubes of force

which go to infinity, namely Vii + + .•• + Vm (§ II2), is in this case zero, so

thatg'„ = -9u.

The system of equations (44) now reduces, when = 0, to

=

~

= •••
I

Equations (4?) shew that the relations between charges and potential

outside 2 are quite independent of the electrical conditions which obtain

inside 2. So also the conditions inside 2 are not affected by those outside 2,

a.s is obvious from equation (45). These results become obvious when we

consider that no lines of force can cross conductor 2, and that there is no way

except by crossing conductor 2 for a line of force to pass from the conductors

outside 2 to those inside 2.

An electric system which is completely surrounded by a conductor at

potential zero is said to be **
electrically screened " from all electric systems

(45)

,

(46)

,

(47)
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outside this conductor ; for charges outside this “ screen ’* cannot affect the

screened system. The principle of ele^ric screening is utilised in electro-

static instruments, in order that the mstrument may not be affected by

external electric actions other than those vmich it is required to observe. As
a complete conductor would prevent observation of the working of the

instrument, a cage of wire is frequently used as a screen, this being very

nearly as efficient as a completely closed conductor (see § 72). In more

delicate instruments the screening may be complete except for a small

window to admit of observation of the interior.

Spherical Condenser,

116. Let us apply the methods of this Chapter to the spherical con-

denser described in § 79. Let the inner sphere of radius a be taken to be

conductor 1, and the outer sphere of radius b be taken to be conductor 2.

The equations connecting potentials and charges are

“
Pi%Si 4* P‘^E^,

A unit charge placed on 2 raises both 1 and 2 to potential 1/&, so that on

putting El = 0, £2 = 1, we must have TJ = K = 1/6. Hence it follows that

1

If we leave 2 uncharged and place unit charge on 1, the field of force is that

investigated in § 79, so that = 1/a, K= 1/6. Hence

1 1

These results exemplify

(i) the general relation pu» pu.

(ii) the relation peculiar to electric screening, »p23 .

The equations now become

a ^ 6
'

pr _ :^1 .
-^3

Solving for Ei and E^ in terms of Vi and IJ, we obtain

Er.
ab ab

^

so that
ab

6-a'' 6-a

K+r^i?.
0 — tt •,

ab

6 —

a

b-a' \?^-b^.
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Substituting these values in the equations

Yx = + Pm ^*1

we find at once that i neglecting i
,

11

and similarly we can see that

Pm = j
neglecting ^

.

Solving the equations

K= - + -*.

c + 6 •

we find that, neglecting -

,

{/

101

^
c*

Jll **
S'*-!!

* “ ’

a5 a& . 1
as far as -1 ,

tt6\ 0 c**

(*-f)

1 -
ab^

We notice that the capacity of either sphere is greater than it would be if

the other were removecL This, as we shall see later, is a particular case of a

general theorem.

Two conductors in contact,

117. If two conductors are placed in contact, their potentials must be

equal. Let the two conductors be conductors 1 and 2, then the equation

becomes

(Pii “ Pia) + (pi2 ““ P«) -^9 "I" • • • == 0,

or, say, aE^ + + 7-^3 + ... = 0.

If we know the total charge ^ on 1 and 2, we have

El + E^ = Ef

and on solving these two equations we can obtain and We find that

El _ ^ ^E + ^E^ + hE^ + .«•

E2 O.E + yE^ + BEi + , , .

*
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giving the ratio in which the charge E will distribute itself between the

two conductors 1 and 2. If the conductors 3, 4, ... are either absent or

uncharged,

^ ^ — -P”
~

which is independent of E and always positive. It is to be noticed that E^

vanishes only if^a = pi2 , t.e., if 2 entirely surrounds 1.

Mechanical Forces on Conductors.

118. We have already seen that the mechanical force on a conductor is

the resultant of a system of tensions over its surface of amount per unit

area. The results of the present Chapter enable us to find the resultant

force on any conductor in terms of the electrical coefficients of the system.

Suppose that the positions of the conductors are specified by any co-

ordinates fi, ..., so that Pii,Pi2 , ...> ^11 , ^12 , and consequently also W,

are functions of the f’s. If is increased to + dfi, without the charges on

dW
the conductors being altered, the increase in electrical energy is df,, and

this increase must represent mechanical work done in moving the conductors.

The force tending to increase is accordingly

dW

Since the charges on the conductors are to be kept constant, it will of

course be most convenient to use the form of W given by equation (38), and

the force is obtained in the form

<“>•

It is however possible, by joining the conductors to the terminals of

electric batteries, to keep their potentials constant. In this case, however,

we must not use the expression (39) for W, and so obtain for the force

-i(^'V:» + 2||‘TTK+...) (49),

for the batteries are now capable of supplying energy, and an increase of

electrical energy does not necessarily mean an equal expenditure of mechanical

energy, for we must not neglect the work done by the batteries. Since the

resultant mechanical force on any conductor may be regarded as the resultant

of tensions 27r(r^ per unit area acting over its surface, it is clear that this

resultant force in any position depends solely on the charges in this position.

It is therefore the same whether the charges or potentials are kept constant,

and expression (48) will give this force whether the conductors are connected

to batteries or not.
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119. Ab an illustration, we may consider the force between the two

charged spheres discussed in § 116.

The force tending to increase c, namely—^ ,
is

and substituting the values

1
. . -1

Pu = - + terms in - ,
CL C*

Pv2 ” “
"f* » *9

c

1^22"
g » 99

it is found that this force is

^1^2
, 4.

*1— + terms in - .

Thus, except for terms in c“^, the force is the same as though the charges

were collected at the centres of the spheres. Indeed, it is easy to go a stage

further and prove that the result is true as far as c"^. We shall, however,

reserve a full discussion of the question for a later Chapter.

120. Let us write

i (Pll^1
* + 2

/1,2 ^2 + •••) =

i{quV,^+2qM =

Then TTJ and TFp- are each equal to the electrical energy JS^F, so that

We + Wy-:iEV = 0 (50).

‘

In whatever way we change the values of

/A, ^2...., F. F,

equation (50) remains true. We may accordingly differentiate it, treating the

expression on the left as a function of all the F's and f *s. Denoting the

function on the left-hand of equation (50) by the result of differentiation

will be

Now - K = 0, by equation (40),

9K"9K ’ ” ^41).

SO that vre are left with
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and since this equation is true for all displacements and therefore for all

values of it follows that each coefficient must vanish separately.

Thus 11
= or

??? 1 _ A
afi a?i

” .(51).

dW .

As we have seen, —^ is the mechanical force tending to increase fi,

dW
and this has now been shewn to be equal to ,

which is expression (49)

with the sign reversed. Thus the mechanical force, whether the charges or

the potentials are kept constant, is

+ + <«2).

a form which is convenient when we know the potentials, but not the

charges, of the system.

In making a small displacement of the system such that is changed

dW
into + the mechanical work done is If the potentials are

^SW
kept constant the increase in electrical energy is The difference of

these expressions, namely

Ufi afj

represents energy supplied by the batteries. From equation (51), it appears

dW
that this expression is equal to 2 d^i, so that the batteries supply energy

equal to twice the increase in the electrical energy of the system, and of this

energy half goes to an increase of the final electrical energy, while half is

expended as mechanical work in the motion of the conductors.

Introduction of a new conductor into the field.

121. When a new conductor is introduced into the field, the coefficients

Put Pus 9ui ••• naturally altered.

Let us suppose the new conductor introduced in infinitesimal pieces,

which are brought into the field uncharged and placed in position so that

they are in every way in their final places except that electric communication

is not established between the different pieces. So far no work has been

done and the electrical energy of the field remains unaltered.

Now let electric communication be established between the different

pieces, so that the whole structure becomes a single conductor. The separate
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pieces, originally at different potentials, are now brought to the same

potential by the flow of electricity over the surface of the conductor.

Electricity can only flow from places of higher to places of lower potential,

so that electrical energy is lost in this flow. Thus the introduction of the

new conductor has diminished the electric energy of the field.

If we now put the new conductor to earth there is in general a further

flow of electricity, so that the energy is still further diminished.

Thus the electric energy of any field is diminished by the introduction of

a new conductor, whether insulated or not.

Consider the case in which the new conductor remains insulated. Let

the energy of the field before the introduction of the new conductor be

i (i^ii + 2^22^1 + . . . + Pnn ^n) (53).

After introduction, the energy may be taken to be

i ... +Pnn (54),

where p,/, etc., are the new coefficients of potential. Further coefficients of

the type Pi.n+ii P9.n+i} ••M/’n+i,n+i S're of course brought into existence, but do

not enter into the expression for the energy, since by hypothesis En^i — 0.

Since expression (54) is less than expression (53), it follows that

{Pn - Pii) + 2 (pia - P2*') A’a + . .

.

is positive for all values o{ Ei, E^, .... Hence pn^pu is positive, and other

relations may be obtained, as in § 111.

Electrometers.

I. The Attracted Disc Electrometer,

Fio. 40.

122. This instrument is, as regards its essential principle, a balance in

which the beam has a weight fixed at one end and a disc suspended from

the other. Under normal conditions the fixed weight is sufficiently heavy
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to outweigh the disc. In using the instrument the disc is made to become

one plate of a parallel plate condenser, of which the second plate is adjusted

until the electric attraction between the two plates of the condenser is just

sufficient to restore the balance.

The inequalities in the distribution of the lines of force which would

otherwise occur at the edges of the disc are avoided by the use of a guard-

ring (§ 90), so arranged that when the beam of the balance is horizontal

the guard-ring and disc are exactly in one plane, and At as closely as is

practicabla

Let us suppose that the disc is of area A and that the disc and guard-

ring are raised to potential F. Let the second plate of the condenser be

placed parallel to the disc at a distance h from it, and put to earth. Then

the intensity between the disc and lower plate is uniform and equal to Vjh,

so that the surface density on the lower face of the disc is o- Vj^h, The
mechanical force acting on the disc is therefore a force 2ira^A or FM/SttA*

acting vertically downwards through the centre of the disc. If this just

suffices to keep the beam horizontal, it must be exactly equal to the weight,

say W, which would have to be placed on this disc to maintain equilibrium

if it were uncharged. This weight is a constant of the instrument, so that

the equation
FM-— = W

enables us to determine F in terms of known quantities by observing h.

The instrument is arranged so that the lower plate can be moved parallel

to itself by a micrometer screw, the reading of which gives h with great

accuracy. We can accordingly determine F in absolute units, from the

equation

If we wish to determine a difference of potential we can raise the upper

plate to one potential T|, and the lower plate to the second potential

and we then have

A more accurate method of determining a difference of potential is to keep

the disc at a constant potential v, and raise the lower plate successively to

potentials K &nd F- If K K the values of h which bring the disc to

its standard position when the potentials of the lower plate are F ctnd F* we

have

«
,

/SirW
v-V,=hiy/ -j~.

V- K=./i,
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BO that K-Tr=(A.

It is now only necessary to measure Ai — As, the distance through which

the lower plate is moved forward, and this can be determined with great

accuracy, as it depends solely on the motion of the micrometer screw.

II. The Quadrant Electrometer.

123. Measurement of Potential Difference. This instrument is more

delicate than the disc electrometer just described, but enables us only to

compare two potentials, or potential differ-

ences; we cannot measure a single potential

in terms of known units.

The principal part of the instrument

consists of a metal cylinder of height small

compared with its radius, divided into four

quadrants A, B, G, D hy two diameters at

right angles. These quadrants are insulated

separately, and then opposite quadrants

are connected in pairs, two by wires joined

to a point E and two by wires joined to

some other point F.

The inside of the cylinder is hollow and

inside this a metal disc or “ needle ” is free

to move, being suspended by a delicate

fibre, so that it can rotate without touching

the quadrants. Before using the instrument

the needle is charged to a high potential,

say V, either by means of the fibre, if this

is a conductor, or by a small conducting

wire hanging from the needle which passes through the bottom of the

cylinder. The fibre is adjusted so that when the quadrants are at the same

potential the needle rests, as shewn in the figure, in a symmetrical position

with respect to the quadrants. In this state either surface of the needle

and the opposite faces of the quadrants may be regarded as forming a parallel

plate condenser.

If, however, the potential of the two quadrants joined to is different

from that of the two quadrants joined to F, there is an electrical force

tending to drag the needle under that pair of quadrants of which the potential

differs most from v. The needle will accordingly move in this direction until

the electric forces are in equilibrium with the torsion of the fibre, and

an observation of the angle through which the needle turns will give an
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indication of the difference of potential between the two pairs of quadrants.

This angle is most easily observed by attaching a small mirror to the fibre

just above the point at which it emerges from the quadrants.

Let us suppose that when the needle has turned through an angle

the total area A of the needle is placed so that an area S is inside the pair

of quadrants at potential Ki and an area A -^S inside the pair at potential

Tf. Let h be the perpendicular distance from either face of the needle to

the faces of the quadrants. Then the system may be regarded as two

parallel plate condensers of area S, distance h, and difference of potential

v — and two parallel plate condensers for which these quantities have the

values A —S, h, V -K- There are two condensers of each kind because

there are two faces, upper and lower, to the needle. The electrical energy

of this system is accordingly

^

(v-Vr(A-S)
Atirh 4‘7rh

The energy here appears as a quadratic function of the three potentials

concerned: it is expressed in the same form as the of § 120. The

mechanical force tending to increase 6, i.e., the moment of the couple tending

dW
to turn the needle in the direction of B increasing, is therefore Now

in WfT the only term in the coefficients of the potentials which varies with 0

is S, so that on differentiation we obtain

^ ^ {v-Vir-(v-v:r ds

dB 47r/fc dB *

If r is the radius of the needle—measured from its centre, which is under

dS
the line of division of the quadrants—we clearly have ^ = r*, so that we can

write the equation just obtained in the form

dWy ^ (2v-v--v,)(v-v;)
cB 47r//

In equilibrium this couple is balanced by the toraion couple of the fibre,

which tends to decrease B. This couple may be taken to be kB, where A; is a

constant, so that the equation of equilibrium is

47r/t
,(55;.

For small displacements of the needle, r* may be replaced by a*, the

radius of the needle at its centre line. Also v is generally large compared

with Vi and V^. The last equation accordingly assumes the simpler form

kB =
va?

2Trk
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shewing that 6 is, for small displacements of the needle, approximately

proportional to the difference of potential of the two pairs of quadrants.

The instrument can be made extraordinarily sensitive owing to the possibility

of obtaining quartz-fibres for which the value of k is very small.

If the difference of potential to be measured is large, we may charge the

needle simply by joining it to one of the pairs of quadrants, say the pair at

potential V^. We then have t;= and equation (55) becomes

4^^—'

SO that 6 is now proportional to the square of the potential difference to be

measured.

Writing G is & constant of the instrument, we have,

when V is large

^ = (56),

when V = Ki

(57).

124. Measurement of charge. Let us speak of the pairs of quadrants

at potentials If, 7 as conductors 1, 2 respectively, and let the needle be

conductor 3. When the quadrants are to earth and the needle is at

potential 1^, the charge E induced on the first pair of quadrants by the

charge on the needle will be given by

E =

where is the coefficient of induction. This coefficient is a function of the

angle 0 which defined the position of the needle. If the instrument is

adjusted so that ^ = 0 when both paira of quadrants are to earth, we must

use the value of q^^ corresponding to 6 = 0, say {qi^Q, so that

E = (q,,\V, (58).

Now suppose that the first pair of quadrants is insulated and receives

an additional charge Q, the second pair being still to earth. Let the needle

be deflected through an angle 6 in consequence. Since the charge on the

first pair of ‘[uadrants is now E+Q, we have

E + Q = (5ii)eK+ (Wtf

On subtracting equation (58) from this we obtain

Q = (giOoK + - (Si.).] K.

If 6 is small this may be written

Q = q„V,+^-^0V„
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where q^,^ are supposed calculated for d>>0L Since we have from

equation (66),

d-crx

shewing that for small values of d, Q is directly proportional to 0.

Let us suppose that we join the first pair of quadrants (conductor 1)

to a condenser of known capacity F which is entirely outside the electro-

meter. Since the needle (3) is entirely screened by the quadrants the value

of remains unaltered, while ju will become qn + F. If ^ is now the

deflection of the needle, we have

so that, by combination with the last equation, we have

If is the deflection obtained by joining the pairs of quadrants to the

terminals of a battery of known potential difference L, we have from

equation (66),

and on substituting this value for CJi, our equation becomes

O-

giving Q in terms of the known quantities F, D and the three readings

0, and r.

An ordinary quadrant electrometer will measure differences of potential

down to about electrostatic unita Thus in spite of its somewhat high

capacity of about 50 electrostatic units, it forms an extremely efficient instru-

ment for the measurement or detection of small electric charges.

An improved form of the instrument has recently been introduced by

Dolazalek, in which the electrostatic capacity is very small. This is capable

of measuring potential differences down to TrnAnnr electrostatic units, and is

correspondingly more sensitive for the measurement of charges.
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EXAMPLEa
1. If the algebraic sum of the charges on a system of conductors be positiye^ then on

one at least the surface density is everywhere positiva

2. There are a number of insulated conductors in given fixed positiona The
capacities of any two of them in their given positions are Ci and

, and their mutual
coefficient of induction is B, Prove that if these conductors be joined by a thin wire, the

capacity of the combined conductor is

Ci+Cj+2if.

3. A system of insulated conductors having boen charged in any manner, charges are

transferred from one conductor to another till they are all brought to the same potential 7.

Shew that

7=ir/(r|+2«i),

where C]
, are the algebraic sums of the coefficients of capacity and induction respectivdy,

and E is the sum of the charges.

4. Prove that the effect of the operation described in the last question is a decrease

of the electrostatic energy equal to what would be the energy of the system if each of the

original potentials were diminished by 7.

6. Two equal similar condensers, each consisting of two spherical shells, radii a, fi,

are insulated and placed at a great distance r apart. Charges s, s' are given to the inner

sheila If the outer surfaces are now joined by a wire, shew that the loss of energy is

approximately

0. A condenser is formed of two thin concentric spherical shells, radii a, 6. A small

hole exists in the outer sheet through which an insulated wire passes connecting the

inner sheet with a third conductor of capacity c, at a great distance r from the condenser.

The outer sheet of the condenser is put to earth, and the charge on the two connected

conductors is E. Prove that approximately the force on the third conductor is

7. Two closed equipotentials 7^, 7o are such that 7| contains 7^, and Vp is the

potential at any point P between them. If now a charge E be put at P, and both

equipotentials be replaced by conducting shells and earth-connected, then the charges

E\y Ek induced on the two surfaces are given by

E\ Ef^ E

8. A conductor is charged from an electrophorus by repeated contacts with a plate^

which after each contact is recharged with a quantity E of electricity from the electro-

phorus. Prove that if « is the charge of the conductor after the first operation, the

ultimate charge is

E€
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9. Four equal uncliarged insulated conductors are placed symmetrically at the comers

of a regular tetrahedron, and are touched in turn by a moving spherical conductor at the

points nearest to the centre of the tetrahedron, receiving charges ei, es, Shew that

the charge.s are in geometrical progression.

10. In question 9 replace “ tetrahedron ” by “ square,” and prove that

(«1 - «2) («2<J3 - «1«4)-

11. Shew that if the distance x between two conductors is so great as compared with

the linear dimensions of either, that the square of the ratio of these linear dimensions to

X may be neglected, then the coefficient of induction between them is - CC'fx^ where C‘

are the capacities of the conductors when isolated.

12. Two insulated fixed condensers are at given potentials when alone in the electric

field and charged with quantities of electricity. Their coefficients of potential are

Pii» Phi P23 - surrounded by a spherical conductor of very large radius R
at potential zero with its centre near them, the two conductors require charges Ei\ to

produce the given potentials. Prove, neglecting^ , that

~ _P22-Pl 2

E2 —E2 Pii—

P

12

13. Shew that the locus of the positions, in which a unit charge will induce a given

charge on a given uninsulated conductor, is an equipotential surface of that conductor

supposed freely electrified.

14. Prove (i) that if a conductor, insulated in free space and raised to unit potential,

produces at any external point P a potential denoted by {P\ then a unit charge placed

at P in the presence of this conductor uninsulated will induce on it a charge - (P)

;

(ii) that if the potential at a point Q due to the induced charge be denoted by {PQ)t

then (PQ) is a symmetrical function of the positions of P and Q.

15. Two small uninsulated sphere-s are placed near together between two large

parallel planes, one of which is charged, and the other connected to earth. Shew by

figures the nature of the disturbance so produced in the uniform field, when the line of

centres is (i) perpendicular, (ii) parallel to the planes

16. A hollow conductor A is at zero potential, and contains in its cavity two other

insulated conductons, B and C, which are mutually external : B has a positive charge, and

C is uncharged. Analyse the difl'erent types of lines of force within the cavity which are

possible, classifying with respect to the conductf>r from which the line starts, and the

conductor at which it ends, and proving the impossibility of the geometrically possible

types which are rejected.

Hence prove that B and C are at positive potentials, the potential of 0 being less than

that of B.

17. A portion P of a conductor, the ca}>acity of which is C, can bo separated from the

conductor. The capacity of this poitioii, when at a long distance from other bodies, is c.

The conductor is insulated, and the part P when at a considerable distance from the

remainder is charged with a quantity e and allowed to move under the mutual attraction

up to it
;
describe and explain the changes which take place in the electrical energy of the

system.
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18. A conductor having a charge Qi is surrounded by a second conductor with charge

$2 * The inner is connected by a wire to a very distant uncharged conductor. It is then

disconnected, and the outer conductor connected. Shew that the charges Qi^ are now

m+» *

where O', (7(1+m) are the coefficients of capacity of the near conductors, and Gn is the

capacity of the distant one.

19. If one conductor contains all the others, and there are w+1 in all, shew that

there are a+1 relations between either the coefficients of potential or the coefficients of

induction, and if the potential of the largest be Vq, and that of the others Vi, Vt, ... r„
then the most general expression for the energy is increased by a quadratic function

of Fj— Vq, V^— Fq, ... F^— Fq; where (7 is a dellnite constant for all positions of the

inner conductors.

20.

The inner sphere of a spherical condenser (radii a, b) has a constant charge

and the outer conductor is at ^lotential zero. Under the internal forces the outer

conductor contracts from radius h to radius &i. Prove that the work done by the

electric forces is

21. If, in the last question, the inner conductor has a constant potential F, its charge

being variable, shew that the work done is

F«a«(6-&0

*(6,-a)(6-o)’

and investigate the quantity of energy supplied by the battery.

22. With the usual notation, prove that

P\\+ P23 >Pi%+Pis

PllP23>Pl2Pl3*

23. Shew that if p,, be three coefficients before the introduction of a new
conductor, and prr^ Pny Pu the same coefficients afterwards, then

^Prrpu -Pr^pj) CP« -Pn?-

24. A system consists of /7+^+2 conductors, ilj, ^ 2 , ... ilp, ^i, ... Bq^ (7, />. Prove

that when the charges on the A’s and on (7, and the potentials of the and of (7 are

known, there cannot be more than one possible distribution in equilibrium, unless C is

electrically screened from D.

25. Ay By Cy D arc four conductors, of which B surrounds A and B surrounds (7.

Given the coefficients of capacity and induction

(i) of A and B when C and D are removed,

(ii) of (7 and B when A and B are removed,

(iii) of B and D when A and C are removed,

determine those for the complete system of four conductors.

26. Two equal and similar conductoi-s A and B are charged and placed symmetrically

with regard to each other
;
a third moveable conductor C is carried so as to occupy
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ttooesBiirdy two positiona, one practically wholly within the other within J9, the

poeitioDB being eimilar and such that the coefficients of potential of (7 in either position

are r in ascending order of magnitude. In each position (7 is in turn oonneoM with

the conductor surrounding it, put to earth, and then insulated. Determine the charges

on the conductors after any number of cydes of suoh operations, and diew that they

ultimately lead to the ratios

where /9 is the positive root of

0.

27.

Two conductors are of capacities Ci and C|, when each is alone in the field.

They are both in the field at potentials Vx and respectively, at a great distance r

apart Prove that the repulsion between the conductors is

As far as what power of - is this result accurate t

28.

Two equal and similar insulated conductors are placed symmetrically with regard

to each other, one of them being uncharged. Another inaulat^ conductor is made to

touch them alternately in a symmetrical manner, beginning with the one which has a

charge. If «], be their charges when it has touched each once, shew that their charge^

when it has touched each r times, are respectively

29.

Three conductors Ai, A| and A3 are such that A3 is practically inside A|. A\ is

alternately connected with A, and A3 by means of a fine wire, the first contact being with

Af. Ai has a charge E initially, A, and A3 being unchai'ged. Prove that the charge on

Ai after it has been connected n times with At is

^(«+y)\«+y/ j*

where a, A 7 stand for pn -pu, pn-pu and P33 -pis respectively.

90. Two spheres, radii a, 6, have their centres at a distance 0 apart Shew that

neglecting (a/o)* and (6/e}^

1 fts 1 la*



CHAPTER V

DIELECTRICS AND INDUCTIVE CAPACITY

125. Mention has already been made (§ 84) of the fact, discovered

originally by Cavendish, and afterwards rediscovered by Faraday, that the

capacity of a conductor depends on the nature of the dielectric substance

between its plates.

Let us imagine that we have two parallel plate condensers, similar in all

respects except that one has nothing but air between its plates while in the

other this space is filled with a dielectric of inductive capacity K. Let us

suppose that the two high-potential plates are connected by a wire, and also

the two low-potential plates. Let the condensers be charged, the potential

of the high-potential plates being and that of the low-potential plates

being

Then it is found that the charges possessed by the two condensers are not

equal. The capacity per unit area of the air-condenser is l/47rcl ; that of the

other condenser is found to be KI4nrd. Hence

the charges per unit area of the two condensers

are respectively

r,-Vo
^ird

and K
^ird

The work done in taking unit charge from the

low-potential plate to the high-potential plate is

the same in either condenser, namely K so

that the intensity between the plates in either

condenser is the same, namely

~d •

Fio. 42.

In the air-condenser this intensity may be regarded as the resultant of the

attraction of the negatively charged plate and the repulsion of the positively

charged plate, the law of attraction or repulsion being Coulomb’s law
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It is, however, obvious that if we were to calculate the intensity in the

second condenser from this law, then the value obtained would be K times

T • ^ rIn pomt ofthat in the first condenser, and would therefore be K

fact, the actual value of the intensity is known to be

d

r,-v.

Thus Faraday’s discovery shews that Coulomb’s law of force is not of

universal validity : the law has only been proved experimentally for air, and

it is now found not to be true for dielectrics of which the inductive capacity

is different from unity.

This discovery has far-reaching effects on the development of the mathe-

matical theory of electricity. In the present book. Coulomb’s law was

introduced in § 38, and formed the basis of all subsequent investigations.

Thus every theorem which has been proved in the present book from § 38

onwards requires reconsideration.

126. We shall follow Faraday in treating the whole subject from the

point of view of lines of force. The conceptions of potential, of intensity, and

of lines of force are entirely independent of Coulomb s law, and in the present

book have been discussed (§§ 30—37) before the law was introduced. The

conception of a tube of force follows at once from that of a line of force,

on imagining lines of force drawn through the different points on a small

closed curve. Let us extend to dielectrics one form of the definition of the

strength of a tube of force which has already been used for a tube in air, and

agree that the strength of a tube is to be measured by the charge enclosed

by its positive end, whether in air or dielectric.

In the dielectric condenser, the surface density on the positive plate is

F— VK ,
and this, by definition, is also the aggregate strength of the

tubes per unit area of cross-section. The intensity in the dielectric is

V—T^

,
so that in the dielectric the intensity is no longer, as in air, equal

CL

to 4W times the aggregate strength of tubes per unit area, but is equal to

47r//f times this amount.

Thus if P is the aggregate strength of the tubes per unit area of cross-

section, the intensity E is related to P by the equation

(59)

in the dielectric, instead of by the equation

R = 47rP

which was found to hold in air.

(60)
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127. Equation (59) has been proved to be the appropriate generalisation

of equation (60) only in a very special case. Faraday, however, believed the

relation expressed by equation (59) to be universally true, and the results

obtained on this supposition are found to be in complete agreement with

experiment. Hence equation (59), or some equation of the same significance,

is universally taken as the basis of the mathematical theory of dielectrics.

We accordingly proceed by assuming the universal truth of equation (59),

an assumption for which a justification will be found when we come to study

the molecular constitution of dielectrics.

It is convenient to have a single word to express the aggregate strength

of tubes per unit area of cross-section, the quantity which has been denoted

by P. We shall speak of this quantity as the “ polarisation,” a term due to

Faraday. Maxwell’s explanation of the meaning of the term “ polarisation
”

is that “ an elementary portion of a body may be said to be polarised when
it acquires equal and opposite properties on two opposite sides.” Faraday

explained the properties of dielectrics by means of his conception that the

molecules of the dielectric were in a polarised state, and the quantity P
is found to measure the amount of the polarisation at any point in the

dielectric. We shall come to this physical interpretation of the quantity P
at a later stage : for the present we simply use the term '' polarisation ” as

a name for the mathematical quantity P.

This same quantity is called the “ displacement ” by Maxwell, and under-

lying the use of this term also, there is a physical interpretation which we

shall come upon later.

128. We now have as the basis of our mathematical theory the

following

:

Definition. The strength of a tube of force is defined to he the charge

enclosed by the positive end of the tvhe.

Definition. The poloHsation at any point is defined to be the aggregate

strength of tubes of force per unit area of ct'oss-section.

Experimental Law. The intensity at any point is ^TrjK times the

polarisation, where K is the inductive capacity of the dielectric at the point.

In this last relation, we measure the intensity along a line of force, while

the polarisation is metiaured by considering the flux of tubes of force across

a small area ixji pendicular to the lines of force. Suppose, however, that we

take some direction 00' making an angle 6 with that of the lines of force.

The aggregate strength of the tubes of force which cross an area dS

perpendicular to 00' will be P cos OdS, for these tubes are exactly those

which cross an area dS cos 0 perpendicular to the lines of force. Thus,

consistently with the definition of polarisation, we may say that the polari-

sation in the direction 00' is equal to PcosO. Since the polarisation in
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any direction is equal to P multiplied by the cosine of the angle between

this direction and that of the lines of force, it is clear that the polarisation

may be regarded as a vector, of which the direction is that of the lines of

force, and of which the magnitude is P.

The polarisation having been seen to be a vector, we may speak of its

components /, Jl Clearly / is the number of tubes per unit area which

cross a plane perpendicular to the axis of w, and so on.

The result just obtained may be expressed analytically by the equations

/=

129. The polarisation P being measured by the aggregate strength of

tubes per unit area of cross-section, it follows that if a> is the cross-section

at any point of a tube of strength e, we have e =» a>P. Now we have defined

the strength of a tube of force as being equal to the charge at its positive

end, so that by definition the strength « of a tube does not vary from point

to point of the tube. Thus the product oF is constant along a tube, or

(oKR is constant along a tube, replacing the result that caR is constant

in air (§ 56).

The value of the product oiP at any point 0 of a tube, being equal to

depends only on the physical conditions prevailing at the point 0.
47r

It is, however, known to be equal to the charge at the positive end of the

tube. Hence it must also, from symmetry, be equal to minus the charge at

the negative end of the tube. Thus the charges at the two ends of a tube,

whether in the same or in different dielectrics, will be equal and opposite,

and the numerical value of either is the strength of the tube.

Gauss’ Theorem.

130. Let S be any closed surface, and let e be the angle between the

direction of the outward normal to any element of surface dS and the direction

of the lines of force at the element. The aggregate strength of the tubes of

force which cross the element of area dS is F cos e dS, and the integral

jj
P cos € dS,

which may be called the sur&ce integral of normal polarisation, will measure

the aggregate strength of all the tubes which cross the surface 8, the strength

of a tube being estimated as positive when it crosses the surface from inside

to outside, and as negative when it crosses in the reverse direction.

A tube which enters the surface from outside, and which, after crossing
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the space enclosed by the surface, leaves it again, will add no contribution to

cosedjSf, its strength being counted negatively where it enters the

surface, and positively where it emerges. A tube which starts from or ends

on a charge e inside the surface S will, however, supply a contribution to

//
P cossdiSf on crossing the surface. If e is positive, the strength of the

tube is e ; and, as it crosses from inside to outside, it is counted positively,

and the contribution to the integral is 0. Again, if e is negative, the strength

of the tube is ^ 0, and this is counted negatively, so that the contribution is

again 0.

Thus on summing for all tubes,

jj
PcoQ€dS=Ef

where E is the total charge inside the surface. The left-hand member is

simply the algebraical sum of the strengths of the tubes which begin or end

inside the surface; the right-hand member is the algebraical sum of the

charges on which these tubes begin or end. Putting

the equation becomes
//
KR cos edS=

The quantity R cos e is, however, the component of intensity along the

outward normal, the quantity which has been previously denoted by N, so

that we arrive at the equation

JjKNdS = 4^E (61),

When the dielectric was air. Gauss’ theorem was obtained in the form

jjNdS = 4>7rE.

Equation (61) is therefore the generalised form of Gauss’ Theorem which

must be used when the inductive capacity is different from unity. Since

dV^ ,
the equation may be written in the form

131. The form of this equation shews at once that a great many results

which have been shewn to be true for air are true also for dielectrics other

than air.

It is obvious, for instance, that V cannot be a maximum or a minimum
at a point in a dielectric which is not occupied by an electric charge : as
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a consequence all lines of force must begin and end on charged bodies,

a result which was tacitly assumed in defining the strength of a tube of

force.

A number of theorems were obtained in the discussion of the electrostatic

field in air, by taking a Gauss' Surface, partly in air and partly in a con-

ductor. Gauss' Theorem was used in the form

^^NdS = 4>-rrE,

but we now see that if the inductive capacity of the conductor were not

equal to unity, this equation ought to be replaced by equation (61). It is,

however, clear that the difference cannot affect the final result
;
N is zero

inside a conductor, so that it does not matter whether N is multiplied by K
or not.

Thus results obtained for systems of conductors in air upon the assumption

that Coulomb’s law of force holds throughout the field are seen to be true

whether the inductive capacity inside the conductors is equal to unity or not.

The Equations of Poisson and Laplace.

132. In § 49, we applied Gauss’ theorem to a surface which was formed

by a small rectangular parallelepiped, of edges dx, dy, dz, parallel to the

axes of coordinates. If we apply the theorem expressed by equation (61) to

the same element of volume, we obtain

where p is the volume density of electrification. This, then, is the generalised

form of Poisson’s equation: the generalised form of Laplace's equation is

obtained at once on putting p = 0.

In terms of the components of polarisation, equation (62) may be written

dy^ dz ^ .(63),

while if the dielectric is uncharged,

?f +?2+».0
dx^ dy^ dz

.(64).

Electric Charges in an infinite homogeneous Dielectric.

133. Consider a charge e placed by itself in an infinite dielectric. If

the dielectric is homogeneous, it follows from considerations of symmetry

that the lines of force must be radial, as they would be in air. By application
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of equation (61) to a sphere of radius r, having the point charge as centre^ it

is found that the intensity at a distance r from the charge is

e

The force between two point charges s, e, at distance r apart in a homo-

geneous unbounded dielectric is therefore

—
Kt» .(65),

and the potential of any number of charges, obtained by integration of this

expression, is

V = is? (66).

CoulomVs Equatiov,

134. The strength of a tube being measured by the charge at its end, it

follows that at a point just outside a conductor, P, the aggregate strength

of the tubes per unit of cross-section, becomes numerically equal to o*, the

surface density. We have also the general relation

and on replacing P by <r, we arrive at the generalised form of Coulomb’s

equation.

P = 47r<r
.(67),

in which K is the inductive capacity at the point under consideration.

Conditions to be satisfied at the Boundary of a Dielectric.

135. Let us examine the conditions which will obtain at a boundary at

which the inductive capacity changes abruptly from to

The potential must be continuous in crossing the boundary, for if P, Q,

are two infinitely near points on opposite sides of the boundary, the work done

in bringing a small charge to P must be the same as that done in bringing

it to Q. As a consequence of the potential being continuous, it follows that

the tangential components of the intensity must also be continuous. For if

P, Q are two very near points on different sides of the boundary, and P', Q'

a similar pair of points at a small distance away, we have s Fg, and

Vp = Vq, so that

yp-y;^y^-yi
pp' “ •

The expressions on the two sides of this equation are, however, the two

intensities in the direction PP', on the two sides of the boundary, which

establishes the result.
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Also, if there is no charge on the boundaiy, the aggregate strength of

the tubes which meet the boundary in any small area on this boundary is

the same whether estimated in the one dielectric or the other, for the tubes

do not alter their strength in crossing the boundary, and none can begin or

end in the boundary. Thus the normal component of the polarisation is

continuous.

136. If Ri is the intensity in the first medium of inductive capacity Ki^

measured at a point close to the boundary, and if Ci is the angle which the

lines of force make with the normal to the boundary at this point, then the

normal polarisation in the first medium is

^ iCi cos

Similarly, that in the second medium is

^ii.C08 e„

SO that cos ei = KJi^ cos «g (68).

Since, in the notation already used,

Ri cos €i — N\ ,

the equation just obtained may be put in either of the forms

(69),

(70).

In these equations, it is a matter of indifference whether the normal is

drawn from the first medium to the second or in the reverse direction ; it is

only necessaiy that the same normal should be taken on both sides of the

equation. Relation (70) is obtained at once on applying the generalised

form of Gauss’ theorem to a small cylinder having parallel ends at infinitesimal

distance apart, one in each medium.

137. To sum up, we have found that in passing from one dielectric to

another, the surfiu^e of separation being uncharged

:

(i) the tangential components of intensity have the same values on the

two sides of the boundary,

(ii) the normal components of polarisation have the same values.

Or, in terms of the potential,

(i) V is continuous,

dV
(ii) K— is continuous.
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Bsfrcustim of the lines of force.

138. From the continuity of the tangential components of intensity, it

follows

:

(i) that the directions of Ri and the intensities on the two sides of

the boundary, must lie in a plane containing the normal, and

(ii) that Ri sin 6i
— jR, sin 6,.

Combining the last relation with equation (68), we obtain

£'l cot 6,s cot 6| (71).

From this relation^it appears that if K'^ is greater than then Ci is greater

than €„ and vice versa. Thus in passing from a smaller value of iT to a

greater value of K, the lines are bent away from the normal. In illustration

of this, fig. 43 shews the arrangement of lines of force when a point charge

is placed in front of an infinite slab of dielectric {K= 7).

Fro. 48.
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A small charged particle placed at any point of tliis field will experience

a force of which the direction is along the tangent to the line of force through

the point. The force is produced by the point charge, but its direction will

not in general pass through the point charge. Thus we conclude that in

a field in which the inductive capacity is not uniform the force between two

point charges does not in general act along the line joining them.

139. As an example of the action of a dielectric let us imagine a parallel

plate condenser in which a slab of dielectric of thickness t is placed between

the plates, its two faces being parallel to the plates and

at distances a, h from them, so that a+ 6 + ^ = d, where

d is the distance between the plates.

It is obvious from symmetry that the lines of force

are straight throughout their path, equation (71) being

satisfied by 6| = 69 = 0.

Let <r be the charge per unit area, so that the polari-

sation is equal to o* everywhere. The intensity, by

equation (67), is

E = 4m<r in air,

and R=^~(r 'm dielectric.

Fia. 44.

Hence the difference of potential between the plates, or the work done in

taking unit charge from one plate to the other in opposition to the electric

intensity.

47r
: 47r<r . a + -j^

<r .t-\- , 6

= 47r<r|d-^l

and the capacity per unit area is

1

Thus the introduction of the slab of dielectric has the same effect as

moving the plates a distance ^ nearer together.

Suppose now that the slab is partly outside the condenser and partly

between the plates. Of the total area A of the condenser, let an area B be

occupied by the slab of dielectric, an area A — H having only air between

the plates.



138-141] Boundary Conditions 126

The lines of force will be straight, except for those which pass near to the

edge of the dielectric slab. Neglecting a small correction required by the

curvature of these lines, the capacity C of the condenser is given by

a quantity which increases as B increases. If K is the potential difference

and E the charge, the electrical energy

If we keep the charge constant, the electrical energy increases as the

slab is withdrawn. There must therefore be a mechanical force tending to

resist withdrawal : the slab of dielectric will be sucked in between the plates

of the condenser. This, as will be seen later, is a particular case of a general

theorem that any piece of dielectric is acted on by forces which tend to

drag it from the weaker to the stronger parts of an electric field of force.

Charge on the Surface of a Dielectric.

140. Let dS be any small area of a surface which separates two media

of inductive capacities Ki, and let this bounding surface have a charge of

electricity, the surface density over dS being a. If we apply

Gauss’ Theorem to a small cylinder circumscribing dS we obtain

where ^ in either medium denotes differentiation with respect

to the normal drawn away from dS into the dielectric.

141. As we have seen, the surface of a dielectric may be

charged by friction. A more interesting way is by utilising

the conducting powers of a fiame.
f10. 46.

Let us place a charge e in front of a slab of dielectric as in fig. 43.

A flame issuing from a metal lamp held in the hand may be regarded as

a conductor at potential zero. On allowing the flame to play over the

surface of the dielectric, this surface is reduced to potential zero, and the

distribution of the lines of force is now exactly the same as if the face of

the dielectric were replaced by a conducting plane at potential zero. The
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lines of force from the point charge terminate on this plane, so that there

must be a total charge — a spread over it. If the plane were actually a

conductor this would be simply an induced charge. If, however, the plane

is the boundary of a dielectric, the charge differs from an induced charge on

a conductor in that it cannot disappear if the original charge e is removed.

For this reason, Faraday described it as a “ bound ” charge. The charge has

of course come to the dielectric through the conducting dame.

Molecular Action in a Dielectric.

142. From the observed influence of the structure of a dielectric upon

the electric phenomena occurring in a held in which it was placed, Faraday

was led to suppose that the particles of the dielectric themselves took part

in this electric action. After describing his researches on the electric

action—“ induction ” to use his own term—in a space occupied by dielectric

he says*:

“ Thus induction appears to be essentially an action of contiguous parti-

cles, through the intermediation of which the electric force, originating or

appearing at a certain place, is propagated to or sustained at a distance....”

“ Induction appears to consist in a certain polarised state of the particles,

into which they are thrown by the electrified body sustaining the action, the

particles assuming positive and negative points or parts....”

“With respect to the term polarity..,, I mean at present...a disposition

of force by which the same molecule acquires opposite powers on different

parts.”

And again, later f,

“I do not consider the powers when developed by the polarisation as

limited to two distinct points or spots on the surface of each particle to be

considered as the poles of an axis, but as resident on large portions of that

surface, as they are upon the surface of a conductor of sensible size when it

is thrown into a polar state.”

“ In such solid bodies as glass, lac, sulphur, etc., the particles appear to

be able to become polarised in all directions, for a mass when experimented

upon so as to ascertain its inductive capacity in three or more directions,

gives no indication of a difference. Now, as the particles are fixed in the

mass, and as the direction of the induction through them must change with

its charge relative to the mass, the constant effect indicates that they can

be polarised electrically in any direction.”

* Experimental Itesearchee^ 1295, 1298, 1304. (Nov. 1837.)

t Experimental Researches, 1G86, 1688, 1679. (June, 1838.)
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“ The particles of an insulating dielectric whilst under induction may be
compared...to a series of small insulated conductors. If the space round

a charged globe were filled with a mixture of an insulating dielectric and
small globular conductors, the latter being at a little distance from each

other, so as to be insulated, then these would in their condition and action

exactly resemble what I consider to be the condition and action of the

particles of the insulating dielectric itself. If the globe were charged, these

little conductors would all be polar ; if the globe were discharged, they would
all return to their normal state, to be polarised again upon the recharging

of the globe...."

As regards the question of what actually the particles are which undergo

this polarisation, Faraday says*

:

“ An important inquiry regarding the electric polarity of the particles of

an insulating dielectric, is, whether it be the molecules of the particular

substance acted on, or the component or ultimate particles, which thus act

the part of insulated conducting polarising portions."

“The conclusion I have arrived at is, that it is the molecules of the

substance which polarise as wholes; and that however complicated the

composition of a body may be, all those particles or atoms which are held

together by chemical affinity to form one molecule of the resulting body

act as one conducting mass or particle when inductive phenomena and

polarisation are produced in the substance of which it is a part."

143. A mathematical discussion of the action of a dielectric constructed

as imagined by Faraday, has been given by Mossotti, who utilised a mathe-

matical method which had been developed by Poisson for the examination of

a similar question in magnetism. For this discussion the molecules are

represented provisionally as conductors of electricity.

To obtain a first idea of the effect of an electric field on a dielectric of

the kind pictured by Faraday, let us consider a parallel plate condenser.

Fxo. 46.

* Experimental Besearehet, 1699, 1700.
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having a number of insulated uncharged conducting molecules in the space

between the plates. Imagine a tube of strength e meeting a molecule. At

the point where this occurs, the tube terminates by meeting a conductor, so

that there must be a charge — € on the surface of the molecule. Since the

total charge on the molecule is nil there must be a corresponding charge on

the opposite surface, and this charge may be regarded as a point of restarting

of the tube. The tube then may be supposed to be continually stopped and

restarted by molecules as it crosses from one plate of the condenser to the

other. At each encounter with a molecule there are induced charges — 6, + 6

on the surface of the molecule. Any such pair of charges, being at only a

small distance apart, may be regarded as forming a small doublet, of the kind

of which the field of force was investigated in § 64.

144. We have now replaced the dielectric by a series of conductors, the

medium between which may be supposed to be air or ether. In the space

between these conductors the law of force will be that of the inverse square.

In calculating the intensity at any point from this law we have to reckon

the forces from the doublets as well as the forces from the original charges

on the condenser-plates. A glance at fig. 46 will shew that the forces from

the doublets act in opposition to the original forces. Thus for given charges

on the condenser-plates the intensity at any point between the plates is

lessened by the presence of conducting molecules.

This general result can be seen at once from the theorem of § 121. The

introduction of new conductors (the molecules) lessens the energy cor-

responding to given charges on the plates, i,e. increases the capacity of the

condenser, and so lessens the intensity between the plates.

145. In calculating that part of the intensity which arises from the

doublets, it will be convenient to divide the dielectric into concentric spherical

shells having as centre the point at which the intensity is required. The

volume of the shell of radii r and r-\- dr is 47rr* dr, so that the number of

doublets included in it will contain r^dr as a factor. The potential produced

by any doublet at a point distant r from it is
fi cos 6

, BO that the intensity

will contain a factor - . Thus the intensity arising from all the doublets in
r*

the shell of radii r, r+dr will depend on r through the factor i .r^dr

dr
or —

r

The importance of the different shells is accordingly the same, as regards

comparative orders of magnitude, as that of the corresponding contributions

to the integral
J
^ . The value of this integral is log r -t- a constant, and this
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is infinite when r = 0 and when r =a oo . Thus the important contributions

come from very small and very large values of r. It can however be seen

that the contributions from large values of r neutralise one another, for the

term cos 0 in the potentials of the different doublets will be just as often

positive as negative.

Hence it is necessary only to consider the contributions from shells for

which r is very small, so that the whole field at any point may be regarded

as arising entirely from the doublets in the immediate neighbourhood of the

point. The force will obviously vary as we move in and out amongst the

molecules, depending largely on the nearness and position of the nearest

molecules. If, however, we average this force throughout a small volume, we

shall obtain an average intensity of the field produced by the doublets, and

this will depend only on the strength and number of the doublets in and

near to this element of volume. Obviously this average intensity near any

point will be exactly proportional to the average strength of the doublets

near the point, and this again will be exactly proportional to the strength of

the inducing field by which the doublets are produced, so that at any point

we may say that the average field of the doublets stands to the total field in

a ratio which depends only on the structure of the medium at the point.

146. Now suppose that our measurements are not sufficiently refined to

enable us to take account of the rapid changes of intensity of the electric

field which must occur within small distances of molecular order of magnitude.

Let us suppose, as we legitimately may, that the forces which we measure

are forces averaged through a distance which contains a great number of

molecules. Then the force which we measure will consist of the sum of the

average force produced by the doublets, and of the force produced by the

external field. The field which we observe may accordingly be regarded as

the superposition of two fields, or what amounts to the same thing, the

observed intensity R may be regarded as the resultant of two intensities

i2,, i^, where

Ri is the average intensity arising from the neighbouring doublets,

is the intensity due to the charges outside the dielectric, and to

the distant doublets in the dielectric.

These forces, as we have seen, must be proportional to one another, so

that each must be proportional to the polarisation P. It follows that P is

proportional to P, the ratio depending only on the structure of the medium

at the point. If we take the relation to be

(73).

then K is the inductive capacity at the point, and the relation between R
and P is exactly the relation upon which our whole theory has been based.
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147. The theory could accordingly be based on Mossotti’s theory, instead

of on Faraday’s assumption, and from the hypothesis of molecular polarisa-

tion we should be able to deduce all the results of the theory, by first

deducing equation (73) from Mossotti’s hypothesis, and then the required

results from equation (73) in the way in which they have been deduced in

the present chapter.

Thus the influence of the conducting molecules produces physically the

same result as if the properties of the medium were altered in the way
suggested by Faraday, and mathematically the properties of the medium are

in either case represented by the presence of the factor K in equation (73).

Relation between Inductive Capacity and Structure of Medium,

148 . The electrostatic unit of force was defined in such a way that the

inductive capacity of air was taken as unity. It is now obvious that it would

have been more scientific to take empty space as standard medium, so that

the inductive capacity of every medium would have been greater than unity.

Unfortunately, the practice of referring all inductive capacities to air as

standard has become too firmly established for this to be possible. The
difference between the two standards is very slight, the inductive capacity

of normal air in terms of empty si)ace being l OOOoO. Thus the inductive

capacity of a vacuum may be taken to be *99941 referred to air.

So long as the molecules are at distances apart which are great compared

with their linear dimensions, we may neglect the interaction of the charges

induced on the different molecules, and treat their effects as additive. It

follows that in a gas K -- Kq, where Kq is the inductive capacity of free ether,

ought to be proportional to the density of the gas. This law is found to be

in exact agreement with experiment*.

149 . It is, however, possible to go further and calculate the actual value

of the ratio of K— to the density. We have seen that this will be

a constant for a given substance, so that we shall determine its value in the

simplest case: we shall consider a thin slab of the dielectric placed in a

parallel plate condenser, as described in § 139. Let this slab be of thickness 6,

and let it coincide with the plane of yz. Let the dielectric contain n mole-

cules per unit volume.

The clement dydz will contain nedydz molecules. If each of these is

a doublet of strength fju, the elerntmt dydz will have a field which will be

equivalent at all di.stant points to that of a single doublet of strength

npedydz. 1'his is exactly the field which would be produced if the two

faces of the slab were cliargcd with electricity of surface density ± up.

* Bolt^iiiuiin, Wiener Sitzungiber. GU, p. til2.
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We can accordingly at once find the field produced by these doublets—it

is the same as that of a parallel plate condenser, in which the plates are at

distance 6 apart and are charged to surface density + There is no

intensity except between the plates, and here the intensity of the field is

47rw/A.

Thus if R is the total intensity outside the slab, that inside will be

R — 47m/A. If K is the inductive capacity of the material of the slab, and

Kq that of the free ether outside the slab, we have

KJt = K(R~~ 4!7rn/j,),

so that

It remains to determine the ratio fi/R. The potential of a doublet is

~ while that of the field R may be taken to be - Rx + C, Thus the total

potential of a single doublet and the external field is

t^-Ra; + 0,

and this makes the surface r = a an equipotential if ^ = -K* Thus the

surfaces of the molecules will be equipotentials if we imagine the molecules

to be spheres of radius a, and the centres of the doublets to coincide with

the centres of the spheres, the strength of each doublet being Ma\

Putting = Ra*, equation (74) becomes*

Now in unit volume of dielectric, the space occupied by the n molecules

is ^ na\ Calling this quantity 6, we have == 3^, or, since our calcu-

lations only hold on the hypothesis that d is small,

^ = 1 + 3(9 (75).

If the lines of force went straight across from one plate of the condenser

• Clausias {Mech, Wdrmetheorie^ 2, p. 91) has obtained the relation

K-K^ 47r ,—TP” = -:rA + 2Ao d

by considering the field inside a sphere of dielectric. The value of K must of course be inde-

pendent of the shape of the piece of the dielectric considered. The apparent discrepancy in the

two values of K obtained, is removed as soon as wo reflect that both proceed on the assumption

that K-Kq is small, for the results agree as far us first powers of K^K^, Fagliani [Accad, dei

Linceit 2, p. 48) finds that in point of fact the equation

K-Ko
K

= 4irMa®

agrees bettor with experiment than the formula of Clausius.
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to the other, the proportion of the length of each which would be inside a

conductor would, on the average, be 0, Since there is no fall of a potential

inside a conductor, the total fall of potential from one plate to the other

would be only 1 — 0 times what it would be if the molecules were absent,

and the ratio iT/iTo would be 1/(1 - 0) or, if 0 is small, 1 + 0. Since,

however, the lines of force tend to run through conductors wherever possible,

there is more shortening of lines of force than is shewn by this simple

calculation. Equation (75) shews that when the molecules are spherical the

effect is three times that given by this simple calculation. For other shapes

of molecules the multiplying factor might of course be different.

Equation (75) gives at once a method of determining 0 for substances

for which 0 is small, namely gases, but, owing to the unwarranted assumption

that the molecules are splierical, the results will be true as regards order of

magnitude only. If the dielectric is a gas at atmospheric pressure, the

value of n is known, being about 2*685 x 10*®, and this enables us to calculate

the value of a.

,K
160. The following table gives series of values of^ for gases at atmo-

spheric pressure:

Gas ~ observed
Ao

Autho-
rity*

a calculated

(Mossotti’s

Theory)

a calculated

(Theory of

Gases)!

Helium He 1 -000074 4 •598x]0-» 1-09x10-8

Hydrogen H, 10002G4 1 •919x10-8 l-36xl0-»

Oxygen Oj 1 000543 3 1-17x10-8 l-81xl0-«

Argon Ar 1 000566 3 118x10-8 1-83x10-8

Air — 1-000586 2 1-19x10-8 1-87x10-8

Nitrogen N, 1-000594 3 1-20x10-8 1-89x10-8

Carbon Monoxide CO 1 000695 2 1-27x10-8 1-89x10-8

Carbon Dioxide COa 1-000985 2 1-42x10-8 2-33 X 10-8

Nitrous Oxide ... NjO 1-00099 2 1-43x10-8 2-33x10-8

Ethylene C,ll4 1-00146 2 1-63x10-8 2-77x10-8

* Authorities:—1. Boltzmann, 1875.

2. Klenieiicid, 1885.

3. Calculated from refractive index for Sodium Light.

4. Hockheirn, 1908.

t Jeans, Introduction to the Kinetic Theory of Gasea, p. 183.
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The last two columns give respectively the values of a calculated from

equation (75), and the value of a given by the Theory of Oases. The two

sets of values do not agree exactly—this could not be expected when we
remember the magnitude of the errors introduced in treating the molecules

as spherical. But what agreement there is supplies veiy significant evidence

as to the truth of the theory of molecular polarisation.

161. It still remains to explain what physical property of the molecule

justifies us in treating its surface as a perfect conductor. It has already

been explained that all matter contains a number of negatively charged par-

ticles or electrons. These form the outer layers of the atoms and molecules and

it is by their motion that the conduction of electricity is effected. In a dielectric

there is no conduction, so that each electron must remain permanently

associated with the same molecule. There is, however, plenty of evidence

that the electrons are not rigidly fixed to the molecules but are free to move

within certain limits. The molecule may be regarded as consisting partially

or wholly of a cluster of electrons, normally at rest in positions of equilibrium

under the various attractions and repulsions present, but capable of vibrating

about these positions. Under the influence of an external field of force,

the electrons will move slightly from their equilibrium positions—we may

imagine that a kind of tidal motion of electrons takes place in the molecule.

Obviously, by the time that equilibrium is attained, the outer surface of the

molecule must be an equipotential. This, however, is exactly what is required

for Mossotti's hypothesis. We may accordingly abandon the conception of

conducting spheres, which was only required to make the surface of the

molecule an equipotential, and may, without impairing the power of Mossotti's

explanation, replace these conducting spheres by shells of electrons. If in

some way we can further replace these shells by rings of electrons in rapid

orbital motion, the modified hypothesis will be in very close agreement with

modem beliefs as to the structure of matter.

On this view, the quantity a tabulated in the sixth column of the table

on p. 132, will measure the radius of the outermost shell of electrons. Even

outside this outermost shell, however, there will be an appreciable field of

force, so that when two molecules of a gas collide there will in general be a

considerable distance between their outermost layers of electrons. Thus if

the collisions of molecules in a gas are to be regarded as the collisions of

elastic spheres, the radius of these spheres must be supposed to be con-

siderably greater than a. Now it is the radius of these imaginary elastic

spheres which we calculate in the Kinetic Theory of Gases ; there is therefore

no difficulty in understanding the differences between the two sets of values

for a given in the table of p. 132.

It is known that molecules are not in general spherical in shape, but, as

we shall see below, there is no difficulty in extending Mossotti’s theory to

cover the case of non-spherical molecules.
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Anisotropic Media.

162. There are some dielectrics, generally of crystalline structure, in

which Faraday’s relation between polarisation and intensity is found not

to be true. The polarisation in such dielectrics is not, in general, in the

same direction as the intensity, and the angle between the polarisation and

intensity and also the ratio of these quantities are found to depend on the

direction of the field relatively to the axes of the crystal. We shall find that

the conception of molecular action accounts for these peculiarities of crystalline

dielectrics.

Let us consider an extreme case in which the spherical molecules of

fig. 46 are replaced by a number of very elongated or needle-shaped bodies.

The lines of force will have their effective lengths shortened by an amount
which depends on whether much or little of them falls within the material of

the needle-shaped molecules, and, as in § 149, there will be an equation of

the form

^ = 1

where $ is the aggregate volume of the number of molecules which occur in

a unit volume of the gas, and s is a numerical multiplier. But it is at once

clear that the value of s will depend not only on the shape but also on the

orientation of the molecules. Clearly the value of 8 will be greatest when
the needles are placed so that their greatest length lies in the direction of

Fia. 46 a. Fia. 466. Fko. 46 c.

the lines of force, as in fig. 46 a, and will be least when the needles lie at

right angles to this position, as in fig. 46 b. Or to put the matter in another

way, a piece of dielectric in which the molecules are needle-shaped and

parallel will exhibit different values of K according as the field of force is

parallel or at right aqgles to the lengths of the needles.
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This extreme case illustrates the fundamental property of crystalline

dielectrics, but it ought to be understood that in actual substances the values

ofK do not differ so much for different directions as this extreme case might

be supposed to suggest. For instance for quartz, one of the substances in

which the difference is most marked, Curie finds the extreme values of iT to

be 4'55 and 4*49.

Before attempting to construct a mathematical theory of the behaviour

of a crystalline dielectric we may examine the case of a dielectric having

needle-shaped molecules placed parallel to one another, but so as to make
any angle 6 with the direction of the lines of force, as in fig. 46 c.

It is at once clear that not only are the effective lengths of the lines of

force shortened by the presence of the molecules, but also the directions of

the lines of force are twisted. It follows that the polarisation, regarded as a

vector as in § 128, must in general have a direction different from that of the

average intensity R of the field.

To analyse such a case we shall, as in § 146, regard the field near any

point as the superposition of two fields:

(i) the field which arises from the doublets on the neighbouring

molecules, say a field of components of intensity Xi, Fi, Zi\

(ii) the field caused by the doublets arising from the distant molecules

and from the charges outside the dielectric, say a field of components of

intensity Z,, F,, Z^,

Clearly in the case we are now considering, the intensities 22i, 22, of

these fields will not be in the same direction.

The components of intensity of the whole field are given by

Z = + Za, etc.

To discuss the first part of the field, let us regard the whole field as

the superposition of three fields, having respectively components (Z, 0, 0),

(0, F, 0) and (0, 0, Z), If the molecules are spherical, or if, not being

spherical, their orientations in space are distributed at random, then clearly

the field of components (Z, 0, 0) will induce doublets which will' produce

simply a field of components (Z'Z, 0, 0) where IC is a constant. But if the

molecules are neither spherical in shape nor arranged at random as regards

their orientations in space, it will be necessary to assume that the induced

doublets give rise to a field of components

Z'uZ, if'^Z, Z'„Z.
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On superposing the doublets induced by the three fields (X, 0. 0),

(0, F, 0) and (0, 0, Z\ we obtain

Zx = /i'„X + /rtiF+X'„Z^

F, = if'i,X +X'„F+W “ (76).

Thus we have relations of the form

47r/= 7f„X + X,,F+/f3i^^

• (77),

49rA = X„Z + 7i:^r + 7r3,Z.

expressing the relations between polarisation and intensity.

These are the general equations for crystalline media. We shall shortly

prove (§170) that

Ai2
= Xji, 1^23 “ -^81 “ -^18

so that there are not nine, but only six, independent constants.

Non-spherical Molecules.

152a. a medium in which the molecules are not spherical but are oriented

at random can be discussed in a similar way. The whole field (X, F, Z) may

be regarded as the superposition of three fields (X, 0, 0), (0, F, 0) and (0, 0, Z).

The induced doublets produced by the first field will produce a field of com-

ponents

{K'X, 0, 0),

the components along Oy and Oz necessarily vanishing on account of the

random orientation of the molecules. The other fields similarly produce

induced fields

(0, XT, 0) and (0, 0, K'Z),

whence we readily obtain equations of the form

^Tr/=^KX, ^irh = KZ,

Thus Mossotti's theory can readily be extended to non-spherical molecules,

but the difficulty remains that according to modern views, a molecule does

not consist of layers of electrons at rest, but of systems of electrons in orbital

motion. It will not be possible to make the appropriate modification in the

theory until the exact nature of this orbital motion is known.
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EXAMPLES.

1. A spherical condenser, radii 6, has air in the space between the spheres. The

inner sphere receives a coat of paint of uniform thickness t and of a material of which

the inductive capacity is K, Find the change produced in the capacity of the condenser.

2. A conductor has a charge s, and Fi, are the potentials of two equipotential

surfaces completely surrounding it ( Fi > F,). The space between these two surfaces is

now filled with a dielectric of inductive capacity K, Shew that the change in the

energy of the system is

i«(Fi-F,)(A-l)/A.

3. The surfaces of an air-condcnser are concentric spheres. If half the space between

the spheres be filled with solid dielectric of specific inductive capacity A, the dividing

surface between the solid and the air being a plane through the centre of the spheres,

shew that the capacity will be the same as though the whole dielectric were of uniform

specific inductive capacity ^ (1 + A).

4. The radii of the inner and outer sheila of two equal spherical condensers, remote

from each other and immersed in an infinite dielectric of inductive capacity A, are

respectively a and 6, and the inductive capacities of the dielectric inside the condensers

are A"}, K%» Both surfaces of the first condenser are insulated and charged, the second

being uncharged. The inner surface of the second condenser is now connected to earth,

and the outer surface is connected to the outer surface of the first condenser by a wire

of negligible capacity. Shew that the loss of energy is

§2{2(d-.a)A"+aA,}

2A6{(6-a)A+aAj}'

where Q is the quantity of electricity which flows along the wire.

5. The outer coating of a long cylindrical condenser is a thin shell of radius a, and
the dielectric between the cylinders has inductive capacity K on one side of a plane

through the axis, and K' on the other side. Shew that when the inner cylinder is

connected to earth, and the outer has a charge q per unit length, the resultant force on
the outer cylinder is

ira(A+A')^

per unit length.

6. A heterogeneous dielectrio is formed of » concentric spherical layers of specific

inductive capacities Ai, A2 , ... A^, starting from the innermost dielectric, which forms a
solid sphere ; also the outermost dielectric extends to infinity. The radii of the spherical

boundary surfaces are ai, 02 , ... a»_i respectively. Prove that the potential due to a
quantity Q of electricity at the centre of the spheres at a point distant r from the centre

in the dielectrio A« is

A, \r aj Af.,i\aj A„«„_i*
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7. A ocmdensor is formed by two rectangular parallel conducting plates of breadth

h and area A at distance d from each other. Also a parallel slab of a dielectric of thickness

t and of the same area is between the plates. This slab is pulled along its length firom

between the plates, so that only a length x is between the plates. Prove that the electric

force sucking the riab back to its original position is

{A (cf-0+^60**

where (JT- 1)/Jr, K is the specific inductive capacity of the slab, E is the chaige, and

the disturbances produced by the edges are neglected.

8. Three closed surfaces 1, 2, 3 are equipotentials in an electric field. If the space

between 1 and 2 is filled with a dielectric JT, and that between 2 and 3 is filled with a

dielectric K\ shew that the capacity of a condenser having 1 and 3 for faces is O', given by

I-JL4.JL
C AK^BK'*

where A, .0 are the capacities of air-condensers having as faces the surfaces 1, 2 and 2, 3

respectively.

9. The surface separating two dielectrics (JTi, K^) has an actual charge <r per unit

area. The electric forces on the two sides of the boundary are /j at angles ci, Cj with

the common normal Shew how to determine and prove that

10. The space between two concentric spheres radii a, b which are kept at potentials

A, is filled with a heterogeneous dielectric of which the inductive capacity varies as

the nth power of the distance from their common centre. Shew that the potential at any

point between the surfaces is

A-jB

11.

A condenser is formed of two parallel plates, distant h apart, one of which is

at sero potential. The space between the plates is filled with a dielectric whose inductive

capacity increases uniformly from one plate to the other. Shew that the capacity per unit

area is

Airh logK^K\ *

where Ki and K% are the values of the inductive capacity at the surfaces of the platei The

inequalities of distribution at the edges of the plates are neglected.

12.

A spherical conductor of radius a is surrounded by a ooncentrio spherical

conducting shell whose internal radius is 6, and the intervening space is occupied by a

c^ r
dielectric whose specific inductive capacity at a distance r from the centre is . If the

inner sphere is insulated and has a charge the shell being connected with the earth,

prove that the potential in the dielectric at a distance r from the centre is ~ log .
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A spherical conductor of radius a is surrounded by a concentric spherical shell of

radius and the space between them is filled with a dielectric of which the inductive

capacity at distance r from the centre is where p^mr/a. Prove that the capacity

of the condenser so formed is

2;ia (€«*-«)"*.

14.

If the specific inductive capacity varies as where r is the distance from a

fixed point in the mediumi verify that a solution of the differential equation satisfied by

the potential is

- 1 -
r

a
cobB^

and hence determine the potential at any point of a sphere, whose inductive capacity is

the above function of the distance from the centre, when placed in a uniform field of

force.

15. Shew that the capacity of a condenser consisting of the conducting spheres f»a,

and a heterogeneous dielectric of inductive capacity 0), is

16. In an imaginary crystalline medium the molecules are discs placed so as to be

all parallel to the plane of xy. Shew that the components of intensity and polarisation

are connected by equations of the form

4iry= A’hA+ ^ Ki%X^ f ^irh^K^glZ.



CHAPTEE VI

THE STATE OF THE MEDIUM IN THE ELECTROSTATIC FIELD

163. The whole electrostatic theory has so far been based simply upon

Coulomb’s Law of the inverse square of the distance. We have supposed

that one charge of electricity exerts certain forces upon a second distant

charge, but nothing has been said as to the mechanism by which this action

takes place. In handling this question there are two possibilities open. We
may either assume “ action at a distance ” as an ultimate explanation

—

i.e.

simply assert that two bodies act on one another across the intervening

space, without attempting to go any further towards an explanation of how
such action is brought about—or we may tentatively assume that some
medium connects the one body with the other, and examine whether it is

possible to ascribe properties to this medium, such that the observed action

will be transmitted by the medium. Faraday and Maxwell followed the latter

course. They refused to admit ** action at a distance ’’ as an ultimate explana-

tion of electric phenomena, finding such action unthinkable unless transmitted

by an intervening medium.

154. It is worth enquiring whether there is any valid d jmori argument which

compels us to resort to action through a medium. Some writers have attempted to use

the phenomenon of Inductive Capacity to prove that the energy of a condenser must

reside in the space between the charged plates, rather than on the plates themselves—for,

they say, change the medium between the plates, keeping the plates in the same condition,

and the energy is changed. A study of Faraday's molecular explanation of the action in

a dielectric will shew that this argument proves nothing as to the real question at issue.

It goes so far as to prove that when there are molecules placed between electric charges,

these molecules themselves acquire cbaiges, and so may be said to be now stores of ene rgy,

but it leaves untouched the question of whether the energy resides in the charges on the

molecules or in the ether between them.

Again, the phenomenon of induction is sometimes quoted against action at a distance

—

a small conductor placed at a point P in an electrostatic field shews phenomena which

depend on the electric intensity at P. This is taken to shew that the state of the ether

at the point P before the introduction of the conductor was in some way different from

what it would have been if there had not been electric charges in the neighbourhood. But

all that is proved is that the state of the point P after the introduction of the conductor
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will be different from what it would have been if there had not been electric charges in

the neighbourhood, and this can be explained equally well either by action at a distance or

action through a medium. The now conductor is a collection of positive and negative

charges : the phenomena under question are produced by these charges being acted upon
by the other charges in the held, but whether this action is action at a distance or action

through A medium cannot be told.

Indeed, it will be seen that, viewed in the light of the electron-theory and of Faraday’s

theory of dielectric polarisation, electrical action stands on just the same level as

gravitational action. In each case the system of forces to be explained may be regarded

as a system of forces between indestructible centres, whether of electricity or of matter,

and the law of force is the law of the inverse square, independently of the state of the
space between the centres. Now no scientist would claim that there is any d priori proof

that gravitation is transmitted through a medium—indeed the trend of opinion at present

is quite in the opposite direction—and this fact in itself suffices to shew that thei'e is no

d ^non means of establishing that electrical action is transmitted through a medium.

Failing an d priori argument, an attempt may be made to disprove action at a distance,

or rather to make it improbable, by an appeal to experience. It may be argued that as

all the forces of which we have experience in every-day life are forces between substances

in contact, therefore it follows by analogy that forces of gravitation, electricity and

magnetism, must ultimately reduce to forces between substances in contact—t.e. must be

transmitted through a medium. Upon analysis, however, it will be seen that this argument

divides all forces into two classes :

(a) Forces of gravitation, electricity and magnetism, which appear to act at a

distance.

(fi) Forces of pressure and impact between solid bodies, hydrostatic pressure, etc.

which appear to act through a medium.

The argument is now seen to be that because class (3) appear to act through a medium,

therefore class (a) must in reality act through a medium. The argument could, with equal

logical force, be used in the exactly ojjposite direction : indeed it has been so used by the

followers of Boscovitch. The Newtonian discovery of gravitation, and of apparent action

at a distance, so occupied the attention of scientists at the time of Boscovitch that it

seemed natural to regard action at a distcance as the ultimate basis of force, and to

try to interpret action through a medium in terms of action at a distance. The reversion

from this view came, as has been said, with Faraday.

Hertz’s subsequent discovery of the finite velocity of propagation of electric action,

which had previously been predicted by Maxwell’s theory, came to the support of Faraday’s

view. To see exactly what is meant by this finite velocity of propagation, let us imagine

that we place two uncharged conductors J, ^ at a distance r from one another. By

charging Ay and so performing work at Ay we can induce charges on conductor B, and

when this has been done, there will be an attraction between conductors A and B, We
can suppose that conductor A is held fast, and that conductor B is allowed to move

towaids Ay work being performed by the attraction from conductor A, We are now

recovering from B work which was originally performed at A, The experiments of Hertz

shew that a finite time is required before any of the work spent at A becomes available

at B. A natural explanation is to suppose that work spent on A assumes the form o1

energy which spreads itself out through the whole of space, and that the finite time

observed before energy becomes available at B is the time required for the first part o!

the advancing energy to travel from A to B, This explanation involves regarding energj
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as a definite physical entity, capable of being localised in space. It ought to be noticed

that our senses give us no knowledge of energy as a physical entity : we experience force,

not energy. And the fact that energy appears to be propagated through space with finite

velocity does not justify us in concluding that it has a real physical existence, for, as we

shall see, the potential appears to be propagated in the same way, and the potential can

only be regarded as a convenient mathematical fiction.

155. Although no sufficient reason has been found compelling us to

ascribe electric action to the presence of an intervening medium, we are still

free to assume, as a hypothesis, that such a medium exists and that electric

action is transmitted through this medium. As various electric and electro-

magnetic phenomena are discussed we shall examine what properties would

have to be attributed to the medium to account for these properties. If it is

found that contradictory properties would have to be ascribed to the medium,

then the hypothesis of action through an intervening medium will have to be

abandoned. If the properties are found to be consistent, then the hypotheses

of action at a distance and action through a medium are still both in the

field, but the latter becomes more or less probable just in proportion as the

properties of the hypothetical medium seem probable or improbable. We shall

return to the general question of the existence of a medium in Chapter xx.

156. Since electric action takes place even across the most complete

vacuum obtainable, we conclude that if this action is transmitted by a

medium, this medium must be the ether. Assuming that the action is

transmitted by the ether, we must suppose that at any point in the electro-

static field there will be an action and reaction between the two parts of the

ether at opposite sides of the point. The ether, in other words, is in a state

of stress at eveiy point in the electrostatic field. Before discussing the

particular system of stresses appropriate to an electrostatic field, we shall

investigate the general theory of stresses in a medium at rest.

General Theory of Stresses in a medium at rest.

157. Let us take a small area dS in the medium perpendicular to the

axis of X, Let us speak of that part of the medium near to dS for which x
is greater than its value over dS as x^, and that for which x is less than this

value as a;_, so that the area dS separates the two regions x^ and x^.

Those parts of the medium by w’hich these two regions are occupied exert

forces upon one another across dS, and this system of forces is spoken of as

the stress across dS. Obviously this stress will consist of an action and

reaction, the two being equal and opposite. Also it is clear that the amount
of this stress will be proportional to dS,

Let us assume that the force exerted by x^ on x^ has components

lixdS, liydS, PndS,
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then the force exerted by d?. on will have components

^P„dS.

The quantities liy, Jig are spoken of as the components of stress

perpendicular to Ox, Similarly there will be components of stress J^x, Jy^,

lyg perpendicular to Oy, and components of stress Pgy, P„ perpendicular

to Oz.

Let us next take a small parallelepiped in the

medium, bounded by planes

« = f,
a? =* f + dd?

;

y = v, y=^v + dy; 7
z “ ^1 z ^ ^ dzt

y 7

Fia. 47.

The stress acting upon the parallelepiped

across the face of area dydz in the plane d? = f
will have components

dydz, — {Jxy)x^^dydz, — dydz,

while the stress acting upon the parallelepiped across the opposite face will

have components

{Ra^X’^i’^dxdydz, {Jxy)x»i’{-dmdydz, (fx^x^i-^dydz.

Compounding these two stresses, we find that the resultant of the stresses

acting upon the parallelepiped across the pair of faces parallel to the plane

of yz, has components

dxdydz, dxdydz, dxdydz.

Similarly from the other pairs of faces, we get resultant forces of com-

ponents _

^ dxdydz, ^ dxdydz.

and

dxdydz,

dxdydz. dxdydz, dxdydz.

For generality, let us suppose that in addition to the action of these

stresses the medium is acted upon by forces acting from a distance, of

amount B, H, Z per unit volume. The components of the forces acting on

the parallelepiped of volume dxdydz will be

B, dxdydz, ^dxdydz, Zdxdydz.

Compounding all the forces which have been obtained, we obtain as equations

of equilibrium

g I

^Pxx
J

^Jjx
,

^Ptx _ ^

and two similar equations.
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168. These three equations ensure that the medium shall have no

motion of translation, but for equilibrium it is also necessary that there

should be no rotation. To a first approximation, the stress across any face

may be supposed to act at the centre of the face, and the force H, H, Z at

the centre of the parallelepiped. Taking moments about a line through the

centre parallel to the axis of Ox, we obtain as the equation of equilibrium

Py.-Pzy = 0 (80).

This and the two similar equations obtained by taking moments about

lines parallel to Oy, Oz ensure that there shall be no rotation of the medium.

Thus the necessary and sufficient condition for the equilibrium of the medium

is expressed by three equations of the form of (79), and three equations of the

form of (80).

169. Suppose next that we take a small area dS anywhere in the

medium. Let the direction cosines of the normal

to rfiSf be + Z, i m, + n. Let the parts of the

medium close to dS and on the two sides of it be

spoken of as and these being named so

that a line drawn from dS with direction cosines

+ Z, +m, +n will be drawn into and one

with direction cosines will be drawn

into S^. Let the force exerted by on 8^
across the area dS have components

FdS, GdS, HdS,

then the force exerted by <SL on 8+ will have

components

^Fd8, ^Gd8, -HdS.

The quantities F, G, H are spoken of as the components of stress across

a plane of direction cosines Z, m, n.

To find the values of F, G, H, let us draw a small tetrahedron having

three faces parallel to the coordinate planes and a fourth having direction

cosines Z, m, n. If d8 is the area of the last face, the areas of the other

faces are IdS, mdS, ndS and the volume of the tetrahedron is ^\/'2lmn (dS)^.

Resolving parallel to Ox, we have, since the medium inside this tetrahedron

is in equilibrium,

^ ^2lmn (d8)^ H - Zd<S^ - md8Il^ - nd8]ix + Fd8 = 0,

giving, since d8 is supposed vanishingly small,

F^^JJix^-mPyx + nPzx

and there are two similar equations to determine G and H,

(81 )
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160. Assuming that equation (80) and the two similar equations are

satisfied, the normal component of stress across the plane of which the

direction cosines are Z, m, n is

IF+ mO + nH= + 2mn fj, + 2nlP„ +

The quadric

+ y^Jly + ^^Pxz + + 2zxP„ + 2xyP^ = 1 (82)

is called the stress-quadric. If r is the length of its radius vector drawn in

the direction I, m, n, we have

{l>^Pxx + + n^P„ + 2mnPyt + 2//ZPj, + 2lmPgy) = 1.

It is now clear that the normal stress across any plane I, m, n is measured

by the reciprocal of the square of the radius vector of which the direction

cosines are Z, m, n. Moreover the direction of the stress across any plane

Z, m, n is that of the normal to the stress-quadric at the extremity of this

radius vector. For r being the length of this radius vector, the coordinates

of its extremity will be rZ, rm, m. The direction cosines of the normal at

this point are in the ratio

rllix + : rZ/Jy + rm + mllg : rZ^ + rm Pyg + mPgg

or F:0:H, which proves the result.

The stress-quadric has three principal axes, and the directions of these

are spoken of as the axes of the stress. Thus the stress at any point has

three axes, and these are always at right angles to one another. If a small

area be taken perpendicular to a stress axis at any point, the stress across

this area will be normal to the area. If the amounts of these stresses are

fa, Hf then the equation of the stress-quadric referred to its principal

axes will be

Clearly a positive principal stress is a simple tension, and a negative

principal stress is a simple pressure.

As simple illustrations of this theory, it may be noticed that

(i) For a simple hydrostatic pressure P, the stress-quadric becomes an imaginary

sphere

The pressure is the same in all directions, and the pressure across any plane is at right

angles to the plane (for the tangent plane to a sphere is at right angles to the radius

vector).

(ii) For a simple pull, as in a rope, the stress-quadric degenerates into two parallel

planes
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The Stresses in an ELEcriROSTATic Field.

161. If an infinitesimal charged particle is introduced into the electric

field at any point, the phenomena exhibited by it must, on the present view

of electric action, depend solely on the state of stress at the point. The

phenomena must therefore be deducible from a knowledge of the stress-

quadric at the point. The only phenomenon observed is a mechanical force

tending to drag the particle in a certain direction—namely, in the direction

of the line of force through the point. Thus from inspection of the stress-

quadric, it must be possible to single out this one direction. We conclude

that the stress-quadric must be a surface of revolution, having this direction

for its axis. The equation of the stress-quadric at any point, referred to

its principal axes, must accordingly be

+ +n = l (83).

where the axis of f coincides with the line of force through the point. Thus

the system of stresses must consist of a tension along the lines of force,

and a tension ^ perpendicular to the lines of force—and if either of the

quantities or ^ is found to be negative, the tension must be interpreted

as a pressure.

Since the electrical phenomena at any point depend only on the stress-

quadric, it follows that R must be deducible from a knowledge of P^ and li.

Moreover, the only phenomena known are those which depend on the

magnitude of i2, so that it is reasonable to suppose that the only quantity

which can be deduced from a knowledge of R and R is the quantity R—
in other words, that R and R are functions of R only. We shall for the

present assume this as a provisional hypothesis, to be rejected if it is found

to be incapable of explaining the facts.

162. The expression of as a function of R can be obtained at once

by considering the forces acting on a charged conductor. Any element dtS

R^
of surface experiences a force dS urging it normally away from the con-

ductor. On the present view of the origin of the forces in the electric field,

we must interpret this force as the resultant of the ether-stresses on its two
sides. Thus, resolving normally to the conductor, we must have

Sir
dS= (R)^dS-^(R),dS.

where (R)r, (R)o denote the values of R when the intensity is R and 0
respectively. Inside the conductor there is no intensity, so that the

stress-quadrics become spheres, for there is nothing to differentiate one
direction from another. Any value which (7J)o may have accordingly arises
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simply from a hydrostatic pressure or tension throughout the medium, and

this cannot influence the forces on conductors. Leaving any such hydrostatic

pressure out of account, we may take (I})o = 0, and so obtain (^)j| in the

form

(84).

163. We can most easily arrive at the function of Ji which must be

taken to express the value of Ji, by considering a special case.

Consider a spherical condenser formed of spheres of radii a, h. If this

condenser is cut into two equal halves by a plane through its centre, the

two halves Will repel one another. This action must now be ascribed to the

stresses in the medium across the plane of section. Since the lines of force

are radial these stresses are perpendicular to the lines of force, and we see

at once that the stress perpendicular to the lines of force is a pressure. To

calculate the function of R which expresses this pressure, we may suppose

6 — a equal to some very small quantity c, so that R may be regarded as

constant along the length of a line of force. The area over which this

pressure acts is tt (6* — a% and since the pressure per unit area in the

medium perpendicular to a line of force is — ij, the total repulsion

between the two halves of the condenser will be — 7j7r(6* - a*).

The whole force on either half of the condenser is however a force 2ira^

per unit area over each hemisphere, normal to its surface. The resultant of

all the forces acting on the inner hemisphere is ttu’ x 27r<7*, or putting

27ra^<r = E, so that E is the charge on either hemisphere, this force is E*l2a\

Similarly, the force on the hemisphere of radius 6 is -^/26*. Thus the re-

sultant repulsion on the complete half of the condenser is J . Since

this has been seen to be also equal to — /Jtt (6* - a®), we have

bTT

on taking a = 6 in the limit.

Thus in order that the observed actions may be accounted for, it is

necessary that we have

= -
Stt’

Moreover, if these stresses exist, they will account for all the observed

mechanical action on conductors, for the stresses result in a mechanical force

27ro-® per unit area on the surface of every conductor.

164. It remains to examine whether these stresses are such as can be

transmitted by an ether at rest.
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As a preliminary we must find the values of the stress-components

referred to fixed axes Oa?, Oy, Ox.

The stress-quadric at any point in the ether, referred to its principal axes,

is seen on comparison with equation (83) to be

= l (85).

Here the axis of f is in the direction of the line of force at the point.

Let the direction-cosines of this direction be mj, n^. Then on transforming

to axes Oa?, Oy, Oz we may replace f by i,a? H- m,y +

Equation (86) may be replaced by

+?•)}=!.

and on transforming axes f* + ly*+ transforms into Thus the

transformed equation of the stress-quadric is

^ {2 (Z,« + «i,y + «,«)• - (a? + y* + ^)} = 1.

Comparing with equation (82), we obtain

=

=

and similar values for the remaining components of stress.

Or again, since X - Y= Z =

these equations may be expressed in the form

P =*xy —
XY
47r

(86),

.(87),

In this system of stress-components, the relations liy = are satisfied,

as of course they must be since the system of stresses has been derived by
assuming the existence of a stress-quadric. Thus the stresses do not set up
rotations in the ether (cf. equation (80)).

In order that there may be also no tendency to translation, the stress-

components must satisfy equations of the type

dljx

dx dy (88 ),

expressing that no forces beyond these stresses are required to keep the

ether at rest (cf. equation (79)).
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On substituting the Tslues of the stress-components, we have

dP„

149

-K{“S +
f+f) ^ ^ fl - s) +“ (f - S)} •

On putting

we find at once that

ax

djr

dM*

dx dxdy ^ dxdy
*

dz

^

yF d^v

dx dxdz dx?z
*

a^c ^ ay a« va^;*
^

By* ^ dz*

)

*

shewing that equation (88) is satisfied.

165. Thus, to recapitulate, we have found that a system of stresses

consisting of

(i) a tension per unit area in the direction of the lines of force,

(ii) a pressure per unit area perpendicular to the lines of force,

is one which can be transmitted by the medium, in that it does not tend to

set up motions in the ether, and is one which will explain the observed

forces in the electrostatic field. Moreover it is the only system of stresses

capable of doing this, which is such that the stress at a point depends only

on the electric intensity at that point.

Examples of Stress.

166. Assuming this system of stresses to exist, it is of value to try to

picture the actual stresses in the field in a few simple casea

Consider first the field surrounding a point charge. The tubes of force

are cones. Let us consider the equilibrium of the ether enclosed by a

fnistum of one of these cones which is bounded by two ends p, q. If

(Op, (Oq are the areas of these ends, we find that there are tensions of
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amounts Since Rptop- Rqtoq, the former is the greater.
Stt ' Sir

so that the forces on the two ends have as

resultant a force tending to move the ether

inwards towards the charge. This tendency

is of course balanced by the pressures acting

on the curved surface, each of which has a

component tending to press the ether inside

the frustum away from the charge.

167. A more complex example is afforded

by two equal point charges, of which the lines of force are shewn in

fig. 50.

The lines of force on either charge fall thickest on the side furthest

removed from the other charge, so that their resultant action on the charges

amounts to a traction on the surface of each tending to drag it away from

the other, and this traction appears to us as a repulsion between the bodies.

We can examine the matter in a different way by considering the action

and reaction across the two sides of the plane which bisects the line joining

the two charges. No lines of force cross this plane, which is accordingly

made up entirely of the side walls of tubes of force. Thus there is a pressure

J?*
per unit area acting across this plane at every point. The resultant of

OTT

all these pressures, after transmission by the ether from the plane to the

charges immersed in the ether, appears as a force of repulsion exerted by

the charges on one another.
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Energy in the Medium.

168. In setting up the system of stresses in a medium originally un-

stressed, work must be done, analogous to the work done in compressing

a gas. This work must represent the energy of the stressed medium, and

this in turn must represent the energy of the electrostatic field. Clearly,

from the form of the stresses, the energy per unit volume of the medium
at any point must be a function of R only. To determine the form of this

function, we may examine the simple case of a parallel plate condenser,

and we find at once that the function must be
Stt

We have now to examine whether the energy of any electrostatic field

can be regarded as made up of a contribution of amount 5— per unit volume
OTT

from every part of the field.

In fig. 51, let PQ be a tube of force of strength a, passing from P at

potential to Q at potential Vq, The ether inside this tube of force

R?
being supposed to possess energy^ per unit volume,

the total energy enclosed by the tube will be
r« B?

1: Stt
I ds,

where cu is the cross section at any point, and the

integration is along the tube. Since Ro) = 47ra,

this expression

- *'/: Rds

1

This, however, is exactly the contribution made by the charges ± a at

P, Q to the expression ^ 2a F. Thus on summing over all tubes of force, we

find that the total energy of the field ^ 2aF may be obtained exactly, by

R^
assigning energy to the ether at the rate ofg— per unit volume.

Energy in a DielectHe.

169. By imagining the parallel plate condenser of § 168 filled with

dielectric of inductive capacity K, and calculating the energy when charged,

KR}
we find that the energy, if spread through the dielectric, must be

per unit volume.
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Let us now examine whether the total energy of any field can be regarded

as arising from a contribution of this amount per unit volume. The energy

contained in a single tube of force, with the notation already used, will be

or, since
KR
47r

/p 8w
Q> ds.

P, where P is the polarisation, this energy

= ie(Fp-7,).

so that the total energy is ^ SeF, as before. Thus a distribution of energy of

KR
amount per unit volume will account for the energy of any field.

Crystalline dielectrics,

170. We have seen (§ 152) that in a crystalline dielectric, the com-

ponents of polarisation and of electric intensity will be connected by equations

of the form
47r/= K,,X + ir„F+ K^Z

]

=M + (89).

47r/t = j

The energy of any distribution of electricity, no matter what the dielectric

may be, will be ^ 'S.EV, If Fi F are the potentials at the two ends of

a unit tube, the part of this sum which is contributed by the charges at the

ends of this tube will be ^ (F — F)» If 9/9^ denote differentiation along the

fdV fdV
tube, this may be written ~“ij ds, or again Tcs ds, where P is the

polarisation, and a> the cross section of the tube. Thus the energy may be

dV
supposed to be distributed at the rate of — ^ -gj

P per unit volume. If € is the

angle between the direction of the polarisation and that of the electric

dV
intensity, we have - -g- = P cos €, so that the energy per unit volume

= i PP cos € « i (fX + ^rF-f hZ) (90).

In a slight increase to the electric charges, the change in the energy of

the system is, by § 109, equal to 2 VBE, so that the change in the energy per

unit volume of the medium is

Thus

8W = XS/+ Yhg + ZBh.

aA“^' ,(91).
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From formulae (89) and (90), we must have

= i {KnX*+ (ir„ + ZF+ ...},

from which

+ i + -^^ai) ^ + 4 (-^18 + -^^n) Z\m

We must also have

dW dW^ dJV^ dj[dh
dX^ Zf dX"^ dg d'x'^ dh ^

^^\K,,X+K,J + K^Z\.

Comparing these expressions, we see that we must have

= ^ai , Kx^ = -^81 1 ^9S “

The energy per unit volume is now

F=i iK„X*+ 2K„XF+ . . .) (92).

Maxwell's Displacement Tiieort.

171. Maxwell attempted to construct a picture of the phenomena

occurring in the electric field by means of his conception of “electric dis-

placement.” Electric intensity, according to Maxwell, acting in any medium

—

whether this medium be a conductor, an insulator, or free ether—produces

a motion of electricity through the medium. It is clear that Maxwell's

conception of electricity, as here used, must be wider than that which we
have up to the present been using, for electricity, as we have so far under-

stood it, is incapable of moving through insulators or free ether. Maxwell’s

motion of electricity in conductors is that with which we are already familiar.

As we have seen, the motion will continue so long as the electric intensity

continues to exist. According to Maxwell, there is also a motion in an

insulator or in free ether, but with the difference that the electricity cannot

travel indefinitely through these media, but is simply displaced a small

distance within the medium in the direction of the electric intensity, the

extent of the displacement in isotropic media being exactly proportional

to the intensity, and in the same direction.

Tlie conception will perhaps be understood more clearly on comparing a conductor to

a liquid and an insulator to an elastic solid. A small particle iinmerscd in a liquid will

continue to move through the liquid so long as there is a force acting ou it, but a particle

immersed in an elastic solid will be merely ‘‘displaced” by a force acting on it. The

amount of this displacement will be proportional to the force acting, and when the force

is removed, the pai-ticle will return to its original position.
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Thus at any point in any medium the displacement has magnitude and

direction. The displacement, then, is a vector, and its component in any

direction may be measured by the total quantity of electricity per unit area

which has crossed a small area perpendicular to this direction, the quantity

being measured from a time at which no electric intensity was acting.

172. Suppose, now, that an electric field is gradually brought into

existence, the field at any instant being exactly similar to the final field

except that the intensity at each point is less than the final intensity in

some definite ratio k. Let the displacement be c times the intensity, so

that when the intensity at any point is kR, the displacement is ckR. The

direction of this displacement is along the lines of force, so that the

electricity may be regarded as moving through the tubes of force : the lines

of force become identical now with the current-lines of a stream, to which

they have already been compared.

Let us consider a small element of volume cut off by two adjacent

equipotentials and a tube of force. Let the cross section of the tube of

force be 6>, and the normal distance between the equipotentials where they

meet the tube of force be ds, so that the element under

consideration is of volume tods. On increasing the intensity

from kR to (a; + d/c) R, there is an increase of displacement

from ckR to c (/c 4* d/c) R, and therefore an additional dis-

placement of electricity of amount cRdK per unit area.

Thus of the electricity originally inside the small element

of volume, a quantity cRwd/c flows out across one of the

bounding equipotentials, whilst an equal quantity flows in

across the other. Let 1^, Vj be the potentials of these

surfaces, then the whole work done in displacing the electricity originally

inside the element of volume (ods, is exactly the work of transferring a

quantity cRdx of electricity from potential to potential IJ. It is

therefore cR(o{Vi-Vi)dic and, since Vi-Vi = KRds, this may be written as

cR?todsKdK, Thus as the intensity is increased from 0 to R, the total work

spent in displacing the electricity in the element of volume <ods

= f cR^ (cads) /ed^ = icR* . ca ds,
Jo

This work, on Maxwell’s theory, is simply the energy stored up in the

R^
element of volume cads of the medium, and is therefore equal to cads.

O'TT

Thus c must be taken equal to and the displacement at any point is

measured by
B
4,ir’
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If the element of volume is taken in a dielectric of inductive capacity K,

KB} K
the energy is

, so that <? = .
and the displacement is

47r
*

173. It is now evident that Maxwell's “displacement" is identical in

magnitude and direction with Faradays “polarisation” introduced in

Chap. V.

Denoting either quantity by P, we had the relation

JjPcosedS^E (93),

expressing that the normal component of P integrated over any closed

surface is equal to the total charge inside. On Maxwell's interpretation of

the quantity P, the surface integral
JJp

cos edS simply measures the total

quantity of electricity which has crossed the surface from inside to outside.

Thus equation (93) expresses that t/ie total outward displacement across any

closed surface is equal to the total charge inside.

If we now follow Maxwell in supposing that electricity is of two kinds,

(i) the kind which appears as a charge on an electrified body,

(ii) the kind which Maxwell imagines to occupy the whole of space, and to

undergo displacement when electric action takes place,

then it appears that any increase of electricity of kind (i) inside any closed

surface is accompanied by an exactly equal decrease of electricity of kind (ii).

In other words the sum total of the two kinds of electricity inside any closed

surface remains constant.

174. It will be understood that Maxwell’s theory of electrical displace-

ment attempts to give a physical picture of the processes of the electric field,

but that the truth of the picture is by no means essential to the mathematical

theory of electricity. The displacement theory is historically important because

it led Maxwell to the hypothesis of displacement currents which form the

foundation of his electromagnetic theory of light (Chap. xvii). But we shall

see later that the general electromagnetic theory can be developed without

the preliminary displacement theory. The displacement theory has served as

part of the scaffolding by which the electromagnetic theory was constructed;

whether the scaffolding ought now to be discarded remains an open question.



CHAPTER Vn

OBNERAL ANALYTICAL THEOREMS

Green’s Theorem.

178. A THEOREM, first given by Green, and commonly called after him,

enables us to express an integral taken over the surfaces of a number of

bodies as an integral taken through the space between them. This theorem

naturally has many applications to Electrostatic Theory. It supplies a means

of handling analytically the problems which Faraday treated geometrically

with the help of his conception of tubes of force.

176. Theorem. If u, v, w are continuous functions of the Cartesian

coordinates w, y, z, then

2 JJ(lu + nw) “JjJ(^ +^ (94).

Here 2 denotes that the surface integrals are summed over any number of

closed surfaces, which may include as special cases either

(i) one of finite size which encloses all the others, or

(ii) an imaginary sphere of infinite radius,

and Z, m, n are the direction-cosines of the normal drawn in every case from

the element dS into the space between the surfaces. The volume integral is

taken throughout the space between the surfaces.

Consider first the value of jj^drdydz. Take any small prism with ita

axis parallel to that of rr, and of cross section dydz. Let it meet the surfaces

at P, Q, iZ, S, T, U, ... (fig. 53), cutting off areas dSp, dS^, dS^, ....

The contribution of this prism to jJJ^da;dydz is dydz dr, where the

integral is taken over those parts of the prism which are between the surfaces.

Thua + -

-Uf + Ug-Uj, + Ug-...,
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where Mp, Wg, Wp,... are the values of u at P, Q, P,.... Also, since the pro-

jection of each of the areas dSqf,,, on the plane of yz is dydzy we have

dydz = IpdSp= — IqdSq = IjidSp = . , ,

,

where Ip, Iq, Ip,... are the values of I at P, Q, P,.... The signs in front of

Ip, Iq, Ip,... are alternately positive and negative, because, as we proceed

along PQR ..., the normal drawn into the space between the surfaces makes
angles which are alternately acute and obtuse with the positive axis of x.

Thus

dydz ^^dx= dydz(--Up + VQ — Up +

— ^ tpUpdSp iqUqd^Q d^p ••• •••••••• *(96),

and on adding the similar equations obtained for all the prisms we obtain

rfe = - S
jj

ludS (96),

the terms on the right-hand sides of equations of the type (95) combining so

as exactly to give the term on the right-hand side of (96).

We can treat the functions v and w similarly, and so obtain altogether

III ^ =a^xjj(lu + mv + nw) dS,

proving the theorem.

177. If u, V, w are the three components of any vector F, then the

expression

du dv dw
dx^dy^ dz

is denoted, for reasons which will become clear later, by div P. If N is the

component of the vector in the direction of the normal {I, m, n) to dS, then

N = lu’\’mv + nw.
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Thus Green’s Theorem assumes the form

jj
IdivP dxdydz = — 2jj

NdS (97).

A vector F which is such that div F =s 0 at every point within a certain

region is said to be solenoidal” within that regioiL If F is solenoidal

within any region, Green's Theorem shews that

JJurds^o.

where the integral is taken over any closed surface inside the region within

which F is solenoidal. Two instances of a solenoidal vector have so far

occurred in this book—the electric intensity in free space, and the polarisa-

tion in an uncharged dielectric*

178.

Integration through space external to closed surfajces. Let the

outer surface be a sphere at infinity, say a sphere of radius r, where r is

to be made infinite in the limit. The value of

u -I- mv -h nw) dS

taken over this sphere will vanish if u, v, and w vanish more rapidly at

infinity than Thus, if this condition is satisfied, we have that

///(li +1 + li)
s

where the volume integration is taken through all space external to certain

closed surfaces, and the surface integration is taken over these surfaces,

Z, m, n being the direction-cosines of the outward normal.

179.

Integration through the interior of a closed surface. Let the inner

surfaces in fig. 53 all disappear, then we have

where the volume integration is throughout the space inside a closed surface,

and the surface integration is over this area, I, m, n being the direction-

cosines of the inward normal to the surface.

180.

Integration through a regimi in which w, v, w are discontinuous.

The only case of discontinuity of u, v, w which possesses any physical import-

ance is that in which u, v, w change discontinuously in value in crossing

certain surfaces, these being finite in number. To treat this case, we enclose

each surface of di.scontinuity inside a surface drawn so as to fit it closely on
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both sides. In the ^pace left, after the interiors of such closed surfaces have

been excluded, the functions u, v, w are continuous. We may accordingly

apply Green’s Theorem, and obtain

///(S I S) ^ ^

-
S'JJ

(lu + mv + nw) dS (98),

whore 2 denotes summation over the closed surfaces by which the original

space was limited, and 2' denotes summation over the new closed surfaces

which surround surfaces of discontinuity of m, v, w. Now
corresponding to any element of area dS on a surface of dis- P
continuity there will be two elements of area of the enclosing

surface. Let the direction-cosines of the two normals to dS be

ill and ij, w„ so that ii = — i*, = and

ni = — 71,. Let these direction-cosines be those of normals

drawn from dS to the two sides of the surface, which we shall

denote by 1 and 2, and let the values of v, w on the two

sides of the surface of discontinuity at the clement dS be

Ui, Vi, Wi and v,, w^. Then clearly the two elements of

the enclosing surface, which fit against the element dS of 54.

the original surface of discontinuity, will contribute to

E'fpu -hmv-h nw) dS

an amount dS [(ijU, + wiiVi + UjWi) + + rri^Vt + WjW,)]

H (til ” Wa) + Wi {Vi - Vg) + ni {Wi - w^] dS.

Thus the whole value of 2' jj(lu -j-mv -hnw)dS may be expressed in

the form

2"
I

j

{ii («!-«,) + fn, (», -»,) + «, (w, - «»,)} dS,

where the integration is now over the actual surfaces of discontinuity. Thus

Green’s Theorem becomes

—
S ff(U + mv + n7v) dS

- X"Jl{li(ui-Ui) + '•h (»1 -«>) + «! («»I -v>t)]dS (99).
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Special Form of Green's Theorem,

181. An important case of the theorem occurs when u, v, w have the

special valuoa

ly = O
05

’

where and ^ are any functions of a?, y and z. The value of (Zm + mv + nw)

is now
. /, aM' 0'F

.
0^\

\ cx dy dzj

or

^y

<p
dn ’

where denotes differentiation along the normal, of which the direction-
on

cosines are /, m, n.

We also have

du dv dw
-5“+ +

3® 3a! ^ ay dy"^ dz dz"^ \ 3a!* 3y* 3a* /

'

Thus the theorem becomes

T 9^9^ 3<t>3’i^ 3<D3^), , , ^
J|j|0V-F+-g^ ^+3^ g^|da!eiyd^ = -2jjO^dS...(100).

This theorem is true for all values of 4> and so that we may inter-

change <1> and and the equation remains true. Subtracting the equation

so obtained from equation (100), we get

JjJ
(OV*^ - '5'V*0) dipdydz = -sjJ(<l>^-^|5) dS (101).

Applications of Grken’s Theorem.

182. In equation (101), put ^ = 1 and “^ =» F, where V denotes the

electrostatic potential. We obtain

jjjv^VcUedydz^-X (102).
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Let us divide the sum on the right into Ji, the integral over a single

closed surface enclosing any number of conductors, and the integrals over

the surfaces of the conductors. Thus

g
where ^ denotes diflferentiation along the normal drawn into the surface.

9F .

Thus —^ is equal to the component of intensity along this normal, and

therefore to -"N, where N is the component along the outward normal.

Hence

'-//Nd8.

dV
At the surface of a conductor — = — 47rcr, so that

on

J, = 47rS
J
adS over conductors

= 47r X total charge on conductors.

If there is any volume electrification, V* F=s — 47rp, so that

/ = — 47r
I*

jjpdxdydz,

and the integral on the right represents the total volume electrification.

Thus equation (102) becomes

JjN’dS= 47r X (total charge on conductors -f total volume electrification),

so that the theorem reduces to Gauss’ Theorem.

183. Next put <t> and ^ each equal to V. Then equation (100) becomes

fffvv Jy* +///{gj +
Q-

+01

Take the surfiiccs now to be the surfaces of conductors, and a sphere of

1 9F
radius r at infinity. At infinity F is of order ~, so that ^ is of order

r On
1 9F
-

,
and hence F , integrated over the sphere at infinity, vanishes

(§ 178).

The equation becomes

-47r jjjpVdxdydz-^ JJjE^djudydz - ^tt jjVadS^O.
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The first and last terms together give — 47r x SeF, where 0 is any

element of charge, cither of volume-electrification or surface-electrification.

Thus the whole equation becomes

= jjj~dxd^dz,

shewing that the energy may be regarded as distributed through the space

outside the conductors, to the amount ^ per unit volume—the result
OTT

already obtained in § 168.

184. In Green’s Theorem, take

Here K is ultimately to be taken to be the inductive capacity, which

may vary discontinuously on crossing the boundary between two dielectrics.

We accordingly suppose u, v, w to be discontinuous, and use Green’s Theorem

in the form given in § 180. We have then

- r//{i, - A-.*.?g) +
...}

da

—
s
jjirf^da

- *5
+ S’)

1
— have the meanings abbigned to them in § 140.

If we put ^ = 1, F, in this equation, it reduces, as in § 130, to

j
“ dS = — 47r X total charge inside surface.

so that the result is that of the extension of Gauss’ Theorem. Again, if we
put ^ ^ ss F, the equation becomes

//f
dxdyds = JSeFi

and the result is that of § 109.
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0reen*8 Reciprocation Theorem.

186. In equation (101), put <I)=F, ^ = F', where V is the potential

of one distribution of electricity, and F' is that of a second and independent

distribution. The equation becomes

J
I"|(pF' - p'V) dxdydz + xJJ(irV'-tr'V)dS= 0,

which is simply the theorem of § 102, namely

XeV' = Xe'V (104).

If we assign the same values to 4>, in equation (103), we again obtain

equation (104), which is now seen to be applicable when dielectrics are

present.

Uniqueness op Solution.

186. We can use Green’s Theorem to obtain analytical proofs of the

theorems already given in § 99.

Theorem. 1/ the value of the potential V is known at every point on

a number of closed surfaces by which a space is bounded internally and

externally, there is only one value for F at every point of this intervening

space, which satisfies the condition that V*F either vanishes or has an assigned

value, at every point of this space.

For, if possible, let F, F' denote two values of the potential, both of which

satisfy the requisite conditions. Then F' — F= 0 at every point of the

surfaces, and V*(F' — F)= 0 at every point of the space. Putting ^ and ^
each equal to F' — F in equation (100), we obtain

and this integral, being a sum of squares, can only vanish through the

vanishing of each term. We must therefore have

F).|(r- V).o (105),

or F’ — F equal to a constant. And since F' — F vanishes at the surfaces,

this constant must be zero, so that F= F' everywhere, i.e. the two solutions

F and V* are identical : there is only one solution.

dV
187. Theorem. Given the value of at every point of a number of

closed surfaces, there is only one possible value for V (except for additive

constants), at each point of the intervening space, subject to the condition that

V^F:s 0 throughout this space, or has an assigned value at each point
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The proof is almost identical with that of the last theorem, the only

difference being that at every point of the surfaces we have

h ''‘- '">-<>•

instead of the former condition V*—V — 0. We still have

slf(V'-V)^(V'-V)dS = 0.

so that equation (105) is true, and the result follows as before, except that

V and F' may now differ by a constant.

188. Theorems exactly similar to these last two theorems are easily

seen to be true when the dielectric is different from air.

For, let F, V' be two solutions, such that

S 5 O'- <»'- n} -0

at all points of the space, and at the surface either F— F' = 0, or

i(K-n-o.

By Green’s Theorem

///-

-///O'- +

+ :-lljC(F-v')^(V-V')dS

= 0 by hypothesis.

Equation (105) now follows as before, so that the result is proved.

Comparisons of different fields.

189. Theorem. // any tmmber of surfaces are fixed in position, and a

given charge is placed on each surface, then the energy is a minimum when

the charges are placed so that every surface is an equipotential.

Let V' be the actual potential at any point of the field, and V
the potential when the electricity is arranged so that each surface is
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an equipotential. Calling the corresponding energies W' and W, we
have

If we put F, V' — V, in equation (100), we find that the last

integral becomes

or, since V is by hypothesis constant over each conductor,

lvjj(a'-<r)dS,

and this vanishes since each total charge
jj

a dS is the same as the corre-

sponding total charge
JJ

crdS. Thus

-S)’+

This integral is essentially positive, so that W is greater than TF, which

proves the theorem.

If any distribution is suddenly set free and allowed to flow so that the

surface of each conductor becomes an equipotential, the loss of energy

IT' — TF is seen to be equal to the energy of a field of potential —V at

any point.

190. Theorem. The introduction of a new conductor lessens the energy

of the field.

Let accented symbols refer to the field after a new conductor S has been

introduced, insulated and uncharged. Then

TF— TF' = R^dxdydz through the field before 8 is introduced

—~ JjJ
R^dxdydz through the field after 8 is introduced

* ^//

f

through the space ultimately occupied by 8

+^JJJ
(R — U'*) through the field after 8 is introduced.
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The last integral

= (^) +
••j

and this, as in the last theorem, is equal to

where 2 denotes summation over all conductors, including 8.

This last sum of surface integrals vanishes, so that

TT— IF' = ^ B^dxdydz through S

^^ through the field after

iS has been introduced.

Thus TF— IF' is essentially positive, which proves the theorem.

On putting the new conductor to the earth, it follows from the preceding

theorem that the energy is still further lessened.

191. Theorem. A ny increase in the indmtive capacity of the dielectric

between conductors lessens the energy of the field.

Let the conductors of the field be supposed fixed in position and in-

sulated, so that their total charge remains unaltered. Let the inductive

capacity at any point chnnge from K to K and as a consequence let

the potential change from F to F+ 5 F, and the total energy of the field

from IF to IF + 8 TF.

If E^,,.. denote the total charges of the conductors, I^, K,... their

potentials, and p the volume density at any point,

W= iZBV+ifffpVda;di/ds,

SO that, since the E*b and p remain unaltered by changes in If, we have

SW^ilESV+iJfJpSVda^dydz (106).

We also have

so that
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By Green’s Theorem, the last line

the summation of surface integrals being over the surfaces of all the

conductors,

=JJJpSVda;dydz + sJf<TSVd3

- JjJpSVdafdydz + XESF

•‘2SW

by equation (106).

so that

Thus equation (107) becomes

8Tr=™ jjjR^SKdicdyde + 2817,

= mKdxdydB.

Thus S TT is necessarily negative if hK is positive, proving the theorem.

It is worth noticing that, on tho molecular thoorj of dielectrics, the increase in the

inductive capacity of the dielectric at any point will be most readily accomplished by

introducing new molecules. If, as in Chap, v, these molecules are regarded as uncharged

conductors, the theorem just proved becomes identical with that of § 190.

Earnshaw’s Theorem.

192. Theorem. A charged body placed in an electric field of force

cannot rest in stable equilibrium under the influence of the electric forces

alone.

Let us suppose the charged body A to be in any position, in the field

of force produced by other bodies B, B\ .... First suppose all the elec-

tricity on A, B, B\ ... to be fixed in position on these conductors. Let

V denote the potential, at any point of the field, of the electricity on

B, B\ .... Let X, y, z be the coordinates of any definite point in A, say its

centre of gravity, and let x + a, y + b, z-^c be the coordinates of any other

point. The potential energy of any element of charge e at x-{-a, y + b, z + c

is eV, where V is evaluated at a; + a, y + b, s + c. Denoting eF by w, we
clearly have

d^w dhu _ ^
dx^ dz^

since F is a solution of Laplace’s equation.
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Let W be the total energy of the body A in the field of force from

B, .... Then 17= Sw, and therefore

8^7 VW 3^17

8a^ ay* 8^*

1.6. the sum T7 = satisfies Laplace’s equation, because this equation is

satisfied by the terms of the sum separately. It follows from this equation,

as in § 52, that T7 cannot be a true maximum or a true minimum for any

values of x, y, z. Thus, whatever the position of the body A, it will always

be possible to find a displacement

—

i.e, a change in the values of a;, y, z—for

which 17 decreases. If, after this displacement, the electricity on the con-

ductors il, B, B', ... is set free, so that each surface becomes an equipotential,

it follows from § 189 that the energy of the field is still further lessened.

Thus a displacement of the body A has been found which lessens the energy

of the field, and therefore the body A cannot rest in stable equilibrium.

One physical application of Earushaw’s Theorem is of extreme importance. The

theorem shews that an electron cannot rest in stable equilibrium under the forces of

attraction and repulsion from other charges, so long as these forces are supposed to obey

the law of the inverse square of the disUnce. Thus, if a molecule is to be regarded as a

cluster of electrons and positive charges, as in § 151,"then the law of force must be some-

thing different from that of the inverse square.

There seems to be no difficulty about the supposition that at very small distances the

law of force is different from the inverse square. On the contrary, there would be a very

real difficulty in supposing that the law 1/r® held down to zero values of r. For the force

between two charges at zero distance would be infinite
;
we should have charges of oppo-

site sign continually rushing together and, when once together, no force would be adequate

to separate them. Thus the universe would in time consist only of doublets, each

consisting of permanently interlocked positive and negative charges. If the law 1/r*

held down to zero values of r, the distance apart of the charges would be zero, so that

the strength of each doublet would be nil, and there would be no way of detecting its

presence. Thus the matter in the universe would tend to shrink into nothing or to

diminish indefinitely in size. The observed permanence of matter precludes any such

hypothesis.

Earnshaw’s Theorem accordingly limits us to two altern<atives. Either the molecule

does not consist of a cluster of electrons in relative rest, or else the law of the inverse

square fails at molecular distances.

Recent experimental investigations decide very definitely against the second alternative

and in favour of the first. Recent experiments on the deflection of the positively charged

a-particles by matter indicate that the law of the inverse square holds down to distances

of the order of cms., a distance which is less than a thousandth part of the radius ot

the hydrogen atom, and a large mass of other evidence suggests, with a probability

approximating to certainty, that the electrons in an atom or molecule must be in rapid

orbital motion. Thus the ])roblcm of the structure of the molecule is removed from the

province of Earnshaw’s Theorem.
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Stresses in the Medium.

193. Let ns take any surface S in the medium, enclosing any number
of charges at points and on surfaces /Si, jSs, ....

Let m, n be the direction-cosines of the normal at any point of

... or S, the normal being supposed drawn, as in Green’s Theorem,

into the space between the surfices.

The total mechanical force acting on all the matter inside this surface

is compounded of a force eR in the direction of the intensity acting on every

point charge or element of volume-charge e, and a force 2^* or ^aR per

unit area on each element of conducting surfiice. If X, Y, Z are the com-

ponents parallel to the axes of the total mechanical force,

X = 2eZ + 2 JfitrXdS

=jjjpXdxdydz + h<rXdS,

where the surface integral is taken over all conductors Su S^, ... inside the

surface S, and the volume integral throughout the space between S and these

surfaces. Substituting for p and o-,

^ 1 [fffd^-v d^v\dv, , ,

By Green’s Theorem,

Ilfw = -firz

vffZ -^dS- ^dS.
JJ da: dy JJ ox oy

Now

{u ,(rr /a7N« ^ 'aF\*
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80 that the last equation becomes

[oh. vn

and there is a similar value for

Substituting these values, equation (108) becomes

.(109),

Since we have at every point of the surface of a conductor

djr djr dV^

dx __dy ^dz
L m n

it follows that the integral over each conductor vanishes, leaving only the

integral with respect to (2S, which gives

X = - J
j{lHx + mliy + nJlx) dS,

where P^=i(A--F»-n

If we write also

the resultant force parallel to the axis of T will be

Y = - jjilliy + inJly + nllx) dS,

and there is a similar value for Z. The action is therefore the same (cf.

§ 159) as if there was a system of stresses of components

^yyt ^zt fyzt Iwyt

given by the above equations : i,e, these may be regarded as the stresses of

the medium.
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194. It remains to investigate the couples on the system inside 8. If

L, M, N are the moments of the resultant couple about the axes of x, y, z,

we have

L = jjjp(yZ-zY)dxdydz + ^ljj<r(yZ-z7)da

so that

L
4>irJjJ Is® dx V dz ^ dy)^ dy dy dz ^ By )

-4;; (11®)*

The first term in this expression

**
4fjr)Jj\^ \9.® dxBz dy dydz dz dz* )

fdv d*v _dvd*v

.

, ,
‘
U« dxdy ^dy dy*'*' dz d^Jj

“ ^ ^ ~ •^ // ~ zmR^) ds (111).

The second term in expression (110) for L may, in virtue of the relations

(109), be expressed in the form

-^ 2 ffCynIt*- zmW) dS,

which is exactly cancelled by the first term in expression (111).



172 Oeneral Atwlytical Theorems [oh. th

We are accordingly left with

L =^ -
2 ^

-- jj{y + mPyt+nPi,)~

,dv
,

dv
,

dv\/ dv
dx 3y dz) v 9*

^ + ^^2))

dS

verifying that the couples are also accounted for by the supposed system of

ether-stresses.

195. Thus the stresses in the ether are identical with those already

found in Chapter vi, and these, as we have seen, may be supposed to

consist of a tension g— per unit area across the lines of force, and a

R
pressure ^ per unit area in directions perpendicular to the lines of force.

OTT

Mechanical Forces on Dielectrics in the Field.

196. Let us begin by considering a field in which there are no surface

charges, and no discontinuities in the structure of the dielectrics. We shall

afterwards be able to treat surface-charges and discontinuities as limiting

cases.

Let us suppose that the mechanical forces on material bodies are 3, H, Z
per unit volume at any typical point x, y, z of this field.

Let us displace the material bodies in the field in such a way that the

point X, y, z comes to the point x+hx, y + Sy, z-^Bz. The work done in

the whole field will be

= —JJl'(BSx
+ H8y + Z8z) dxdydz (112),

and this must shew itself in an equal increase in the electric energy. The

electric energy W can be put in either of the forms

W = Wl= ^jjjp
Vdxdydz,

{O’*O’ *O]
When the displacement takes jdace, there will be a slight variation in

the distribution of electricity and a slight alteration of the potential.

There is also a slight change in the value of K at any point owing to

the motion of the dielectrics in the field. Thus we can put

8W==cW, = (BW[),

BW=hw, = (Bw:,)j,+ (Bw:,)y,

where denotes the change produced in the function Wl by the varia-
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tion of electrical density alone, that produced by the variation of

potential alone, and so on.

We have

(89^),, = iJJJpSVdxdyds,

By Green's Theorem, the last expression transforms into

ls('' s) +1 w) +

s= JJJpSVda!dyds,

dO that 2(SIF:)K = («Tl^)r.

Wc accordingly have

sw= 2m, - =

2

(sw,), -

the variation produced by alterations in V no longer appearing.

Now (8W\)f,= i JJj8pVda!di/ds,

dxdydz^

so that 8ir= VSp -^ 8^1 dxdydj (113).

The ch.ange in p is due to two causes. In the first place, the electrifica-

tion at X, y, z was originally at a; — 8x, y — 8y, z — 8z, so that Sp has as part

of its value

.(114).

Again, the clement of volume dxdydz becomes changed by displacement

into an clement

^ (Sjv) da:| \dy + (Sy) dyj |d« + ~ (Se) rf^|

,

SO that, even if there were no motion of translation, an original charge

pdxdydz would after displacement occupy the volume given by expression

(115), and this would give an increase in p of amount

or

fd8x d8y d8z\

-<’(-S'
+ -rf+8j) <“«>•
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Combining the two parte of Zp given by expressions (114) and (115),

we find

The change in iT is also due to two causea In the first place the point

which in the displaced position is at y, z was originally at x — Bx,y — By,

z - Bz, Hence as part of the value in BK we have

a/i. dK^ dK.

Also, with the displacement, the density of the medium is changed, so

that its molecular structure is changed, and there is a corresponding change

in K. If we denote the density of the medium by r, and the increase in r

produced by the displacement by Bt, the increase in K due to this cause

will be

BK.

and we know, as in equation (116), that

5 fdBx dBy

We now have, as the total value of BK,

dK^ dK^ dK.SK ^— Sx-— By - Bz
dx By ^ Bz

^ Bt\Bx By ^ Bz)*

and hence, on substituting in equation (113) for Bp and BK,

+//J s w *» *^ *')

Integrating by parts, this becomes
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or, rearranging the terms,

+ [•”]
Sy+

[•••]
i^]d^dydz.

Comparing with expression (112), we obtain

^ ^ dx Stt 0a? ^ 0a: vStt ^ 0t /
^

etc., giving the body forces acting on the matter of the dielectric.

197. This may be written in the form

= =^ ^ Sir dx dx VStt ^ 0t /
'

Thus in addition to the force of components (pX, pY, pZ) acting on the

charges of the dielectric, there is an additional iorce of components

Stt dx ' Stt dy ’ Stt dz

arising from variations in K, and also a force of components

®
1

dK\
dx'[Stt^ dr)' 3y VStt dr)’ dz\

which occurs when either the intensity of the field or the structure of the

dielectric varies from point to point.

Stresses in Dielectric Media.

198. Replacing p by its value, as given by Laplace’s equation, we obtain

equation (117) in the form

+ 2

+ 2

?2ri
dx dx

dV d

+ 5("'f)}
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**
Stt

+ a (“’’
I?)}-

fK^XK\
dx dzj

If we put

B,. *: .im
S-TT \oy J \ozJ) Sir dr

(118),

p _:^3r!Z etc
dx ay

(119).

this becomes ^ a^a
,

9^,

dx ^ dy Zz
‘

Let us suppose that a medium is subjected to a system of internal

stresses P^x^ etc.; and let it be found that a system of body forces

of components H", H', Z' is just sufficient to keep the medium at rest

when under the action of these stresses. Then from equation (79) we

must have

"" Ua? ay r
Thus if licxt Hyt eta have the values given by equations (118) and (119),

we have
5' = — H, eta

This shews that the mechanical force 3, II, Z reversed would just be

in equilibrium with the system of stresses /Jx, ^v, etc. given by equations

(118) and (119). In other words, the mechanical forces which have been

found to act on a dielectric can exactly be accounted for by a system of

stresses in the medium, these stresses being given by equations (118) and

(119)

.

199. The system of stresses given by equations (118) and (119) can be

regarded as the superposition of two systems;

I. A system in which

K

II. A system in which

47r

B? ?iKP -P - P -
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The first system is exactly K times the system which has been found to

occur in free ether, while the second system represents a hydrostatic pressure

of amount

StT ^ 0T
'

dK
(In general will be positive, so that this pressure will be negative, and

must be interpreted as a tension.)

Hence, as in § 1 65, the system of stresses may be supposed to consist of

:

(i) a tension — per unit area in the direction of the lines of force

;

OTT

(ii) a pressure per unit area perpendicular to the lines of force

;

R^ dK
(iii) a hydrostatic pressure of amount ~ 3— t -

5- in all directions.
OTT OT

The system of stresses we have obtained was first given by Helmholtz. The system

-ft®

differs from that given by Maxwell by including the pressure -^ r . The neglect of

this pressure by Maxwell, and by other writers who have followed him, does not appear to

be defensible. Helmholtz has shewn that still further terms are required if the dielectxic

is such that the value of K changes when the medium is subjected to distortion without

change of volume.

200. This system of stresses has not been proved to be the only system

of stresses by which the mechanical forces can be replaced, and, as we have

seen, it is not certain that the mechanical forces must be regarded as arising

from a system of stresses at all, rather than from action at a distance.

It may be noticed, however, that whether or not these stresses actually

exist, the resultant force on any piece of dielectric must be exactly the

same as it would be if the stresses actually existed. For the resultant

force on any piece of dielectric has a component X parallel to the axis

of X, given by

by Green’s Theorem, and this shews that the actual force is identical with

what it would be if these stresses existed (cf. § 193).
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Force on a charged conductor.

201. The mechanical force on the surface of a charged conductor

immersed in a dielectric can be obtained at once by regarding it as

produced by the stresses in the ether. There will be no stresses in the

interior of the conductor, so that the force on its surface may be regarded

as due to the tensions of the tubes of force in the dielectric. The tension

is accordingly of amount ^ ^ dJC

Sw Stt ^ dr

per unit area, an expression which can be written in the simpler form

Force at boundary of a dielectric,

202. Let us consider the equilibrium of a dielectric at a surface of

discontinuity, at which the lines of force undergo refraction on passing

from one medium of inductive capacity Ki to a second of inductive

capacity Kf

Let axes be taken so that the boundary is the plane of ay, while the

lines of force at the point under consideration lie

in the plane of xz. Let the components of

intensity in the first medium be (Xi, 0, Z^), while

the corresponding quantities in the second medium

are (Xs, 0, Z,). The boundary conditions ob-

tained in § 137 require that

where h is the normal component of polarisation.

In view of a later physical interpretation of

the forces, it will be convenient to regard these forces as divided up into

the two systems mentioned in § 199, and to consider the contributions from

these systems separately.

As regards the contribution from the first system, the force per unit area

acting on the dielectric from the first medium has components

while that from the second medium has components

4ir
0,
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Since KiX^Zi = it follows that the resultant force on the

boundary is parallel to Oz—t.e. is normal to the surface. Its amount,

measured as a tension dragging the surface in the direction from medium 1

to medium 2

which after simplification can be shewn to be equal to

/Xi* .
27rh*)

This is always positive if Ki > /f,. Thus this force invariably tends to

drag the surface from the medium in which X is greater, to that in which

X is less

—

i.e. to increase the region in which X is large at the expense of

the region in which X is small. This normal force is exactly similar to the

normal force on the surface of a conductor, which tends to increase the

volume of the region enclosed by the conducting surface.

On Maxweira Theory, the forces which have now been considered are the only ones in

existence, so that according to this theory the total mechanical force is that just found,

and the boundary forces ought always to tend to increase the region in which K is large.

This theory, as wo have said, is incomplete, so that it is not surprising that the result just

stated is not confirmed by experiment.

We now proceed to consider the action of the second system of forces

—

the system of negative hydrostatic pressures. There are pressures per unit

area of amounts

Sir 0T. ’ Sir 0T,

acting respectively on the two sides of the boundary. There is accordingly

a resultant tension of amount

arj'

per unit area, tending to drag the boundary surface from region 1 to region 2.

Thus the total tension per unit area, dragging the surface into region 1, is

In § 139, in considering a parallel plate condenser with a movable

dielectric slab, we discovered the existence of a mechanical force tending

to drag the dielectric in between the plates. This force is identical with the

mechanical force just discussed. But we have now arrived at a mechanical

interpretation of this force, for we can regard the pull on the dielectric as

the resultant of the pulls of the tubes of force at the different parts of the

surface of the dielectric.
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Let us attempt to assign physical interpretations to the terms of ex-

pression (120) by considering their significance in this particular instance.

Consider first a region in the condenser so far removed from the edges of

the condenser and of the slab of dielectric, that the field may be treated

as absolutely uniform (cf. fig. 44, p. 124). We put = 1, = 0, JJj =

in expression (120) and obtain

_Tl

AV BtJ (121 )

as the force per unit area on either face of the dielectric, acting normally

outwards.

The forces will of course act in such a direction that they tend to

decrease the electrostatic energy of the field. Now this energy is made up

of contributions 27rA* per unit volume from air, and per unit volume

from the dielectric. From the conditions of the problem h must remain

unaltered. Thus the total energy can be decreased in either of two ways

—

by increasing the volume occupied by dielectric and decreasing that occupied

by air, or by increasing the value ofK in the dielectric. There will therefore

be a tendency for the boundary of the dielectric to move in such a direction

as to increase the volume occupied by dielectric, and also a tendency for this

boundary to move so that K will be increased by the consequent change

of density. These two tendencies are represented by the two terms of

expression (121).

If is negative, an expansion of the dielectric will both increase the

volume occupied by the dielectric, and will also increase the value of K
inside the dielectric. In this case, then, both tendencies act towards an

expansion of the dielectric, and we accordingly find that both terms in

expression (121) are positive.

If is positive, the tendency to expansion, represented by the first

(positive) term of expression (121) is checked by a tendency to contraction

(to increase t, and therefore K) represented by the second (now negative)

dK
term of expression (121). If — is not only positive, but is numerically

large, expression (121) may be negative and the dielectric will contract. In

this case the decrease in energy resulting on the increase of K produced by
contraction will more than outweigh the gain resulting from the diminution

of the volume occupied by dielectric.
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These considerations enable us to see the physical significance of all the

X *

terms in expression (120), except the first term ^ {K^ — 1). To interpret

this term we must examine the conditions near the edge of the dielectric

slab, for it is only here that has a value different from zero. We see at

once that this term represents a pull at and near the edge of the dielectric,

tending to suck the dielectric further between the plates—in fact this force

alone gives rise to the tendency to motion of the slab as a whole, which was

discovered in § 139.

Returning to the general systems of forces of § 199, we may say that

the first system (which as we have seen always tends to drag the surface

of the dielectric into the region in which K has the greater value) represents

the tendency for the system to decrease its energy by increasing the volume

occupied by dielectrics of large inductive capacity, whilst the second system

(which tends to compress or expand the dielectric in such a way as to increase

its inductive capacity) represents the tendency of the system to decrease its

energy by increasing the inductive capacity of its dielectrics. That any

increase in the inductive capacity is invariably accompanied by a decrease

of energy has already been proved in § 191.

Electrostriction,

203. It will now be clear that the action of the various tractions on the

surface of a dielectric must always be accompanied not only by a tendency

for the dielectric to move as a whole, but also by a slight change in shape

and dimensions of the dielectric as this yields to the forces acting on it.

This latter phenomenon is known as electrostriction. It has been observed

experimentally by Quincke and others. A convenient way of shewing its

existence is to fill the bulb of a thermometer-tube with liquid, and place

the whole in an electric field. The pulls on the surface of the glass result

in an increase in the volume of the bulb, and the liquid is observed to

fall in the tube. From what has already been said it will be clear that

a dielectric may either expand or contract under the influence of electric

forces.

The stresses in the interior of a dielectric, as given in § 199, may also

be accompanied by mechanical deformation. Thus it has been observed by

Kerr and others, that a piece of non-crystalline glass acquires crystalline

properties when placed in an electric field. Such a piece of glass reflects

light like a uniaxal crystal of which the optic axis is in the direction of the

lines of force.
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Gheen’s Equivalent Stratum.

204. Let 8 be any closed surface enclosing a number of electric charges,

and let P be any point outside it. The potential at P due to the charges

inside 8 is

= lll^dxdydz.

where r is tbe distance from P to the element dxdydz, and the integration

extends throughout 8, By Green’s Theorem (equation (101))

JJJ(U\7‘V- dxdydz ^JJ^ir^-V—jdS,

where the normal is now drawn outwards from the surface 8.

In this equation, put U then, since K « — Anrp, we have as the

value of the first term,

I^
ferv ydxdydz = - 4;rFj>.

And since ^0, the second term vanishes. The equation accordingly

becomes

-4,F,.//{l(|^)-K|(l))dS .(122).

205. Suppose, first, that the surface S is an equipotential. Then

~v[fjv^(l^dxdyds

»0.

ao that equation (122) becomes

(123).
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Thus the potential of any system of charges is the same at every point

outside any selected equipotential which surrounds all the charges, as that

of a charge of electricity sp^ad over this equipotential, and having surface

density —^ Obviouslyl^in fact, if the equipotential is replaced by a

conductor, this will be the denWty on its outer surface.

208. If the surface is not w equipotential, the term

\ d /1\
will not vanish. Since, however, A^ f-j is the potential of a doublet of

strength .and direction that of \the outward normal, it follows that

is the potential of a ^stem of doublets arranged over the

surface S, the direction at every point bwng that of the outward normal, and

the total strength of doublets per unit area at any point being K

Thus the potential Vp may be regarapd as due to the presence on the

surface S of

\ 1 07
(i) a surface density of electricity A^^ >

\ V
(ii) a distribution of electric doublets,W strength ^ per unit area,

and direction that of the outwaVd normal.

207. Equation (122) expresses the potential at any point in the space

dV \
outside 8 in terms of the values of V and ovemhe boundary of this space.

We have seen, however, that the value of the potential is uniquely determined

dV \
by the values either of V or of over the boundarAof the space. In actual

electrostatic problems, the boundaries are generally conductors, and therefore

equipotentials. In this case equation (123) expresses the values of the

dV . \
potential in terms of only, amounting in fact simply to

.-IjiiS.

What is generally required is a knowledge of the value of Vp in terms of the

values of V over the boundaries, and this the present method is unable to

give. For special shapes of boundary, solutions have be^ obtained by

various special methods, and these it is proposed to discus^ in the next

chapter.
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EXAMPLES.

1. If the electricity in the field is confined to a given system of conductors at given

potentials, and the inductive capacity of the dielectric is slightly altered according to any

law such that at no point is it diminished, and such that the differential coefficients of the

increment are also small at all points, prove that the energy of the field is increased.

2. A slab of dielectric of inductive capacity K and of thickness x is placed inside a

parallel plate condenser so as to be parallel to the plates. Shew that the surface of the

slab experiences a tension

3. For a gas jr«l+dp, where p is the density and 6 is smaU. A conductor is

immersed in the gas : shew that if is neglected the mechanical force on the conductor

is per unit area. Give a physical interpretation of this result.



CHAPTER VIII

METHODS FOR THE SOLUTION OP SPECIAL PROBLEMS

The Method of Images.

Charge induced on an infinite uninsulated plane.

208. The potential at P of charges e at a point A and -e at another

point A* is

(124).

and this vanishes if P is on the plane which bisects AA' at right angles.

Call this piane the plane 8. Then the above value of V gives V^0 over

the plane S, 0 at infinity, and satisfies Laplace's equation in the region

to the right of 8^ except at the point A, at which it gives a point charge e.

Pio. 07.

These conditions, however, are exactly those which would have to be satisfied

by the potential on the right oi 8 \i 8 were a conducting plane at zero

potential under the influence of a charge e at A. These conditions amount

to a knowledge of the value of the potential at every point on the boundary

of a certain region—namely, that to the right of the plane jS

—

and of the

charges inside this region. There is, as we know, only one value of the
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potential inside this region which satisftes these conditions (cf. § 186), so that

this value must be that given by equation (124).

To the right of S the potential is the same, whether we have the

charge — e at il' or the charge on the conducting plane S. To the left of S
in the latter case there is no electric field. Hence the lines of force, when

the plane is a conductor, are entirely to the right of 8, and are the same

as in the original field in which the two point-charges were present. The

lines end on the plane jS, terminating of course on the charge induced on 8.

We can find the amount of this induced charge at any part of the plane

by Coulomb’s Law. Taking the plane to be the plane of yz, and the point A
to be the point (a, 0, 0) on the axis of a?, we have

47r<r = = —W
dx

_ _ « I
' ^{x-^r ay + *dx IV{x — ay -h y" + z"

where the last line has to be calculated at the point on the plane 8 at which

we require the density. We must therefore puc x^O after differentiation,

and so obtain for the density at the point 0, y, z on the plane 8,

A
47rO- rr ,

(a- + if +
or, if a*+ y* -f <0* = r*, so that r is the distance of the point on the plane 8
from the point -d,

ae

Thus the surface density falls off inversely as the cube of the distance

from the point A, The distribution of electricity on the

plane is represented graphically in fig. 58, in which the

thickness of the shaded part is proportional to the surface

density of electricity. The negative electricity is, so to

speak, heaped up near the point A under the influence

of the attraction of the charge at A, The field produced

by this distribution of electricity on the plane 8 at any 125

point to the right of 8 is, as we know, exactly the same as

would be produced by the point charge — e at A\

209. This problem affords the simplest illustration of a -021

general method for the solution of electrostatic problems, .q^2|

which is known as the " method of images.” The principle

underlying this method is that of finding a system of electric 59.

charges such that a certain surface, ultimately to be made
into a conductor, is caused to coincide with the equipotential V=:0, We
then replace the charges inside this equipotential by the Green’s equivalent
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stratum on its surface (cf. § 204). As this surface is an equipotential, we
can imagine it to be replaced by a conductor and the charges on it will be

in equilibrium. These charges now become charges induced on a conductor

at potential zero by charges outside this conductor.

From the analogy with optical images in a mirror, the system of point

eharges which have to be combined with the original charges to produce zero

potential over a conductor are spoken of as the “ electrical images ” of the

original charges. For instance, in the example already discussed, the field is

produced partly by the charge at A, partly by the charge induced on the

infinite plane : the method of images enables us to replace the whole charge

induced on the plane by a single point charge at A\ So also, if A were a

candle placed in front of an infinite plane mirror, the illumination in front of

the mirror would be produced partly by the candle at A, partly by the light

reflected from the infinite mirror ; the method of optical images enables us to

replace the whole of this reflected light by the light from a single source at A'.

210. In an electrostatic field produced by any number of point charges,

we can, as we have seen, select any equipotential and replace it by a con-

ductor. The charges on either side of this equipotential are then the

images” of those on the other side.

Thus if we can write the equation of any surface in the form

- + +^ + =0 (125),
T T r

where r is the distance from a point outside the surface, and r\ r”, ... are the

distances from points inside the surfiice, then we may say that charges

e'\ ... at these latter points are the images of a charge e at the former

point.

The method of images may be applied in a similar way to two-dimensional

problems. Suppose that the equation of a cylindrical surface can be expressed

in the form

0 — 2e log r - 2e log r' — 2e'' log r" — ... = 0,

where r is the perpendicular distance from a fixed line on one side of the

surface, aiid r\ r", ... are perpendicular distances from fixed lines on the other

side. Then line-charges of line-densities e\ ... at these latter lines may be

taken to be the image of a line-charge of line-density e at the former line.

Illustrations of the use of images in three dimensions are given in

§§
211—219. An illustration of the use of a two-dimensional image will

be found in § 220.
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Charges induced on Intersecting planes,

211. It will be found that charges

e at X, y, 0,

-s at - a?, y, 0,

-e at X, -y, 0,

e at — a?, — y, 0

give zero potential over the planes a? = 0, y = 0.

The potential of these charges is therefore the

same, in the quadrant in which x, y are both

positive, as if the boundary of this quadrant

were a conductor put to earth under the in-

fluence of a charge e at the point a?, y, 0.

It will be found that a conductor consisting

of three planes intersecting at right angles can

be treated in the same way.

212. The method of images also supplies a solution when the conductor

TT
consists of two planes intersecting at any angle of the form - , where n is

any positive integer. If we take polar coordinates, so that the two planes

are ^ = 0, ^ ~
,
and suppose the charge to be a charge e at the point r,

72

we shall find that charges

0 at (r, 6), ^ + ^)» (’’> **’

-0 at {r,-dl

give zero potential over the planes

^ = 0.

n
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Oha/rge induced on a sphere,

213. The most obvious case, other than the infinite plane, of a surfiice

whose equation can be expressed in the form (125), is a sphere.

If jR, Q are any two inverse points in the sphere, and P any point on the

surface, we have

so that

RP iPQ^OGiOQ,

29.

PQ'^PR~^-

oc
Thus the image of a charge e at Q is a charge — e^ at R, or the

image of any point at a distance / from the centre of a sphere of radius a

is a charge — ^ at the inverse point, i,e. at a point on the same radius

distant
y

from the centre.

Let us take polar coordinates, having the centre of the sphere for origin

and the line OQ as ^ = 0. Our result is that at any point S outside the

sphere, the potential due to a charge s at Q and the charge induced on the

surface of the sphere, supposed put to earth, is

V

ea

g /
QS RS

ea

where r, 0 are the coordinates of 8.
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214. We can now find the surface-density of the induced charge. For

at any point on the sphere

^
47r ~ 0r

’

in which we have to put r == a after differentiation.

0F ea
(
r

—

Clearly

n\

-J
cos dj

e(r —/cos 6)
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be the total strength of the tubes ending on the image at R if the conductor

were not present.

Figure 62 shews the lines of force when the strength of the image is a

quarter of that of the original charge, so that /= 4a. It is obtained from

fig. 19 by replacing the spherical equipotential by a conductor, and annihi-

lating the field inside.

Superposition of Fields.

216. We have seen that by adding the potentials of two separate fields

at every point, we obtain the potential produced by charges equal to the total

charges in the two fields. In this way we can arrive at the field produced

by any number of point charges and uninsulated conductors of the kind we

have described. The potential of each conductor is zero in the final solution

because it is zero for each separate field.

There is also another type of field which may be added to that

obtained by the method of images, namely the field produced by raising the

conductor or conductors to given potentials, without other charges being

present. By superposing a field of this kind we can find the effect of point

charges when the conductors are at any potential.

216. For instance, suppose that, as in fig. 162
,
we have a point charge e

and the conductor at potential 0. Let us superpose on to the field of force

already found, the field which is obtained by raising the conductor to potential

V when the point charge is absent. The charge on the sphere in the second

field is aV, so that the total charge is

/•

By giving different volues to T, we can obtain the total field, when the

sphere has any given charge or potential.

If the sphere is to be uncharged, we must have V so that a point

charge placed at a distancef from the centre of an uncharged sphere raises

• .6
it to potential

,
a result which is also obvious from the theorem of § 104.
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Sphere in a uniform field of force.

217. A uniform field of force of which the lines are parallel to the axis

of X may be regarded as due to an infinite charge E bX,x=^R, and a charge

ut X—- R, when in the limit E and R both become infinite. The
intensity at any point is

R*

parallel to the axis of x^ so that to produce a uniform field in which the

intensity is F parallel' to the axis of x^ we must suppose E and R to

become infinite in such a way that

Since, in this case, ^ ^ potential of such a field will clearly

be — Fx + 0.

Suppose that a sphere is placed in a uniform field of force of this kind,

its centre being at the origin. We can suppose the charge E eX x^^ R to

have an image of strength

Ea
^'R

at X =
a»

R^

while the other charge has an image

Ea
'R

at X ?!
ir

Ea
'R

These two images may be regarded as a doublet (cf. § 64) of strength

X -p , and of direction parallel to the negative axis of x. The strength

2a*E

R?
= - Fa\

Thus we may say that the image of a uniform field of force of strength F
is a doublet of strength Fa* and of direction parallel to that of the intensity

of the uniform field.

The potential of this doublet is

Fa* cos 0

and that of the field of original field of force is

- Fx + C.

— Fr cos 5 + 0,or, in polar coordinates,
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“ field

Slectrostatm and Magnetism (pp. 488.
® «*

» I am indebted to Lord Kelvin for permission to Dse these figures.



194 Methodsfor the Solution of Special Problems [ch. vui

218. Line of no electrification. The theory of lines of no electrification

has already been briefly given in § 98. We have seen that on any conductor

on which the total charge is zero, and which is not entirely screened fi'om

an electric field, there must be some points at which the surface-density a

is positive, and some points at which it is negative. The regions in which a
is positive and those in which cr is negative must be separated by a line or

system of lines on the conductor, at every point of which <r = 0. These lines

are known as lines ofno electrification.

If R is the resultant intensity, we have at any point on a line of no

electrification,

R = 47r<r = 0,

so that every point of a line of no electrification is a point of equilibrium.

At such a point the equipotential intersects itself, and there are two or more

lines of force.

If the conductor possesses a single tangent plane at a point on a line of

no electrification, then one sheet of the equipotential through this point will

be the conductor itself: by the theorem of § 69, the second sheet must

intersect the conductor at right angles.

These results are illustrated in the field of fig. 64. Clearly the line of no

electrification on the sphere is the great circle in a plane pt.Tpendicular to

the direction of the field. The equipotential which intersects itself along

the line of no electrification {V = C) consists of the sphere itself and the

plane containing the line of no electrification. Indeed, from formula (126),

it is obvious that the potential is equal to G, either when ^ = 2
»

when r = a.

The intersection of the lines of force along the line of no electrification

is shewn clearly in fig. 64.

Plane face with hemispherical loss,

219. If we regard the whole equipotential K = (7 as a conductor, we

obtain the distribution of electricity on a plane conductor on which there

is a hemispherical boss of radius a. If we take the plane to be a: = 0, we

have, by formula (126),

At a point on the plane,

cr =

and on the hemisphere

a

1
^

47r

47r ' dr Jr^a ^tt
3 cos Q,
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The whole charge on the hemisphere is found on integration to be

e=

-

/
" ^ 0 d6 = ^ Fa\

while, if the hemisphere were not present, the charge on the part of the

plane now covered by the base of the hemisphere would be

Thus the presence of the boss results in there being three times as much
electricity on this part of the plane as there would otherwise be: this is

compensated by the diminution of surface-density on those parts of the plane

which immediately surround the boss.

Capacity of a telegraph-wire.

220. An important practical application of the method of images is the

determination of the capacity of a long straight wire placed parallel to an

infinite plane at potential zero, at a distance h from the plane. This may be

supposed to represent a telegraph-wire at height h above the surface of the

earth.

Let us suppose that the wire has a charge e per unit length. To find

the field of force we imagine an image charged with a charge — e per unit

length at a distance h below the earth’s surface. The potential at a point at

distances r, r' from the wire and image respectively is, by §§ 76 and 100,

(7 — 2e logr+2e log r,

and for this to vanish at the earth’s surface we must take C7=0. Thus the

potential is

2elog^.

At a small distance a from the line-charge which represents the telegraph-

wire, we may put / = 2A, so that the potential is

o 1
2^

2elog-.

from which it appears that a cylinder of small radius a surrounding the

wire is an equipotential. We may now suppose the wire to have a finite

radius a, and to coincide with this equipotentiaL Thus the capacity of the

wire per unit length is

1
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Infinite series of Images.

221. Suppose we have two spheres, centres B and radii a, b, of which

the centres are at distance c apart, and that we require to find the field when

Fio. 66.

both are charged. We can obtain this field by superposing an infinite series

of separate fields (cf. § 116).

Suppose first that A is at potential V while B is at potential zero. As a

first field we can take that of a charge Va at A. This gives a uniform

potential V over A, but does not give zero potential over B. We can reduce

the potential over B to zero by superposing a second field arising from

the image of the original charge in sphere B, namely a charge — at B',
c

where BB* = — . This new field has, however, disturbed the potential over

A. To reduce this to its original value we superpose a new field arising

from the image of the charge at B' in A, namely a charge at A\
0

c
q9

where AA' =— . This field in turn disturbs the potential over B, and so

c
c

we superpose another field, and so on indefinitely. The strengths of the

various fields, however, continually diminish, so that although we get an

infinite series to express the potential, this series is convergent. As we shall

see, this series can be summed as a definite integral, or it may be that a good

approximation will be obtained by taking only a finite number of terms.

The total charge on A is clearly the sum of the original charge Va plus

the strengths of the images A\A'\ ... etc., for this sum measures the

aggregate strength of the tubes of force which end on A. Similarly the

charge on jB is the sum of the strengths of the images at B\ H', ....

To obtain the field corresponding to given potentials of both A and B we
superpose on to the field already found, the similar field obtained by raising

B to the required potential while that of A remains zero.
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If 9u> 9ai 9ii are the coefficients of capacity and induction, the total charge

on A when B is to earth and F= 1 is gu i similarly that on £ is q^. In this

way we can find the coefficients ^u, gn from the series of images already

obtained. The result is found to he

a?h
.

0*6*

a*bl‘

^12 = —

and from symmetry
c \ c(c^-b^-a^)

^ • • • >

As far as — , these results clearl3\agree with those of § 116.

222. The series for have>(>een put in a more manageable form by Poisson

and Kirchho£

Let Ag denote the position of the «th oKthe series of points A\ A'\ and Bg the <th

of the series B', ... ;
then Ag is the imag\ of Bg in the sphere of radius a, and similarly

Bg is the image of Ag^i in the sphere of r^ius 6. Let a,—AAgf bg^BB,, and let the

charges at Agt B, be eg, e*g respectively.

Then a« (c— 6«) since Ag i\^ the image of Bg,

h, (c— yi Bg ,1 Ag-i.

Furthery by comparing the strengths of a charge mid its imago.

so that

and similarly

We have therefore

and

,
a6

ab ^ ^
eT-i

*" (c^,) (c-a,_i) “a b \ ab

(12T),

^ (g-gQ ^ c(c-g,)\ b

ab \a'

By addition we eliminate a,, and obtain

e,
^

eg

^•-1 e,g.i

c2.-a2-6*
06 ’

or, if we put

ab V- 028),

it is obvious that the same difference equatio^ must be satisfied by i

The solution of the difference equation (128) may be taken to be \

and from symmetry

quantity V*—^

where a, $ are the roots of
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The product of theae roots is unity, so that if a is the root which is less than unity, we
can suppose

so that

and similarly

Wo now have ^11 *“ «+ «i + + ... = a+ 2

9i,-

To determine ii, we have

tfos-
1

b-a,

so that

where

Thus

and

A + B

__ a rt*6

A B 1

f_a+ ha
' ~'

^ gg-O-a

f„-g (1 - i«)
j

J

,

To determine A*, B\ we have

e *^v+zr
a* a*6*

from which, in the same way,

?«= -7 (i-«
) Y37« + r3^+-}-

The value of 522 caii course be written down by symmetry from that of gn*

The coefficients each depend on a sum of the type 2 j— This series has been

expressed in terms of definite integrals by Poisson.

From the known formula

ainp^
. pp+ ll 1

Jo e2"»-l“* \eP-iJ 2p

we obtain, on putting p *s log

a* _ J ^ a* o r* a* sin (log ^*«*«) t

1 - -
log ^2>

-
^j ^

From this follows

, a* _ _L “* „ r"S»*sin(21ogf+2«loga)<
2(l-a) '21ogf+ 2»logo jo

_ _i r O r (2< lof? f) - « Bin (2< log f/«)
2(l-a) j„ l-o« + > “ j, (e»<-i)[l-2aCOg(2<loga)+<.»J®‘-
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The series has also been expressed in finite terms by K. W. Barnes {Quart Joum. Math,

138 (1903), p. 165) in terms of Double Gamma Functions, but neither of these forms is

convenient for numerical computation.

A. Russell {Proc. Pkya. Soc, 23 (1911), p. 352) has ‘shewn how the original series can be

rearranged in a rapidly convergent form. If n is an integer, to bo chosen subsequently,

2
f>0

a* _ s n
1—^1 B-m

+ 2 a*
8=n

^ «=n-l a* p=aD

+ a’» 2
p=o

The larger n is chosen to be the more rapidly the second series converges, although of

course largo values for n require the computation of a large number (n) of terms in the

original series. As an example, given by Russell, suppose that o=7r, 6=r, c**10r; it is

sufiicient to take n= 1 and the series are found to be

^11= 7r+ fr 1 1 + 0*0089509+ 0*00001)29+ 0 0000009 + ...) = 7 •5765970r,

- 5r,2=0-7r +T%r {1 +0*0003680+ 0*0000001 + ...}= 0*8143266r,

y22=l*1601124r.

As a second example Russell takes a=98r, 6s=10*8r, and c=a + 5 + 0‘2r, so that the

spheres are almost in contact; the values of the coefficients are obtained to seven figures

on taking 7i==4 and computing seven terms of the second series.

223. Having calculated the coefficients, we can obtain the relations

between the charges and potentials, and can find also the mechanical force

between the spheres. If this force is a force of repulsion F, we have

dc * 0c
**

dc
‘

dc

or again F =

The following table, applicable to two spheres of equal radius, taken to be unity, is

compiled from materials given by Lord Kelvin*.

e Pii (=F») Pm 9n{-*li2) 9m

1

,dpiif _dp22\
^ do dc J

1

,^911

ac

dqi2W
Ratio of

charges for

equilibrium

2*0 •721 721 00 — 00 00 00 00 00 1

21 •915 •609 1-584 - -884 •154 •453 1138 2-319 •391

2-2 *939 475 1*431 -•724 •0826 306 •629 1127 •294

2*5 •96^ •406 1*253 -625 *0300 •181 •174 •H3 •169

30 •986 •335 1*146 - -389 •0101 115 •066 •186 •089

3-5 ‘993 •286 1099 -317 •00437 •0825 •0344 •114 •053

40 •996 *250 1-072 -•269 •00216 0628 •0207 •070 •034

60 •998 •200 1*044 - *209 00065 •0401 0096 •048 •016

60 •999 •167 1*030 -172 •00026 •0278 •0053 031 •009

00 1-0 0 10 0 0 0 0 0 0

Papert on Electrottatieo and Magnetitnit p. 96, § 149.
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Images in dielectrics,

224. The method of images can also be applied to find the field

produced by point charges when half of the field is occupied by dielectric,

the boundary of the dielectric being an infinite plane.

We begin by considering the field produced by a single charge e at P, it

being possible to obtain the most general field by the superposition of simple

fields of this kind.

We shall shew that the field in air is the same as that due to a charge

s at P and a certain charge e' at P', the image of P, while the field in the

dielectric is the same as that due to a certain charge e" at P, if the whole

field were occupied by air.

Fio. 66.

Let PP' be taken for axis of x, the origin 0 being in the boundary

of the dielectric, and let OF = a. Then we have to shew that the potential

in air is

Y ®
_l

?
^

*>/(x -h ay + — a)* +

+

while that in the dielectric is

These potentials, we notice, satisfy Laplace's equation in each medium,

everywhere except at the point P, and they arise from a distribution of

charges which consists of a single point charge e at P. The potential in air

at the point 0, y, z on the boundary is

Ŷ
+ y* + X*

’
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while that in the dielectric at the same point is

72> =—lL=.
V a* + y® + r*

Thus the condition that the potential shall be continuous at each point

of the boundary can be satisfied by taking

= e + (129).

The remaining condition to be satisfied is that at every point of the

da

dV , . dV

.

boundary, in air shall be equal to iT in the dielectric
; i.e. that

= when«-0.
da da

Now, when a=0,

da

dV.

Ke"a

(a* + y* + «»)?’

ea ea

3* (a* + j/* + z>)^ (o*+ + e*^ ’

so that this last condition is satisfied by taking

Ke'' = e-e' .aso).

Thus the conditions of the problem are completely satisfied by gpving

e, e" values such as will satisfy relations (129) and (130); i.e. by taking

2
e" =

1 + K'

, K-1
® “ 1 + ^*

(131).

225. The pull on the dielectric is that due to the tensions of the lines

of force which cross its boundaiy. In air these lines of force are the same

as if we had charges e, e' at P, P' entirely in air, so that the whole tension

in the direction P'P of the lines of force in air is

"PPi'

(/iT-l)
" 4a«(/f + l)'

This system of tensions shews itself as an attraction between the

dielectric and the point charge. If the dielectric is free to move and

the point charge fixed, the dielectric will be drawn towards the point

charge by this force, and conversely if the dielectric is fixed the point

charge will be attracted towards the dielectric by this force.
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Inversion.

226. The geometrical method of inversion may sometimes be used to

deduce the solution of one problem from that of another problem of which

the solution is already known.

Geometrical Theory,

227. Let 0 be any point which we shall call the centre of inversion, and

let AB be a sphere drawn about 0 with a radius K which we shall call the

radius of inversion.

Corresponding to any point P we can find a second point P, the inverse

to P in the sphere. These two points are on the same radius at distances

from 0 such that OP . OP = K\

As P describes any surface PQ,,,, P' will describe some other surface

PQ..., each point Q on the second surface being the inverse of some point

Q on the original surface. This second surface is said to be the inverse

of the original surface, and the process of deducing the second surface from
the first is described as inverting the first surface.

It is clear that if PQ,,. is the inverse of PQ..., then the inverse of

FQ'... will bePQ....

/(

If the polar equation of a surface referred to the centre of inversion

origin be f{r, 0, ^) = 0, then the equation of its inverse will be
K* \~

» V, ^1 = 0. For the polar equation of the inverse surface is by

definition /(r\ 0, where rr* =sK* for all values of 0 and
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Inverse of a sphere. Let chords PP, Q(f, ... of a ^here meet in 0
(fig. 68). Then

OP. 0i»' = 0Q.0Q'=. .. = <*,

where t is the length of the tangent from 0 to the sphere. Thus, if t is the

radius of inversion, the surface PQ... is the inverse of PQf..., tA the sphere

Fxo. 68.

ia its own inverse. With some other radius of inversion K, let be

the inverse of PQ . .
. , then

OP.OF'^OQ.OQ!'^...^ K\

so that
OP' - 0(?'

^ “
t*

and the locus of P'\ Q'\ ... is seen to be a sphere. Thus the inverse of a

sphere is always another sphere.

A special investigation is needed

when the sphere passes through 0. Let

OS be the diameter through 0, and let

S' be the point inverse to S, Then, if

F is the inverse of any point P on the

circle,

0P.0F = 0S.0S\

OP OS'
“ 0S~0P”
so that POS, S'OP' are similar triangles.

Since OPS is a right angle, it follows

that OS'P' is a right angle, so that the

locus of P' is a plane through S' perpen-

dicular to OS', Thus the inverse of a

sphere which passes through the centre
xxo. 69.

of inversion is a plane, and, conversely, the inverse of any plane is a sphere

which passes through the centre of inversion.
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228. If P, Q are adjacent points on a surface, and P, Q[ are the corre-

sponding points on its inverse, then OPQ,
OQF are similar triangles, so that PQ,

P'Q' make equal angles with OPP'. By
making PQ coincide, we find that the

tangent plane at P to the surface PQ
and the tangent plane at P' to the sur-

face P'Q' make equal angles with OPP,
Hence, if we invert two surfaces which

intersect in P, we find that the angle

between the two inverse surfaces at P is equal to the angle between the

original surfaces at P, i.e. an angle of intersection is not altered by inversicyn.

Also, if a small cone through 0 cuts off areas d/Sf, dS* from the surface

PQ... and its inverse P'Q'..., it follows that

dS _ OP*

OP*'

Electrical Applicationa.

229. Let PP', QQ' be two pairs of inverse points (fig. 70). Let a charge

e at Q produce potential Vp at P, and let a charge e at Q' produce potential

Vp at P\ so that

then
Vp'_^e^ PQ_d OP
Vp"6p'Q'“eOQ'-

Take

then

OQ'

e'~ 00" K*
Vp OP
Vp~ K"OP'

Now let Q be a point of a conducting surface, and replace e by trdS,

the charge on the element of surface dS at Q. Let denote the potential

of the whole surface at P, and let denote the potential at P due to a

charge d on each element d3* of the inverse sur&ce, such that

/ OQ^

irdS" K'
K

Then, since Vp — Vp
gjy,

for each element of charge, we have by addition

K
"OP'

Vp'^Vp-

Thus charges d on dS\ etc. produce a potential

VpK -
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Now sappose that P is a point on the conducting surface Q, so that

Vp becomes simply the potential of this surface, say F. The charges e' on
dS', etc. now produce a potential

^ at F,

SO that if with these charges we combine a charge — VK at 0, the potential

produced at P' is zero. Thus the given system of charges spread over the

surface P'Q together with a charge — FiT at the origin, make the

surface P'Qf an equipotential of potential zero. In other words, from a

knowledge of the distribution which raises PQ... to potential F, we can

find the distribution on the inverse suidace P'Q' ... when it is put to earth

under the influence of a charge — VK at the centre of inversion.

If e, e' are the charges on corresponding elements dS, dS' at Q, Q^, we
have seen that

e' _<rdS' K _0q _
7“ adS OQ" K "V OQ'

while

Hence .(132),

dS " OQ^ •

K>
o- \oq)

giving the ratio of the surface densities on the two conductors.

Conversely, if we know the distribution induced on a conductor PQ... at

potential zero by a unit charge at a point 0, then by inversion about 0 we

obtain the distribution on the inverse conductor F'Q'... when raised to

potential As before, the ratio of the densities is given by equation (132).

Examples of Inversion,

230. Sphere, The simplest electrical problem of which we know the

solution is that of a spliere raised to a given potential. Let us examine

what this solution becomes on inversion.

If we invert with respect to a point P outside the sphere, we obtain the

distribution on another sphere when put to earth under the influence of a

point chare, v' P. This distribution has already been obtained in § 214 by

the method of images. The result there obtained, that the surface-density

varies inversely as the cube of the distance from P, can now be seen at once

from equation (132).

So also, if P is inside the sphere, we obtain the distribution on an

uninsulated sphere produced by a point charge inside it, a result which can

again be obtained by the method of images.

When P is on the sphere, we obtain the distribution on an uninsulated

plane, already obtained in § 208.
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231. Intersecting Planes. As a more complicated example of inversion,

let us invert the results obtained in § 212. We there shewed how to find

the distribution on two planes cutting at an angle ~
,
when put to earth

under the influence of a point charge anywhere in the acute angle between

them. If we invert the solution we obtain the distribution on two spheres,

cutting at an angle w/n, raised to a given potential. By a suitable choice

of the radius and origin of inversion, we can give any radii we like to the

two spheres.

If we take the radius of one to be infinite, we get the distribution on a

plane with an excrescence in the form of a piece of a sphere : in the par-

ticular case of n s 2, this excrescence is hemispherical, and we obtain the

distribution of electricity on a plane face with a hemispherical boss. This

can, however, be obtained more directly by the method of § 219.

Spherical Harmonics.

232. The problem of finding the solution of any electrostatic problem is

equivalent to that of finding a solution of Laplace’s equation

throughout the space not occupied by conductors, such as shall satisfy certain

conditions at the boundaries of this space

—

i.e. at infinity and on the surfaces

of conductors. The theory of spherical harmonics attempts to provide a

general solution of the equation V-F = 0.

This is no convenient general solution in finite terms: we therefore

examine solutions expressed as an infinite series. If each term of such

a series is a solution of the equation, the sum of the series is necessarily

a solution.
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233. Let us take spherical polar coordinates r, 0^ and search for

solutions of the form

where is a function of r only, and iS is a function of B and ^ only.

Laplace s equation, expreased in spherical polars, can be obtained analyti-

cally from the equation

ay*
^

by changing variables from a, y, z to r, 0, but is most easily obtained by
applying Gauss’ Theorem to the small element of volume bounded by the

spheres r and r + dr, the cones 6 and 6 + dO, and the diametral planes ^ and

+ d^. The equation is found to be

1 _a / _j_ a /
.
^dv\

,
1 a*K

r* ar \ ary r* sin 6 d6 \
” ady ^ r* sin* 0 d(f>*

0 .

Substituting the value V= RS^ we obtain

s a f^dR\
.

R a / . B »s
r* ar \ ary r* sin 0 d0 v

^ do)
^

r* sin* 0 a<^*
0.

or, simplifying,

1 9 9 1 d^S

RdrV dr)'^ SBinOdBV^^^ dd)'^ SBin*0d<p^
0.

The first term is a function of r only, while the last two terms are inde-

pendent of r. Thus the equation can only be satisfied by taking

9 / .dR\

S sin 0 d0 (
(134).

8Bin*0d<^'

where IT is a constant. Equation (133), regarded as a differential equation

for R, can be solved, the solution being

R = Ar” +
B

.(136),

where A, B are arbitrary constants, and n (n + 1) = if. After simplification

equation (134) becomes

<136)-

Any solution of this equation will be denoted by the solution being a

function of n as well as of ^ and The solution of Laplace’s equation we
have obtained is now

7 = il^r = (Ar« +^)s..

and by the addition of such solutions, the most general solution of Laplace’s

equation may be reached.
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234. Definitions. Any solution of Laplace's equation is said to he a

spherical harmonic,

A solution which is homogeneous in x, y, z of dimensions n is said to be a

spherical harmonic of degree n,

A spherical harmonic of degree n must be of the form r“ multiplied by

a function of 0 and
<f),

it must therefore be of the form Ar^Sn, where Sn

is a solution of equation (136).

Any solution of equation (136) is said to be a surface-harmonic of

degree n.

236. Theorem. If V is any spherical harmonic of degree n, then

YIjm+i ^ ^ spherical harmonic of degree — (n + 1).

For V must be of the form Ar^Sn, so that

V ^ASn
^2n+i y.n+1 >

which is known to be a solution of Laplace’s equation, and is of dimensions

— (n + 1) in r. Conversely if F is a spherical harmonic of degree — (n + 1),

then F is a spherical harmonic of degree n.

236. Theorem. If V is any spheHcal harmonic of degree n, then

0rft+uy'

dafdfds^
*

where s, t, and u are any integers, is a spherical harmonic ofdegree n^s— t — u.

For
3a? 3y* 3a*

’

SO that on differentiation s times with respect to x, t times with respect to y,

and u times with respect to z,

0f+e+u+2y 0f+t+tt+2Y 0«+i+u+*y
dx^difdz^ dafdy^'^dz** dafdy^dz'*

or

which proves the theorem.

V-.

f 0«+t+tt'p'

Jdx^dy^dz^

237. Theorem. If Sm, Sn are two surface harmonics of different degrees

m, n, then

jjs„s„d^=0.

where the integration is over the surface of a unit sphere.

In Qreen’s Theorem (§ 181),

f
f dxdydz = -jJ(^^^-^^'^dS.

put <I> = r"<Sn, = r'^Sfn, and take the surface to be the unit sphere.
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3(f> 3^
Then = 0, = 0, — and ^

Thus the volume integral vanishes, and the equation becomes

JJ(nr”^+^^SnStn — SnSm) dot = 0,

or, since n is, by hypothesis, not equal to m,

jJSnSindo} = 0.

Harmonics of Integral Degree.

238. The following table of examples of harmonics of integral degrees ni-O, -
1,

- 2,

+ 1, is taken from Thomson and Tait’s Natural Philosophy.

A 1 X - 1 ^ 1 X - 1^1 rz{a^-y^) 2rxyz
n = a 1, tan i|, log—

,
tan ‘^log—

.

0pr 0 pr 0 pr

Also if 7o is any one of these harmonics, are harmonics of degree - 1, so

that ^ harmonics of degree zero. As examples of harmonics derived

m this way may be given

_rx ry zx zy x x
A-“+y** r+z* r-»*

By differentiating any harmonic Vq any number « of times, multiplying by and

differentiating again z - 1 times, we obtain more harmonics of degree zero.

n= -1. Any harmonic of degree zero divided by r or differentiated with respect to

JT, y or z, e.g.

1 1. .y r+z X X
r' r**'® *• r r(r+*)'

11= - 2. By differentiating harmonics of degree — 1 with respect to z;, y or z we obtain

harmonics of degree >- 2, e.g.

X y s z . _.y z
,

r-»-z

,4> rs*"® x’ rs

11=1. Multiplying harmonics of degree —2 by r^, we obtain harmonics of degree 1, v.g,

x, 2/,z, »log^-2r.

Rational Integral Harmonics.

239. An important class of harmonic consists of rational integral algebraic

functions of a?, y, z. In the most general homogeneous function of x, y, z of

degree n there are ^ (n + 1) (n + 2) coefficients. If we operate with V* we

are left with a homogeneous function of a?, y, z of degree n — 2, and therefore

possessing Jn (n — 1) coefficients. For the original function to be a spherical

harmonic, these }n(n — 1) coefficients must all vanish, so that we must

have ^n(n — 1) relations between the original ^(n + l)(n + 2) coefficients.
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Thus the number of coefficients which may be regarded as independent in

the original function, subject to the condition of its being a harmonic, is

i(n + 1) (n + 2) - \n (n - 1),

or 2n + 1. This, then, is the number of independent rational harmonics of

degree n.

For instance, when n = 1 the most general harmonic is

Ax + i?// + Cz^

possessing three independent arbitrary constants, and so representing three

independent harmonics which may conveniently be taken to be x, y and z.

When n s 2, the most general harmonic is

aa? + + cz^ + dyz + ezx +fxy,

where a, 6, c are subject to a + 6 + c = 0. The five independent harmonica

may conveniently be taken to be

yz, zx, xy, x^^y\ — z\

When n = 0, 2/1 -f 1 = 1. Thus there is only one harmonic of degree zero,

and this may be taken to be V"= 1.

Corresponding to a rational integral harmonic K» of positive degree n,

y
there is the harmonic of degree — (n + 1). These harmonics of degree

— (n + 1) are accordingly 2n + 1 in number. Thus the only harmonic of

this kind and of degree - 1 is - .

Consider now the various expressions of the type

where 8 + t + u — n,

daf df dz*& .037),

These, as we know, are harmonics of degree —(n + 1), and from § 235

V
it is obvious that they must be of the form where K» is a rational

integral harmonic of degree n. Since
^

is harmonic, V* = 0, so that

The most general harmonic obtained by combining the harmonics of

type (137) is

0«+«+U

4)dafdy^dz^

but by equation (138) this can be reduced at once to the form

.(139),

dz ^dxPdy^Kr)
+ Z.4 pW

dy^' \rj
^
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where p + q = n — l and p' + = n. This again may be replaced by

0 „ 0»-‘

dz pto °'0a<>0y»-‘-^©
p=n

+ s b;
J)=0 dx^ dy'

,nr-p©
so that there are 2n + 1 arbitrary constants in all, and it is obvious

on examination that the harmonics, multiplied by all the coefficients

Bp, ... Bp , ... are independent. Thus, by differentiating
^
n times, we have

arrived at 2n + 1 independent rational integral harmonics, and it is known

that this is as many as there are.

Expa/nsion in Rational Integral Harmonica.

240. Theorem*. The value of any finite single-valued fimction of

position on a sj^herical surface can he expressed, al every point of the

surface at which the function is continuous, as a series of rational integral

harmonics, provided the function has only a finite number of lines and points

of discontinuity and of maxima and minima on the surface.

Let F be the arbitraiy function of position on the sphere, and let the

sphere be supposed of radius a. Let P be any point outside the sphere at a

distance / from its centre 0, and let Q be any point on the surface of

the sphere.

Let PQ be equal to R, so that

R^ =f* + a* ^ 2a/cos POQ.

We have the identity

47ra 'JJR^^f
.(140).

where the integration is taken over the surface of the sphere, a result

which it is easy to prove by integration.
€ * CLA poiut charge e placed at P induces surface density - ^ on the surface of

the sphere (§ 214), and the total induced charge is — y. The identity is therefore

obvious from electrostatic principles.

* The proof of this theorem is stated in the form which seems best suited to the requirements

of the student of electricity and makes no pretence at absolute mathematical rigour.
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Now introduce a quantity u defined by

/* - a* ttFdS
47ra JJ

(141).

so that u is a function of the position of P. If P is very close to the

sphere. — a* is small, and the important contributions to the integral arise

from those terms for which R is very small : i.e, from elements near to P.

If the value of F does not change abruptly near to the point P, or

oscillate with infinite frequency, we can suppose that as P approaches the

sphere, all elements on the sphere from which the contribution to the

integral (141) are of importance, have the same F, This value of F will of

course be the value at the point at which P ultimately touches the sphere,

say Fp, Thus in the limit we have

(p--a^)Fp rrdS

4nra JJ P*
.(142),

^ Fp~, by equation (140),

when in the limit f becomes equal to a.

If the value of F oscillates with infinite frequency near to the point P, we obviously

may not take F outside the sign of integration in passing from equation (141) to

equation (142).

If the value of F is discontinuous at the i>oint P of the sphere with which P
ultimately coincides, wo again cannot take F outside the sign of integration. Suppose,

however, that wo take coordinates p, S to express the position of a point P' on the surface

of the sphere very near to P, the coordinate p being the distance PP', and S being the

angle which PP' makes with any line through P in the tangent plane at P. Then F
may be regarded as a function of p, and the fact that Pis discontinuous atP is expressed

by saying that as we approach the limit p=0, the limiting value of P (assuming such a

limit to exist) is a function of $—i,e, depends on the path by which P is approached.

Let P (^) denote this limit. Then

f F{S)pdpdS
47ra J

« ~ /
F(S) d$, by equation (140).

On passing to the limit and putting a**/, we find that

,(143),
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i.e. u is the average value ofF taken on a small circle of infinitesimal radius surrounding

F. In particular, if F changes abruptly on crossing a certain line through F, having a

value Fx on one side, and a value F^ on the other, then the limiting value of a is

If we take 0 to denote the angle POQy

i = (/* — 2a/ cos 6 + o*)“^

1 /- a* — 2af cos - i

“7v 7' J

1 fi 1
a* ~ 2a/ COS ^ , /a* - 2a/ cos

1

"7l ’ /’ H p )
•"]’

or, arranging in descending powers of /,

+ + + (144),

in which I}, /j, are functions of 0, being obviously rational integral

functions of cos When ^ = 0,

and when 0 = 7r,

11 a a* \

i + \
B“o+/“/V /^/>

SO that when ^ = 0,

/? = ^=... = 1,

and when ^ = 7r,

-^ = ^ = -^=...=1.

It is clear, therefore, that the series (144«) is convergent for ^ = 0 and

^ = 7r, and a consideration of the geometrical interpretation of this series

will shew that it must be convergent for all intermediate values*.

Differentiating equation (144) with respect to /, we get

a cos ^ —

/

_ (ji) L_2P—

—

3P—

—

fl45^
j^3 “ ^7^ ” yi yi fA

If we multiply this equation by and add corresponding sides to

equation (144), we obtain

/«2 -ft to fjn5^ =
-J(2«

+ 1)P„^.

F
Multiplying this equation by — , and integrating over the surface of the

sphere, we obtain

p^a}[[FdS +

* Being a power eeries in oob 0 it oan only have a single radius of oonvergenoe, and this

cannot be between costfsl and cos 0a -1.
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or, by equation (141),

If the function F is continuous and non-oscillatory at the point P, then

on passing to the limit and putting /= a, we obtain

+

If Pis discontinuous and non-oscillatory, then the value of the series on the right is

not P, but is the function defined in equation (143).

Now it is known that 1/r is a spherical harmonic, so that we have

where the differentiation is with respect to the coordinates of Q, Hence 1/B

must be of the form (cf. § 233)

>5 = 2(^r«+A)^» (147),

where 8^ is a surface harmonic of order n. Comparing with equation (144),

and remembering that a in this equation is the same as the r of equation

(147), we see that /?», regarded as a function of the position of Q, is a surface

harmonic of order n, and we have already seen that it is a series of powers

of cos 0, or of - ,
the highest power being the nth, so that is a rational

integral harmonic of order ti. It follows that

j^Fr^PndS.

being the sum of a number of terms each of the form is also a rational

integral harmonic of order n, say TJ. On the surface of the sphere

Vn = a" ^jFP„dS,

SO that equation (146) becomes

P— ^ ^ Y
47ra* 0* *

which establishes the result in question.

(148),

241. Theorem, The expansion of an arbitranj function of jwsition on the

surface of a sphere op a series of rational integral harmonics is unique.

For if possible let the same function P be expanded in two ways, say

(149).

F=tw:: (150),

where TVn, Wn are rational integral harmonics of order n. Then the 1unction

tt=S(ir,-C)
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is a spherical harmonic, which vanishes at eveiy point of the sphere. Since

= 0 at eveiy point inside the sphere it is impossible for u to have either

a maximum or a minimum value inside the sphere (cf. § 52), so that

at every point inside the sphere. Since W,, -Wn a harmonic of order w,

it must be of the form where Sn is a surface harmonic, so that

u = = 0.

Thus M is a power series in r which vanishes for all values of r from r = 0

to r = a. Thus Sn = 0 for all values of n. Hence and the two

expansions (149) and (150) are seen to be identical.

242. It is clear that in electrostatics we shall in general only be

concerned with functions which are finite and single-valued at every point,

and of which the discontinuities are finite in number. Thus the only classes

of harmonics which are of importance are rational integral harmonics, and in

future we confine our attention to these. We have found that

(i) The rational integral harmonics of degree n are (2n + 1) in number,

and may all be derived from the harmonic
^
by differentiation.

(ii) Any function of position on a spherical surface, which satisfies the

conditions which obtain in a physical problem, can be

expanded as a series of rational integral harmonics, p"p P'

and this can be done only in one way.

243. Befor^onsidering these harmonics in detail,

we may try to form some idea of the physical concep-

tions which lead to them most directly.

The function i is the potential of a unit charge

at the origin. If, as in § 64, we consider two charges

+ e at points O', 0" at equal small distances a, —a
from the origin along the axis of x, we obtain as the

potential at F,

^ e e e
^ ~ OP'' OT ” OP'

" OP'

e.P'P":m-
If we take — s .P'P"= 1, we have a doublet of strength — 1 parallel to the

axis of X, and the potential at P is ^ . In fact this potential is exactly

the same as — — already found in § 64.
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Thus the three harmonics of order — 2 obtained by dividing the rational

integral harmonics of order 1 by H, namely ^ ^ j ^ ,
are

simply the potentials of three doublets each of unit strength, parallel to

the negative axes of y, z respectively.

If in fig. 73 we replace the charge e at (/ by a doublet of strength e

parallel to the negative axis of x, and the charge — s at 0" by a doublet

of strength — e parallel to the negative axis of x, we obtain a potential

If instead of the doublets being parallel to the axis of a;, we take them
pai'allel to the axis of y, we obtain a potential

dxdyxrj

So we can go on indefinitely, for on differentiating the potential of

a system with respect to x we get the potential of a system obtained

by replacing each unit charge of the original system by a doublet of unit

strength parallel to the axis of x. Thus all harmonics of type

/i\

dafdfdz^ \r)

(cf. § 236) can be regarded as potentials of systems of doublets at the origin,

and, as we have seen (§ 239), it is these potentials which give rise to the

rational integral harmonics.

244. For instance in finding a system to give potential , wo may replace the

charge 0 in fig. 73 by a charge ~ at distance 2a from 0 and ~^ charge at a

may be similarly treated, so that the whole system is seen to consist of charges

at the points 4?*= - 6, 0, ft where ft = 2a, and ^ ^

.

A system of this kind placed along each axis gives a charge SE at the origin and

a charge E at each comer of a regular octahedron having the origin as centre. The
potential

=0,

so that such a ^stem sends out no lines of force.

246. The most important class of rational integral harmonics is formed

by harmonics which are symmetrical about an axis, say that of x. There is

one harmonic of each degree n, namely that derived from the function

-f-Vda^\r)

These harmonics we proceed to investigata
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Legendbe*s Coefficients.

246. The function

.(161)
Va* — 2ar cos ^ + r*

can, as we have already seen (cf. equation (144)), be expanded in a convergent

series in the form

Va* — 2ar cos i? + r*

1 7* 7
**

a ‘a* a®
• + ^ + ••• ...(152)

if a is greater than r. Here the coefficients are functions of cos 0^

and are known as Legendre’s coefficients. When we wish to specify the

particular value of cos 6, we write as (cos 6),

Interchanging r and a in equation (152) we find that, if r > a.

.(163).

We have already seen that the functions ij, ... are surface harmonics,

each term of the equations (152) and (153) separately satisfying Laplace's

equation. The equation satisfied by the general surface harmonic 8% of

degree n, namely equation (136), is

rislw ^ w) +

^

In the present case ^ is independent of (^, so that the differential equation

satisfied by is

or, if we write ft for cos 0,

<'”)•

This equation is known as Legendre’s equation.

247. By actual expansion of expression (151)

so that on picking out the coefficient of 7*®, we obtain

1.3. t-1
7»!

L* — 1 . 3 . .. 271-3

2 .

(

71 - 2)1

1.3... 271-5

2 . 4 .

(

71 - 4)!
....(156).

Thus in is sven or odd function of ft according as n is even or odd. It

will readily be verified that expression (155) is a solution in aeries of

equation (154).
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Let us take axes Ox^ Oy, Oz^ the axis Ox to coincide with the line 6 = 0,

then fir = r cos 0 = x. Then it appears that is a rational integral function

of X, y, and z of degree n, and, being a solution of Laplace’s equation, it must

be a rational integral harmonic of degree n. We have seen that there can

only be one harmonic of this type which is also symmetrical about an axis

;

this, then, must be

248. If we write

(a* - 2a7> + r") - =/(a)

we have, by Maclaurin’s Theorem,

+ ..

a-0
....(156).

If P is the point whose polar coordinates are a, 0 and

Q is the point r, 6, then /(a) = . The Cartesian co-

ordinates of P may be taken to be a, 0, 0 ;
let those of Q be

X, y, z. Then f(a) = ,

^
,
so that as regards

^
\/(a; - a)^ + y* + ®

differentiation of /(a),

da dx'

0n 1

SB —

Fio. 74.

dx^ + y* +

' dx^\r)’

SO that equation (156) becomes

and on comparison with expansion (153), we see that

^
n!

giving the form for ^ which we have already found to exist in § 245.

249. A more convenient form for P, can be obtained as follows.

Let l-Ay = (l-2V + /t>)i

,
y® — 1

y = H + h2——so that

.(167),

,(158).
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From this relation we can expand y by Lagrange’s Theorem (c£ Edwards,

Differential Calculus, § 517) in the form

. , /i* - 1 .
/t" / 3 (u* - 1\»

y = ^ + A-2-+... +-y (V-)+--
Differentiating with respect to /a,

From equation (157), however, we find

= (1 - + /t«) "*= 1 + /</?+... + + ....

Equating the coefficients of in the two expansions, we find

=

250. This last formula supplies the easiest way of calculating actual

values of The values of I}, I\, ... D are found to be

7? (m) = /*.

^(/.) = J(35/.‘-30/t> + 3),

^(^) = i(63,.»-70/i*+15^X

HM = Vs (231/t' - 315/t‘ + 105^* - 5),

^ (m) = Vs (429/*’ - 693/** + 315/** - 35/*).

261. The equation (/*’ — 1)” = 0 has 2n real roots, of which n may be

regarded as coinciding at /* = 1, and n at /* = — 1. By a well-known theorem,

the first derived equation,

will have 2a — 1 real roots separating those of the original equation.

Passing to the nth derived equation, we find that the equation

has n real roots, and that these must all lie between = — 1 and /a=s + 1.

The roots are all separate, for two roots could only be coincident if the

original equation (/a* — 1)“ = 0 had n + 1 coincident roots.

Thus the n roots of the equation (/n) ~ 0 are all real and separate and

lie between /a = — 1 and /a = + 1.
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252. Putting we obtain

1 + Iih + T%h^ +
1

\/l-2A + A*

= 1+A + A*+...,

so that *!. Similarly, when = — 1, we find (cf. §240) that

= + ^ = 1.

We can now shew that throughout the range from /ia = — 1 to /a = + 1,

the numerical value of is never greater than unity. We have

(1 — 2A cos ^ + A’*)” i = (1 — (1 —

= (i + 1
*«’"+•••)

x(^l+lhe-^ + h^h^e-^

SO that on picking out coefficients of

Pn
1.3...2n-l
2.4... 2n

2cosntf + 2.2-4 |j-|2cos(n-2)0 +

Every coefficient is positive, so that is numerically greatest when each

cosine is equal to unity, %,e. when 0^0. Thus is never greater than

unity.

Fig. 76 shews the graphs of /J, ij, Ig, JfJ, from /Lt=» — 1 to = + the

value of 0 being taken as abscissa.
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Relations between eoeffidenU of different orders.

253. We have

(1 - 2V + = 1 + (160).

Differentiating with regard to h,

(aa — A)(l — 2V + ^*)“^ = (161),

so that {fjL — A) (1 + = (1 " + A*)

Equating coefficients of A", we obtain

(n+l)^,+i + n^-i= (2n+ 1)/*^ (162).

This is the difference equation satisfied by three successive coefficients.

Again, if we differentiate equation (160) with respect to lu

A(l-2V + A>)-i=i2A»^,

SO that, by combining with (161),

2nfc»/i; = (/i-A)2A»p.
1 OjJ,

Equating coefficients of A",

Differentiating (162), we obtain

QD
Eliminating — from this and (163),

(2n + l)P„ = ^^+1 _ ^fn—\

dfi d/jL
(164).

By integration of this we obtain

jp„(,i)d^ = -—
whilst by the addition of successive equations of the type of (164), we
obtain

^ = (2n - 1) + (2» - 6) (166).
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254. We have had the general theorem (§ 237)

fSn Sm do) = 0,

from which the theorem

//“

If

follows as a special case. Or since

do) = sin dd6d(l> = — dfid^.

p^Pn(ti)P„(j^)d,i=0 (167).

r+1

To find
J

Pr^{fi)dp,, let us square the equation

0

multiply by d/A, and integrate from /a = — 1 to /i, = + l.

The result is

/:-1 0

all products of the form vanishing on integration, by equation (167).

Thus
r+i

I
li^d/jL is the coefficient of in

dfi

t.6. in
1 ,

1-A

and this coefficient is easily seen to be
2

2n + l'

We accordingly have

(,*))> 2^-®- (168).

255. We can obtain this theorem in another way, and in a more general form, by

using the expansion of § 240, namely

i (2« + 1) JJ
FP^ (cos e)dS,

where B is the angle between the point P and the element d^S on the sphere. This

expansion is true for any function F subject to certain restrictions. Taking to be a

surface harmonic Sf^ of order n, we obtain
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all other integrala TaDishing by the theorem of § 237. Thus

or j

=

(169).

Tliis is the general theorem, of which equation (168) expresses a particular case. To
pass to this particular case, we re])1ace by (^) and obtain, instead of equation (169),

j

j

{P.(M)}‘«iu6cM<i0 =2^ P.(l),

or, after integrating with respect to

agreeing with equation (168).

Expansions in Legendre's Coefficients^

266. Theorem. The value of any function of 0, which is finite and

single-valued from ^ = 0 to 6 = 7r, and, which has only a finite number of

discontinuities and of maxima and minima within this range, can he

expressed, for every value of 6 within this range for which the function is

continuous, as a series of Legendre's Coefficients.

This is simply a particular case of the theorem of § 240. It is therefore

unnecessaiy to give a separate proof of the theorem.

The expansion is easily found. Assume it to be

yCf*') ~ ®o "h "h “h ••• (170),

then on multiplying by Ii^{p)dp, and integrating from = to

we obtain

r (m)/m d/* =T a. r p.(j,)p„ (/.)
J —1 «=0 J —1

“2w + l'

eveiy integral vanishing, except that for which s = n. Thus

221 4- 1 r+*«»=— (171),

giving the coefficients in the expansion.

If f{p) has a discontinuity when the value assumed by the

series (168) on putting = is, as in § 210, equal to

i 1/.(P.) +/.(/^)} (172),

where fi(jio)» /•(/^) are the values of f{p) on the two sides of the discon-

tinuity.
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Harmonic Potentials.

257. We are now in a position to apply the results obtained to problems

of electrostatics.

Consider first a sphere having a surface density of electricity <5^. The

potential at any internal point P is

V = ff
^ JJ PQ ii Va* — 2a/*cos ^ +r*

47r 7*^

«=
,
O* (/S„)cos«-i. by the theorems of §§ 237 and 255,

i// ~t* X (I

= n7a\
2/1 + 1 a"-*

this expression being evaluated at P.

Similarly the potential at any external point P is

^ ^ 4>7ra^+^S„

^ (2u-hl)r»+^^

These potentials are obviously solutions of Laplace’s equation, and it is

easy to verify that they correspond to the given surface density, for

m
.f/) .4^^..

\<7r /outside \0^/ inside

This gives us the fundamental property of harmonics, on which their

application to potential-problems depends : A distribution of surface density

SnOn a sphere gives rise to a potential which at every point is proportional

to Sn*

258. The density of the most general surface distribution can, by the

theorem of § 240, be expressed as a sum of surface harmonics, say

O’ = <So + H“ • • •

»

in which Sq is of course simply a constant. The potential, by the results of

the last section, is

1^ = 47ra |<So + ^ internal point ...(174),

V = 47ra 4* ^ + ...|
at an external point ...(175).



257-269] Spherical Harmonics 225

Examples op the use of Harmonic PoTENTfALS.

I. Potential of spherical cap and drcalar ring,

259. As a first example, let us find the potential of a spherical cap
of angle a

—

i.e. the surface cut from a sphere by

a right circular cone of semivertical angle a—
electrified to a uniform surface density a^.

We can regard this as a complete sphere

electrified to surface density <r, where

cr = cro from ^ = 0 to ^ = 0,

o- = 0 from 6=^ a to

The value of <f being symmetrical about the

axis ^ = 0, let us assume for the value of a

expanded in harmonics 76.

<r = tto + tti/J (cos 0) + a,-^(cos 6) +

then, by equation (171),

4.

1

an =— <tP^ (cos 0) d (cos 0)

*= f Pi (cos ff) d (cos 0)
^ J e^a

« i 0-0 [Pi-i (cos a) - ij+i (cos a))

by equation (165), except when n =0. For this case we have

r0=0

tto = i o’o
I

d (cos ^) = 1 o-o (1 - cos a).

J e=a

Thus

i 1^(1
- cos a) + S |ij_i (cos a) — (cos a)| ij (cos 6)

It is of interest to notice that when ^ = o, the value of a given by

this series is <r = iaQ, as it ought to be (cf. expression (172)).

The potential at an external point may now be written down in the

form

F= 2,ra«r.
|^(1

- cos «) ^-^ + gUl [r)

(176),

and that at an internal point is

r-W. [a-c».)+T «ai21|i=«a<2!Si>Q-p.(o<»9)]
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On differentiating with respect to a, we obtain the potential of a ring of

line density fr^adcL At a point at which r > a, we differentiate expression

(176), and obtain

V= 2ira<T^dat j^sin a + 2 -fil (cos a) sin a (cos ,

or, putting aa^da — r and simplifying,

n=ao

F=27rT S ^^(cosa)sina(-) 7J(cos^) (178)-
n=o \^/

Obviously the potential at a point at which r < a can be obtained on

replacing

260. These last results can be obtained more directly by considering

that at any point on the axis ^==0 the potential is

27raT sin a

V7** + a* — 2ar cos a

or, if r > a,

27raT sin a
2 ^(cosa) ~) ,

and expression (178) is the only expansion in Lagrange's coefficients wL.'.h

satisfies Laplace's equation and agrees with this expression when ^ = 0.

II. Uninsulated sphere in field of force,

261. The method of harmonics enables us to find the field of force

produced when a conducting sphere is introduced into any permanent field

of force. Let us suppose first that the sphere is uninsulated.

Fxo. 77.
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Let the sphere be of radius a. Round the centre of the field describe

a slightly larger sphere of radius a\ so small as not to enclose any of the

fixed charges by which the permanent field of force is produced. Between

these two spheres the potential of the field will be capable of expression in

a series of rational integral harmonioi, say

F=TS+ K + T^+ (179).

The problem is to superpose on this a potential, produced by the

induced electrification on the sphere, which shall give a total potential

equal to zero over the sphere r = a. Clearly the only form possible for

this new potential is

(180).

Thus the total potential between the spheres r = a and r= a' is

K {,
-
!| + K (l - (9'| + K (l - (2)] + ... f F. ll - (2)"") + ....

Putting Vn = r"5n, the surface density of electrification on the sphere is,

by Coulomb’s Law,

47r

— jjSo"-‘<2« + l)S,

This result is indeed obvious from § 258, on considering that the

surface electrification must give rise to the potential (180).

If n is different from zero,

JJsAdS^o.

where the integration is over any sphere, so that

Jjs„dS^0 (n#0),

and
Jl
KdS =0 (nf 0) (181).

Thus the total charge on the sphere

=jjadS

- — K • 4i7ra* = — IJa,wa
and was the potential of the original field at the centre of the sphere.
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262. Incidentally we may notice, as a consequence of (181), that the

mean value of a potential averaged over the surface of any sphere which

does not include any electric charge is equal to the potential at the

centre (cf. § 60).

If the sphere is introduced insulated, we superpose on to the field

already given, the field of a charge E spread uniformly over the surface of

E
the sphere, and the potential of this field is — . We obtain the particular

case of an uncharged sphere by taking E = Y^a, and the potential of this

field, namely j^st annihilates the first term in expression (180), to

which it has to be added.

It will easily be verified that, on taking the potential of the original

field to be Vi^Fx, we arrive at the results already obtained in § 217.

III. Dielectric sphere in a field of force.

263. An analogous treatment will give the solution when a homo-

geneous dielectric sphere is placed in a permanent field of force. The
treatment will, perhaps, be sufficiently exemplified by considering the case

of the simple field of potential

Vi — Fx = rSi.

Let us assume for the potential Y outside the sphere

Fio. 78.

and for the potential Vi inside the sphere

no term of the form ^ being included in Vt, as it would give infinite
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potential at the origin. The constants a, S aro to

the conditions

K=K
j

j^dVt aKjat»-=«.
dr~dr}

These give a + |,
= /9a.

whence
A'-l

. ^ 3
““ /r+2®’ ^~k+2'

so that

Thus the lines of force inside the dielectric are all parallel to those of

3
the original field, but the intensity is diminished in the ratio . The

field is shewn in fig. 78.

IV. Nearly spherical surfaces,

264. If r= a, the surface r = a + ^vhere x is a function of 6 and will

represent a surface which is nearly spherical if x is small. In this case %
may be regarded as a function of position on the surface of the sphere r^a,

and expanded in a series of rational integral harmonics in the form

X= + + ...

in which ... are all small.

The volume enclosed by this surface is

i
II

T*da>

= i II
(®’ +

= + tt’l

f

47ra*
+ 47ra* Se-

lf So = 0, the volume is that of the original sphere r— a.
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The following special cases are of importance

:

r = a + eP^. To obtain the form of this surface, we pass a distance e cos 0

along the radius at each point of the sphere r = a. It is easily seen that

when € is small the locus of the points so obtained is a sphere of radius a,

of which the centre is at a distance e from the origin.

r = a + aiS,. The most general form for diS^ is Ix+my and this

may be expressed as ae cos 0, where 0 is now measured from the line of

which the direction cosines are in the ratio Thus the surface is

the same as before.

r = a + Sj. Since r is nearly equal to a, this may be written

r*= a*+ 2a<Sa

= a®+ - r^S>a,
a

or a;* + y* + = a* + an expression of the second degree.

Thus the surface is an ellipsoid of which the centre is at the origin. It will

easily be found that r= a + e/il represents a spheroid of semi-axes a -f e, a — ^

,

and therefore of ellipticity ^ .

266. We can treat these nearly spherical surfaces in the same way in

which spherical surfaces have been treated, neglecting the squares of the

small harmonics as they occur.

266. As an example, suppose the surface r» a + to be a conductor,

raised to unit potential. We assume an external potential

F =- + i?-S„(-
n+i

where A and B have to be found from the condition that F* 1 when

r = a + iSfn- Neglecting squares of 5n, this gives

+ ^^n,1 =

—

f1 - — ^
a \ a)

so that A^a. B=i.

and ^

By applying Gauss* Theorem to a sphere of radius greater than a we

readily find that the total charge is a, the coefficient of Thus the
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capacity of the conductor is different from that of the sphere only by

terms in but the surface distribution is different, for

>•
ay dV ...

, ^ ,
4ir<r = —^ = — , if we neglect

‘"a’*"

the surface density becoming uniform, as it ought, when n = 1, i.e. when the

conductor is still spherical.

267. As a second example, let us examine the field inside a spherical

condenser when the two spheres are not quite concentric. Taking the centre

of the inner as origin, let the equations of the two spheres be

r = a,

r = 6 + .

We have to find a potential which shall have, say, unit value over r= a,

and shall vanish over r = 6 + . Assume

V^^ +^+G + DUr,
T V

when B and D are small, then we must have

O CIr

These equations must be true all over the spheres, so that the coefficients

of ij and the terms which do not involve /J must vanish separately. Thus

| + Da = 0;(7-1 = 0;
a

^+0-0, -^ + |*C6.0.

From the first two equations

ah

and this being the coefficient of
^

in the potential, is the capacity of the

condenser. Thus to a first approximation, the capacity of the condenser

remains unaltered, but since B and D do not vanish, the surface distribution

is altered.
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V. Collection of Electric Charges.

267 a. If a collection of electric charges are arranged in any way
whatever subject only to the condition that none of them lie outside the

sphere r^a, then the potential at any point outside the sphere must be

where e is the total charge inside the sphere (cf. § 266) and S,, ••• are

surface harmonics which depend on the arrangement of the charges inside

the sphere.

If the total charge is not zero, the potential can also be treated as in

§ 67, and on comparing the two expressions obtained for the potential, we
can identify the harmonics Si, We find that

~ + yi ^ ~ i (*1* + yi*+

>

and it will be easily verified by differentiation that the expressions on the

right are harmonics.

This example is of some interest in connection with the electron-theory of matter, for

a collection of positive and negative charges all collected within a distance a of a centre

may give some representation of the structure of a molecule. The total charge on a

molecule is zero, so that we must take and the potential becomes

The most general form for is (cf. § 239) + or ficoaS, where e is the

angle between the lines from the origin to the point x, y, f and that to the point A, B,C

and fi is

Thus the term which is important in the potential when r is large is
,
shewing

that at a sufficient distance the molecule has the same field of force as a certain doublet of

strength /i. Clearly when fi has any value different from zero, the molecule is “polarised

(cf. § 142) in Fai'oday’s sense. If fiBsO,the potential becomes

r - ^ -1-^

shewing that the force now falls off os the inverse fourth power of the distance.

It is worth noticing that the average force at any distance r is always zero, so that to

obtain forces which are, on the average, repulsive, we have to assume the presence of

terms in the potential which do not satisfy Laplace’s equation, and which accordingly

are not derivable from forces obeying the simple law a/H (cf. § 192).
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Further Analytical Theory of Harmonics.

General Theory of Zonal Harmonice.

268. The general equation satisfied by a surface harmonic of order n,

which is symmetrical about an axis, has already been seen to be

One solution is known to be so that we can find the other by

a known method. Assume Sn = Jiu as a solution, where tz is a function

of fjh. The equation becomes

and, since ^ is itself a solution.

Multiplying this by u and subtracting from (183), we are left with

or, multiplying by Pn and rearranging,

((,
- m - 2,.p..)g + (1 - «I (I)

- 0.

or .gain 1 1(1 - P..|g + 1(1 - p-) «) g) - 0,

On integration this becomes

(1 - /Lt*) r- = constant.
VfL

We may therefore take

in which the limits may be any we plejxse. If we write

0 —P f '

the complete solution of equation (182) is

Sn=PnU=APn + BQn.

269. The two solutions and Q» can be obtained directly by soWing

the original equation (182) in a series of powers of /x.

Assume a solution

Sn = 6o/^’’+ + ....
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substitute in equation (182), and equate to zero the coefficients of the

different powers of fL, The first coefficient is found to be h^r(r’- 1), so

that if this is to vanish we must have r= 0 or r = 1. The value r = 0 leads

to the solution

n(n + l) (n-2)n(n + l)(n+3)

1 2.3.4 ^

while the value r = 1 leads to the solution

(»-l)(» + 2) (»-3)(n-l)(n + 2)(n+ 4)

The complete solution of the equation is therefore

If n is integral one of the two series terminates, while the other does

not. If n is even the series terminates, while if n is odd the terminating

series is iij. But we have already found one terminating series which is

a solution of the original equation, namely Hence in either case the

terminating series must be proportional to and therefore the infinite

series must be proportional to Qn-

270. We can obtain a more useful form for Qn from expression (184).

The roots of i^(/A)»0 are, as we have seen, n in number, all real and

separate, and lying between — 1 and + 1. Let us take these roots to be

^ii^****^* Then

1 1

(M*-l)(Pn(A*)}* (m - 1) (m + 1) - «.)’ (m - a,)* ... 0* -«»)*

Ar +-^+2f-^ + ,— (185),
t— 1 /Lt + 1 \M-a, (fi — a,)v

on resolving into partial fractions. Putting /a = + 1 and ~ 1, we find at once

that a s b = —

In the general fraction

1 _ 1

1)
~

(a? — Ox) (a? — a,)...
’

let us suppose all the factors in the denominator to be distinct, so that we

may write

— - -Jl- + ^ +^ — I T • •• •

JJ a— Oj a?— Oj

On putting a; = Oj, we obtain at once

‘ (Oi - a,)(Ox - a,) (a, - 04) ...

'

1
^

(a,-o,)(o,-a,)(*,-a4)...
• ®
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Now let Oi and a, become vefy nearly equal, say Ois Ot + doi, then

^ “
da, (a, - a,) (a, - a4) ...

’

~ da, (a, - a,) (oj — a*) ...
*

The fractions
Cl

I

Ca

fl? — Oj ® — a*

V- • j. (ci + C2)a?-(Ciaa-Csai)
now combine into .

and on putting this equal to

Cl

I

C2

a: — Oj (a; — a,)*
*

it is clear that the value of c/ must be taken to be c, + Ca. Now

^ J_ I
1 1 )

da, ((a, - a,) (oj - O4) ... (oi - a,) (a, - O4) ...J

da, |0x ((« - a,) (* - a,)

_ ^ f(« -
“0x1 i)

and this remains true however many of the roots a,, 04 ,
coincide among

themselves, so long as they do not coincide with the root Oi. Thus, in

expression (185), the value of c, is

0 f 0.-a.)« )

0Ml(l-M’){i3lO*)}*U.

Putting

we find that

• — i2 (/a),

-
0^ {(1 - M’) lie (m)I’L-.. 9“. {(1 - «.’) IJi («.)!’}

’

Since (/x — a*) H (/i) is a solution of equation (182), we find that

i
[(1 - /*») jiJ (/*) + (m - 0.) g|]

+ n (» + 1 ) 0* - «.) iJ = 0.

On putting fi = a,, this reduces to

S-.K1 +

giving, on multiplication by R (ar«),

A («,)}*] =0.

Hence Cj 0.
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Equation (185) now becomes

^ -x( 1 + 2

so that, on integration,

^ , , fi-¥ l ^ dg

(/i,* - 1) {ft (/ii)}*”
*

On multiplying by we obtain from equation (184),

Qn (/*) = ft
J"

= ift (/*) log^ (186),

where TK«i is a rational integral function of /a of degree n — 1.

It is now clear that Qn (fi) is finite and continuous from /x = — lto/A=4-l,

but becomes infinite at the actual values /t = + 1.

To find the value of Tl^_, we substitute expression (186) in Legendre’s

equation, of which it is known to be a solution, and obtain

"
|:1

<' + 1 ) » '’w '“8

= - 2
dfjL

= - 2 [{'2n - !)/?,_, + (2/1-5) (187).

Since is a rational integral algebraic function of fi of degree n - 1, it

can be expanded in the form

Hn—1
~ J^n—\ "1" ”1“ •••9

so that

d_

dfM
|(1 - + n (n + 1)C-1

--ia,

= - 2:0, /I (n + 1) - (w - s) (n - s + 1)) /JUf.

Comparing with (187), we find that a, = 0 when 5 is odd, and is equal to

2(2/i-2^j_)
s(2ii — 5 + i)

when s is even.

Thus

17 ?!i^l _
2h-5

p _

^>»=jft(/*)i''g^+r
J.71 3 (ft - 1)

'and
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271. When we are dealing with complete spheres it is impossible for

the solution Qn to occur. If the space is limited in such a way that the

infinities of the Qn harmonic are excluded, it may be necessary to take

into account both the ^ and harmonics. An instance of such a case

occurs in considering the potential at points outside a conductor of which

the shape is that of a complete cone.

Tesseral Harmonics.

272. The equation satisfied by the general surface harmonic Sn is

sin 6d6\

As a solution, let us examine

Sn =

where 0 is a function of 0 only, and 4> is a function of only. On
substituting this value in the equation, and dividing by 0<t>/sin® 0, we obtain

sin ^ 0 / . - 00\ 1 0^^
, , 1 \ • a ia A

We must therefore have
1 8»4>

,a@\sin 0 0
“0 ^ ^sin 0 + n (n + 1) sin* 0^--k.

The solution of the former equation is single valued only when k is of the

form — m*, where m is an integer. In this case

^ = Cm cos m<f> 4- Dm sin

and 0 is given by

Ye ^ w) + ®

or, in terms of fi,

I {< -'*•> ?} + ("(»+»-f^4
e-O (188),

an equation which reduces to Legendre’s equation when m = 0.

273.

To obtain the general solution of equation (188), consider the

differential equation

(1-M*)^ + 2«/.i = 0 (189),

of which the solution is readily seen to be

1= (7(1 -/*>)» (190).

If we differentiate equation (189) a times we obtain

d’z 0*->«
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If in this we put s » n. and again differentiate with respect to we

obtain

0**xr

which is Legendre’s equation with as variable. Thus a solution of this

equation is seen to be

giving at once the form for ^ already obtained in § 249. The general

solution of equation (192) we know to be

If we now differentiate (192) m times, the result is the same as that of

differentiating (189) m + n + 1 times, and is therefore obtained by putting

s = m4-n+l in (191). This gives

0m+»+i^
. ,, 0^«+ir

. , . .

' 0^"'
(1 - - 2 (m + 1) /* + (»»+«+ 1) = a0^m-»-n+2

m
or, multiplying by (1 — ft*)*

»

(1 - - 2 (m + 1) ^ (1 -

Let

5 awi+n g
+ (m + n + l)(n-m)(l-M*)*|^=0 (198).

Then |
=

- m j(l - (1 - ^
• - 1

»
|(m+ n+ l) (n-m) +m- . by equation (193),

o|n(n + l)-j^,J.

Thus V satisfies

and this is the same as equation (188), which is satisfied by 0.
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where

Hence

274. The solutioa of equation (188) has now been seen to be

a/n”

The functions

are known as the associated Legendrian functions of the first and second

kinds, and are generally denoted by P» (/i), Q? (m)* ^ regards the former

we may replace /J, from equation (159), by

and obtain the function in the form

It is clear from this form that the function vanishes if m + n > 2n, if

m > n. It is also clear that it is a rational integral function of sin 6 and

cos 0. From the form of Qn (^), which is not a rational integral function of fi,

it is clear that Q»(/a) cannot be a rational integral function of sin^ and

cos 0,

Thus of the solution we have obtained for Sn, only the part

(h) (^m cos mif} + Dm sin m^)

gives rise to rational integral harmonics. The terms Pj^(/A)cosm^ and

P? (P') sin fn<l> are known as tesseral harmonics.

Clearly there are (2n f 1) tesseral harmonics of degree n, namely

7i (fi), cos Pi (fi\ sin
<l> Pi (^), ... cos P; (^), sin n<^ P; (ji).

These may be regarded as the (2n + 1} independent rational integral har-

monics of degree n of which the existence has already been proved in § 239.

Using the formula

P? (/^) = ^

and substituting the value obtained in §

we obtain Pj (fi) in the form

d^Pn(fi)

247 for .^(/A)(cf. equation (155)),

(2n) ! sin”* 0

2" nl (n — w) I

•Icos "“”* 0 —
(n — m) (n —m — 1)

2(2a-l)
cos d

(n-m)(»-m-l)(n-»»-2)(n-m-3) 1

+ 2T4Y2n-l)(2n-3)
"
"T
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The values of the tesseral harmonics of the first four orders are given in

the following table.

Order 1. cos 6, sin 0 cos sin 6 sin

Order 2. ^ (3 cos* - 1), 3 sin 6 cos 6 cos 3 sin 0 cos 9 sin 0,

3 sin* 6 cos 20, 3 sin* 6 sin 20.

Order 3. i (5 cos* ^ — 3 cos 6), f sin 9 (5 cos* ^ — 1) cos 0,

^sin 9 (5 cos* ^ — 1) sin 0, 15 sin* 9 cos 9 cos 20,

15 sin* ^ cos ^ sin 20, 15 sin* ^ cos 30, 15 sin* ^ sin 30.

Order 4. ^ (35 cos^ ^ - 30 cos* ^ + 3), | sin 9 (7 cos* ^ — 3 cos 9) cos 0,

f sin 9 (7 cos* ^ - 3 cos 9) sin 0, ^ sin* 9 (7 cos* ^ — 1) cos 20,

^ sin* 9 (7 cos* ^ — 1) sin 20, 105 sin* 9 cos 9 cos 30,

105 sin* 9 cos 9 sin 30, 105 sin* 9 cos 40, 105 sin* 9 sin 40.

276. We have now found that the most general rational integral surface

harmonic is of the form

Sn = lPnM COS m0 + Bn, sin m0),
0

in which PniH') is to be interpreted to mean /J(/a), when m = 0.

Let us denote any tesseral harmonics of the type

Pj (ji) {A cos wi0 + B sin m<^) by

//
6^55 d® = 0Then by § 237,

if n + n'. If n = n', then

j]
-S?

= j]
-P? (/*) Pt cos m<l> + /?„ sin m(f>)

{Ani COS m
<f>
+ Bjn' sin m' 0) da>,

and this vanishes except when m = m\

When w = n' and m = m' the value of
jj

S^S'^’dto clearly depends on

r+i

that of
J

{Py (/i)}* (i/Lt, and this we now proceed to obtain.

We have

/

+i r+i

I-P. (/*)}’ d>t = j
(1 - M’r

\} S/I"* 1
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9**2r

Since is a solution of equation (191), we obtain, on taking 8— m-\-n

in this equation, and multiplying throughout by (1 —

am—1 1>

+ (n + m) (m - m + 1) (1 - ,

which, again, may be written

^ |(1 - /i’)” = - (n + to) (» - »» + 1) (1 - /t*)» *

In equation (195) the first term on the right-hand vanishes, so that

U’n (/*)}* d/l = (n + to) (b - TO + 1)
[ ^

(1 - ^‘)“-» dM

= (n + TO)(n-TO + l)J ^lPj->(/i)}*d/i,

a reduction formula from which we readily obtain

2 (?i + m)

!

2/1 -H 1 (n — m) I

*

These results enable us to find any integral of the type JJSnS'ndu),

Biaxal Harmonics,

276. It is often convenient to be able to express zonal harmonics

referred to one axis in terms of harmonics referred to other axes

—

i.e. to

be able to change the axes of reference of zonal harmonics.

Lot Pn be a harmonic having OP as axis. At Q the value of this is

(cos 7), whore 7 is the angle PQ, and our problem is to express this

harmonic of order n as a sum of zonal and tesseral harmonics referred to

other axes. With reference to these axes, let the coordinates of Q be d,

let those of P be 0, and let us assume a series of the type

(cos 7) = S Pn (cos d) (A, cos s<l> + Bg sin s<f>).

Let us multiply by Pj (cos ^) cos 50 and integrate over the surface of a unit

sphere. We obtain

(cos 7) (cos d) cos 50) da} = Ag fj {i'; (cos 0)j* cos* 50 deo.



242 MetJuidsfor the Solution ofSpecial Prohleme [oh. viii

By equation (169),

jj
ft (cos 7) (P; (cos e) cos stft] dm =» {P; (cos ^ cos

“2;^

and JJ{Fi(coaS)}*eo8Fs^dm^
j

(P;(/t))*d/t
J

coa* s<f>d^

2ir (n + s)

!

“2n + 10S^)r
Thus

= 2 Pi (cos ©) cos «4»,

and similarly

«. = 2g^;Pi(cos©)8in»4>.

This analysis needs modification when s = 0, but it is readily found that

il, = iJ(coae), ^0 = 0,

so that

^ (cos 7) » ft (cos 6) ft (cos 0 ) + 2 2
|

-Pi (cos Pi (cos 0) cos « (^ - ^)

General Theory of Curvilinear CooRDiNATEa

277. Let us write

where <ft, % denote any functions of x, y, z. Then we may suppose a point

in space specified by the values of X, fi, v at the point, i.e. by a knowledge of

those members of the three families of surfaces

^ («. y. z) = cons. ;
{x, y, z) = cons.

; x (®» V*

which pass through it.

The values of X, fi, v are called " curvilinear coordinates " of the point.

A great simplification is introduced into the analysis connectefl with

curvilinear coordinates, if the three families of surfaces are chosen in such

a way that they cut orthogonally at every point. In what follows we shall

suppose this to be the case—the coordinates will be "orthogonal curvilinear

coo^inates.'*

The points X, /4, v and X + dX, /x, v will be adjacent points, and the

distance between them will be equal to dX multiplied by a function of
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dX
\ lA, and V—let us assume it equal to Similarly, let the distance

d/jL
from \ fi, V to X, fjL + dfjL, p he and let the distance from \ fi, p to

X, fi, v + dv be
tit

Then the distance ds from X, fL, v to X + dX» + i/4-dv will be

given by

/jnV - (<^)*
I I

(dvY

Ai*
^

Ai* A,*
'

this being the diagonal of a rectangular parallelepiped of edges

dX dti , dv

AT- a; X-

Laplace’s equation in curvilinear coordinates is obtained most readily by

applying Gauss’ Theorem to the small rectangular parallelepiped of which

the edges are the eight points

X + idX, ft ± ^dfi, V ± \dv.

In this way we obtain the relation

OII (197)

the form

a / A, aF^
1

a / A, aF\ a fht
....(198),

ax,VA,A, a\J'^a/tU,A, a/ty'^a.<'U.A.

and as we have already seen that equation (197) is exactly equivalent to

Laplace’s equation = it appears that equation (198) must represent

Laplace’s equation transformed into curvilinear coordinates.

In any particular system of curvilinear coordinates the method of pro-

cedure is to express A,, A,, A, in terms of X, fi and v, and then try to obtain

solutions of equation (198), giving F as a function of X, fi and p.

Spherical Polar Coordinates.

278. The system of surfaces r = cons., 9 = cons., ^ = cons. in spherical

polar coordinates gives a system of orthogonal curvilinear coordinates. In

these coordinates equation (198) assumes the form

0r \ 0r j
^ sin 6 d6 dd/^ sin"* 0 00*

’

already obtained in § 233, which has been found to lead to the theory of

spherical harmonics.
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CoNFOCAL Coordinates.

279. After spherical polar coordinates, the system of curvilinear coordi-

nates which comes next in order of simplicity and importance is that in

which the surfaces are confocal ellipsoids and h3rperboloids of one and two

sheets. This system will now be examined.

Taking the ellipsoid

y* z^ ,

^+65 + ^
= ^ (199)

as a standard, the conicoid

a'‘+e'*‘b‘+0'^c*+e
^ (200)

will be confocal with the standard ellipsoid whatever value 6 may have, and

all confocal conicoids are represented in turn by this equation as 0 passes

from — 00 to + 00 .

If the values of x, y, z are given, equation (200) is a cubic equation in 6.

It can be shewn that the three roots in 6 are all real, so that three confocals

pass through any point in space, and it can further be shewn that at every

point these three confocals are orthogonal. It can also be shewn that of

these confocals one is an ellipsoid, one a hyperboloid of one sheet, and one

a hyperboloid of two sheets.

Let \ fi, V be the three values of 6 which satisfy equation (200) at any

point, and let X, /i, v refer respectively to the ellipsoid, hyperboloid of one

sheet, and hyperboloid of two sheets. Then X, fiy v may be taken to be

orthogonal curvilinear coordinates, the families of surfaces X = cons., = cons.,

V = cons, being respectively the system of ellipsoids, hyperboloids of one

sheet, and hyperboloids of two sheets, which are confocal with the standard

ellipsoid (199).

280. The first problem, as already explained, is to find the quantities

which have been denoted in § 277 by hi, A,, 4,. As a step towards this, we

begin by expressing y, x as functions of the curvilinear coordinates X, /i, v.

The expression

(a* + 0) (6« + ^) (c* + ^) +^ + ^-5^ - l]

is clearly a rational integral function of 6 of degree 3, the coefficient of 6^

being - 1. It vanishes when 0 is equal to X, or v, these being the curvi-

linear coordinates of the point x, y, z. Hence the expression must be equal,

identically, to

Putting ^ — a® in the identity obtained in this way, we get the relation

(6* — a*) (c* — tt*) = (a* + X) (a* + /x) (a* + i^),
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SO that Of, z are given as functions of /i, v by the relations

(a* + \)(a* + ^)(o» + t>)^

281. To examine changes as we move along the normal to the surface

\ = cons., we must keep fi and v constant. Thus we have, on logarithmic

differentiation of equation (201),

dx __dK
X a* 4- X

'

and there are of course similar equations giving dy and dz. Thus for the

length ds oi on element of the normal to X = constant, we have

{dsy = {dxy + (dy)* + {dzy

2
(g* 4- /t) (a* + y)

aX. c (a’ + X) (6* - a‘) (c* - a*)

(X — /t) (X — v)

(a* + X)(6* + X)(c* + X)'

rfX .

The quantity ds is, however, identical with the quantity called in

§ 277, so that we have

4 (a» + X)(6»4-X)(c« + X)

and clearly A, and A, can be obtained by cyclic interchange of the letters

X, /i and V.

282. If for brevity we write

= VCa’ + XXft'+ XXc’+X),
we 6nd that

(/i - I/) V - 1,

so that by substitution in equation (198), Laplace’s equation in the present

coordinates is seen to be

(203).

On multiplying throughout by this equation becomes

.(2041.
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Let us now introduce new variables a, /9, y, given by

““J A,’

^-} A/
r*' dp

A/
a

then we have
8 . 8 .

aa“^* ax’

and equation (204) becomes

a’p

'aa»
I

.,a’r,,^ ,a*F
.(205).

Distribution of Electricity on a freely-charged Ellipsoid,

283. Before discussing the general solution of Laplace s equation, it will

be advantageous to examine a few special problems.

In the first place, it is clear that a particular solution of equation (205) is

V=^A^Ba (206),

where B are arbitrary constants. The equipotentials are the surfaces

a = constant, and are therefore confocal ellipsoids. Thus we can, from this

solution, obtain the field when an ellipsoidal conductor is freely electrified.

For instance, if the ellipsoid

is raised to unit potential, the potential at any external point will be given

by equation (206) provided we choose A and so as to have F = 1 when

\ =s 0, and V=0 when X = oo . In this way we obtain

fdX
•'*

(207).7 =
r —
Jo A.

The surface density at any point on the ellipsoid is given by

,
dV dVd\ , dV
on d\ dn dX

Jo Ax

Jo Aa

(208).
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Thus the surface density at different points of the ellipsoid is proportional

to hi,

284 The quantity hi admits of a simple geometrical interpretation.

Let n be the direction-cosines of the tangent plane to the ellipsoid at

any point fi, v, and let p be the perpendicular from the origin on to this

tangent plane. Then from the geometry of the ellipsoid we have

p* = (a* -h X) P + (6* + X) m* + (c* + X) n» (209).

Moving along the normal, we shall come to the point X + dX, fi, v. The

tangent plane at this point has the same direction-cosines I, m,n as before,

but the perpendicular from the origin will be p + dp, where dp To

obtain dp we differentiate equation (209), allowing X alone to vary, and so

have
2pdp = dX (I* + + n*) = dX.

Comparing this with dp
d\

X , we see that A, = 2p.

Thus the surface density at any point is proportional to the perpendicular

from the centre on to the tangent plane at the point.

In fig. 79, the thickness of the shading at any point is proportional to

the perpendicular from the centre on to the tangent plane, so that the

shading represents the distribution of electricity on a freely electrified

ellipsoid.

It will be easily verified that the outer boundary of this shading must

be an ellipsoid, similar to and concentric with the original ellipsoid.

285. Replacing hi by 2p in equation (208), we find for the total charge E
on the ellipse 'd,

1E
-
jjcdS =

2irabcrp
Jo Ax

jJpdS.

Since JJpdS is three times the volume of the ellipsoid, and therefore

equal to 47ra&c, this reduces to



248 Methodsfor the Sohition of Special Problems [ch. viii

Since the ellipsoid is supposed to be raised to unit potential, this quantity

E gives the capacity of an ellipsoidal conductor electrified in free space.

The capacity can however be obtained more readily by examining the

form of the potential at infinity. At points which are at a distance r

from the centre of the ellipsoid so great that a, 6, c may be neglected in

comparison with r, X becomes equal to r*, so that Aa = r®, and

f dX _ 2

Jx AA“r-

Thus at infinity the limiting form assumed by equation (207) is

V =

E
and since the value of V at infinity must be — the value of E follows at

once.

A freely-charged spheroid,

f* d\
286. The integral I x" integrable if any two of the semi-axes

Jq

become equal to one another.

If 6 = c, the ellipsoid is a prolate spheroid, and its capacity is found to be

2 2(ie

r— -'i— iog(^)'
•'o (6* + X)(a»-f-X)i Vl-s/

where s is the eccentricity.

If a = 6, the ellipsoid is an oblate spheroid, and its capacity is found to be

2 ae
E=^

r dX

Jo (a> + X)(c» + X)4

8in“*e
*

Elliptic Disc.

287. In the preceding analysis, let a become vanishingly small, then

the conductor becomes an elliptic disc of semi-axes 6 and c.

The perpendicular from the origin on to the tangent-plane is given, as in

the ellipsoid, by

„. =_2 .^ z*

b*
^

c*
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and when a is made very small in the limit, this becomes

p.- 1

^
f!
a* 6‘ c*

so that the surface density at any point x, y in the disc is proportional to

cV (210).

Circular Disc.

288. On further simplifying by putting 6 = c, we arrive at the case of a

circular disc. The density of electrification is seen at once from expression

(210) to be proportional to

and therefore varies inversely as the shortest chord which can be drawn

through the point.

Moreover, when a = 0 and 6 = c, we have = (c* + \) so that

Ja Aa c VVx/ Jo Aa c

2c
Thus the capacity of a circular disc is — , and when the disc is raised to

TT

potential unity, the potential at any external point is

2
, _- tan

TT

where X is the positive root of

X'^c»-f X

289. Lord Kelvin* quotes some interesting experiments by Coulomb on the density

At different points on a circular plate of radius 5 inches. The results are given in the

following table

:

Liptances from the

plate's edge
Observed Densities Calculated Densities

5 ms. 1 1

4 1-001 1020
3 1005 1-090

2 1-17 1-250

1 1-52 l-6()7

0-5 2-07 2-294

0 2-90 00

Pnpert on Elect, and Mag. p. 179.
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Much more remarkable is Cavendish’s experimental determination of the capacity of a

circular disc. Oavenuish found this to be times that of a sphere of equal radius,

while theory shews the true value of the denominator to be ^ or 1*5708 I

290. By inverting the distribution of electricity on a circular disc, taking

the origin of inversion to be a point in the plane of the disc, Kelvin* has

obtained the distribution of electricity on a disc influenced by a point charge

in its plane, a problem previously solved by another method by Green. The
general Green’s function for a circular disc has been obtained by Hobson f.

Spherical BowL

291. Lord Kelvin has also, by inversion, obtained the solution for a

spherical bowl of any angle freely electrified. Let the bowl be a piece of

a sphere of diameter /. Let the distance from the

middle point of the bowl to any point of the bowl

be r, and let the greatest value of r, i,e. the dis-

tance from a point on the edge to the middle point

of the bowl, be a. Then Kelvin finds for the elec-

tric densities inside and outside the bowl

:

V

Some numerical results calculated from these formulas are of interest. The six values

in the following tables refer to the middle point and the five points dividing ilie arc from

the middle point to the edge into six equal parts.

Plane disc Curved disc arc 10° Curved disc arc 20°

Pi PO Mean Pi

100 1-00 lOOOO -91

101 1*01 10142 -95

lOG 106 1-0607 •99

1*15 1*15 1-1547 1-09

1-34 1*34 1*3416 1-27

1*81 1*81 1-8091 1-74

Po Mean Pi PO

1-06 1*0000 •86 1*14

1-OS 1-0141 •88 1*15

113 1-0605 •92 1-20

1*22 1*1542 1*02 1-29

1 41 1*3407 1-21) 1-56

1-88 1-8071 1G7 1-94

M**an

10000
lOOlO
I 03G9
1*1106

1-2G0G

1C474

• Pap€T» on Elfct. and Mag. p. 183.

t Train. Camb. Phil. Soc. xviii. p. 277.
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Bowl aro 270® Bowl are 340^

(

f>i Po Mean Pi PO Mean

013 1*986 1-0000 •0001 1 9999 1-0000
•014 1-987 1-0009 •0002 1-9999 1-0000
•018 1-991 1-0041 •0002 2 0000 1-0001
025 1-998 1-0118 •0004 2-0001 1-0002
045 2-018 1-0316 •0009 2 0006 1-0007
•120 2-093 1-1060 •0042 2 (»040 1 0041

Discussing these results, Lord Kelvin says :
“ It is remarkable how slight an amount

of curvature produces a very sensible excess of density on the convex side in the first two

cases (10“ and 20“), yet how nearly the mean of the densities on the convex and concave

sides at any point agrees with that at the corresponding point on a plane disc shewn in

the first column. The results for bowls of 270* and 340* illustrate the tendency of the

whole charge to the convex surface, as the case of a thin spherical conducting surface with

an infinitely small aperture is approached.”

Ellipsoidal Harmonics.

292. We now return to the general equations (205), namely

d^V a’F
+ = o

and examine the nature of the general solutions of this equation.

Let us assume a tentative solution

.(211 ),

r= LMN,

in which Z is a function of \ only, M a function of fi only, and N a function

of V only. Substituting this solution the equation reduces to

1 1 3‘if 1 d‘N

Since a is a function of X only, ^ is a function of X only, and the equa-

tion may be written in the form

(ft, - I')/(X) + (v-\)F (ft) + (X - /i) (|/) = 0,

whore /, F and ^ are functions whose form we have to determine.

This functional e»iuation must hold for all values of X. fi, v. Putting fi=v

wo find that — and since this is true for all values of v, F and <1>
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must be the same function. By a similar procedure, it follows that f must

also be the same function, so that the equation can be written

+ (i' - if) = 0.

To find the form of the function/ we put \ = 0 and obtain

/(/^)"/(Q)^/W-/(0>

fL V

Thus a function of /i is equal to the same function of i/, so that each must

be a constant. Calling this B, and writing A for /(O), we find that

293. Restoring its value to /(X) we see that we must have

^,={A+B\)L (212),

and similar equations, with the same constants A and B, must be satisfied

by M and N.

Ekjuation (212), on substituting for a in terms of X, becomes

a differential equation of the second order in X, while M and N satisfy

equations which are identical except that ^ and v are the variables.

The solution of equation (213) is known as a Lamp’s function, or ellip-

soidal harmonic. The function is commonly written as A’J(X), where p, n

are new arbitrary constants, connected with the constants A and B by the

relations

n{n+l) = B, and i¥ + c*)p = — A.

Thus -^J(X) is a solution of

~= (n(n+l)X-7;(i>> + c’)} L,

and a solution of equation (211) is

(214).
P n

294. Equation (213) being of the second order, must have two inde-

pendent solutions. Denoting one by Z, let the other be supposed to be Lu,

Then we must have

^fi^(A+liX)Lu;
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so that on multiplying the former equation by u, and subtracting from the

latter,

and the complete solution is seen to be

where C and J) are arbitrary constants.

Accordingly, the complete solution of equation (211) can be written as

This corresponds exactly to the general solution in rational integral

spherical harmonics, namely

(Cnpr^ + Bnpr-^^^^)

(Cn;'Ffi(cose)+Dn;'Pi(cos0)y

- Ellipsoid in uniform field of force,

295. As an illustration of the use of confocal coordinates, let us examine

the field produced by placing an uninsulated ellipsoid in a uniform field of

force.

The potential of the undisturbed field of force may be taken to be K* Fx,

or ill confocal coordinates (cf. equation (201))

V=F /(^* +V c 6^ - (i*) (c» - tt^)- (i») (c* - tt^)

This is of the form V= GLMN,

where C is the constant F (6* — a^)
”
^ (c*— a*)

” ^
, and A, M, N are functions of

X only, fi only and v only, respectively, namely A = Va® + X, etc.

Since V = LMN is a solution of Laplace’s equation, there must, as in § 294,

be a second solution V=^Lu. MN, where

f d\ f d\
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The upper limit of integration is arbitrary : if we take it to be infinite,

both u and Lu will vanish at infinity, while M and N are in any case finite

at infinity. Thus Lu . MN is a potential which vanishes at infinity and is

proportional (since u is a function of X only) at every point of any one of the

surfaces X = cons., to the potential of the original field. Thus the solution

V^CLMN + DLu.MN (215)

can be made to give zero potential over any one of the surfaces X = cons., by

a suitable choice of the constant 7).

For instance if the conductor is X =* 0, we have, on the conductor,

““io ^ + \)Ax'

Thus on the conductor we have

r= LMN f0+ Z)r .

V Jo (a’ + X)Ax/

The condition for this to vanish gives the value of D, and on substituting

this value of D, equation (215) becomes

V^GLMNf\-("r^)\ Jo

d\

= Fa; I 1 — /x (a*4-X)A,

d\

Jo (^* +

d\

X)Ax

rr Jo (a^ + X)Ax
r« d\

Jo (a*-

.(216).

*
-H X) Ax

This gives the field when the original field is parallel to the major axis

of the ellipsoid. If the original field is in any other direction we can resolve

it into three fields parallel to the three axes of the ellipsoid, and the final

field is then found by the superposition of three fields of the type of that

given by equation (216).

Spheroidal Harmonics.

296. When any two semi-axes of the standard ellipsoid become equal

the method of confocal coordinates breaks down. For the equation
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reduces to a quadratic, and has therefore only two roots, say fi. The
surfaces \ = cons, and /a = cons, are now confocal ellipsoids and hyperboloids

of revolution, but obviously a third family of surfaces is required before the

position of a point can be fixed. Such a family of surfaces, orthogonal to

the two present families, is supplied by the system of diametral planes

through the axis of revolution of the standard ellipsoid.

The two cases in which the standard ellipsoid is a prolate spheroid and

an oblate spheroid require separate examination.

Prolate Spheroids.

297. Let the standard surface be the prolate spheroid

a* 6*

in which a>h. If we write

ij = ter cos 4>, ^ = ty sin <^,

then the curvilinear coordinates may be taken to be X, p, <f),
where X, p. are

the roots of

1 « T‘ >1 ” I
a* + 0 + 0

.(218).

In this equation, put a* — b’ = d‘ and o’ + ^ = c*0'*, then the equation

becomes

= 1 .

If f*, 17
* are the roots of this equation in 6^'*, we readily find that a?*= f*i7*c*,

so that we may take

(219 ),

t!r = c (220)

in which rj is taken to be the greater of the two roots.

The surfaces f = cons., 17 = cons, are identical with the surfaces ^ = cons..

and are acroidingly confocal ellipsoids and hyperboloids. The coordinates

f, rj,
<f)

may now be taken to be orthogonal curvilinear coordinates.

It is easily found that

from which Laplace’s equation is obtained in the form

17* -f*
(l-f’)(,’-!) 9^’

0.
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298. Let us search for solutions of the form

F=BHa>,

where S, H,^ are solutions solely of 17 and ^ respectively. On substitutinpr

this tentative solution and simplifying, we obtain

(i-VKv'-D fi 9 [n-f»)ggi 1 a f aH|i
,

i
^

n’-f’ L39?t^ '0n)J

As in the theory of spherical harmonics, the only possible solution results

from taking
1 0^^^ = — 711%

d<f>-

where — m* is a constant, and m must be an integer if the solution is to be

single valued. The solution is

^ = G cos mt}}

D

sin m<l> (221).

We must now have

i i (d _ «) ^
1 a f _ ajij ^

safr o--v)w- 1)

and this can only be satisfied by taking

together with

Equations (222) and (223) are identical with the equation already dis-

cussed in §§ 273, 274. The solutions are known to be

E = AP-(?) + ^(2-(a
H=AT?(77)+i?'(2j(7;),

where a = n (n -f- 1) and P,7» QH are l^l^e associated Logendrian functions

already investigated. Combining the values just obtained for B, H with

the value for d) given by equation (221), we obtain the general solution

F = 2:S5H4>

« 22 [AP-{^) -h BQ:m {A7-(i7) + B’Q-iri)] {Ceos -H 2> sin m</,j.

mn

At infinity it is easily found that

^ = 00, f =CO.sg,
V ar* -f- w*

while at the origin »7 = 1, f = 0.

Thus in the space outside any spheroid, the solution P?(f)Qn(^) is finite

everywhere, while, in the space inside, the finite solution is
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Oblate Spheroids.

299. For an oblate spheroid, a*- 6* is negative, so that in equation (218)
we replace 6*— a* by /«*, so that k = ic, and obtain, in place of equations (219)
and (220),

« = K^ii),

w-*^((l-f>)(l-,•X

Replacing iff by f, we may take f, f and as real ortbogonal curvilinear

coordinates, connected with Cartesian coordinates by the relations

is>»/eV(l-f)(l + f»).

We proceed to search for solutions of the type

F=EZ<I>,

and find that B, ^ must satisfy the same equations as before, while Z must
satisfy

The solution of this is

Z = A'PT^(t^)+ RQ^({0,

and the most general solution may now be written down as before.

Problems in two Dimensions.

300. Often when a solution of a three-dimensional problem cannot be

obtained, it is found possible to solve a similar but simpler two-dimensional

problem, and to infer the main physical features of the three-dimensional

problem from those of the two-dimensional problem. We are accordingly

led to examine methods for the solution of electrostatic problems in two

dimensions.

At the outset we notice that the unit is no longer the point-charge, but

the uniform line-charge, a line-charge of line-density a having a potential

(cf. § 76>

C— 2<r logr.

Ilethod of Images,

301.

The method of images is available in two dimensions, but presents

no special features. An example of its use has already been given in § 220.

17
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Method of Inversion.

302. In two dinionsions the inversion is of course about a line. Let this

be represented by the point 0 in fig. 81.

Let PP\ QQ' be two pairs of inverse points. Let a line-charge ^ at Q
produce potential Vp at P, and let a

line-charge e' at Q produce potential

at jP', so that

V;. = (7-2(?logP(3;

V> = C'-2e' log Fq.

If we take e = e', we obtain

= C"-2elog^® (224).

Lot P be a point on an equipotential when there are charg(‘S e, at Qj-

Ca at Oa. etc., and let V denote the potential of this equipotential. Let V
denote the potential at P' under the influence of charges Ca, ... at the

inverse points of Q,, .... Tlien, by summation of equations such as (224),

y - V’" = — (2e log OP') + !£ (2e log OQ) + constants,

or V= constants — 2 (^e) log OP' (225).

The potential at P' of charges ei, e*, ... at the inverse points of Q,, Q.,, ...

plus a charge — at 0 is

F-f (7-h2(S>) log OP'.

and this by equation (225) is a constant. This result gives the method of

inversion in two dimensions

:

If a surface S is an equipotential under the influence af line-charges

eif ea, ... at Qi, Qa. •••* Ihen the surface which is the inverse of S about

a Line 0 will be an (qmpotential under the influence of line-charges ei, e^, ...

on the lines inverse to Qi, Qa» ••• together with a charge — Se at the line 0.

Two-dimensional Ifnrmonics.

303. A solution of L^iplaco’s equation can be obtained wliieh is the

analogue in two dimensions of tlie three-dimensional solution in spherical

harmonics.

In two dimensions we have two coord inate.s, r, 6, thc.se becoming

identical with ordinary two-dimensional polar coordinates. Laplace’s equa-

tion becomes

d^V1 d / dV^
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and on assuming the form

7 = 7^0,

in which R is a function of r only, and 0 a function of 0 only, we obtain the

solution in the form

V =V ®
^
(C cos nO + D sin nQ).

Thus the “ harmonic-functions in two dimensions are the familiar sine

and cosine functions. The functions which correspond to rational integral

harmonics are the functions

sin nOy r** cos nO.

In Xy y coordinates these are obviously rational integral functions of x

and y of degree n.

Corresponding to the theorem of § 240, that any function of position

on the surface of a sphere can (subject to certain restrictions) be expanded

in a series of rational integral harmonics, we have the famous theorem of

Fourier, that any function of position on the circumference of a circle can

(subject to certain restrictions) be expanded in a series of sines and cosines.

In the proof which follows (as also in the proof of
§ 240), no attempt is made

at absolute mathematical rigour : as before, the form of proof given is that

which seems best suited to the needs of the student of electrical theory.

Fourier*s Theorem,

304 . The value of any function F of position on the circumference of a

circle can he expressed, at every point of the circumference at which the

function is continuouSy as a series of sines and cosines, provided the function is

single-valued
y
and has only a finite number of discontinuities and of maxima

and minima on the circumference of the circle.

Let P (/ a) be any point outside the circle, then if R is the distance

from P to riiO element ds of the circle

(a, 6) we have

f - a*

f 'lirali'
dsr 1 .

Thi.s result can easily be obtained by inte-

gration, or can l)e seen at once from physical

considerations, for the integrand is the charge

induced on a conducting cylinder by unit line-

charge at P,

17-3



260 Methodsfor the Solution of Special Problem* [oh. viii

Let U8 now introduce a function u defined by

Then, subject to the conditions stated for F we find, as in § 240, that on

the circumference of the circle, the function u becomes identical with F.

Also we have

1_^ 1

/* + a® — (d - a)

^ 1

(/—

_ (a
]

Hence u = -F |l + 2 2 cos n(^ -
«)|

ds

^'f-Fde+is r «..(*- .) dD.
27rj 0«o ^ 1 v// J «-o

and on passing to the limit and putting a=/, this becomes

F=^(‘~*’Fd0+ is Fcoan{0-ei)d0 (227),
BmO "JT I J 9=0

expressing .F as a series of sines and cosines of multiples of a.

We can put this result in the form

OD

i’= /’ + S (tin COS na + bn sin na),

where «» = “
/ F cos nd dO,

TTJ 0

F sin nOdd,
TTJ 0

and

so that P is the mean value of F,

If F has a discontinuity at any point 6 = 13 of the circle, and if JJ, i5 s-i*®

the values of F at the discontinuity, then obviously at the point ^ ^ on

the circle, equation (226) becomes

so that the value of the series (227) at a discontinuity is the arithmetic

mean of the two values of F at the discontinuity (cf. § 256).
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305.

We could go on to develop the theory of ellipsoidal harmonics etc.

in two dimensions, but all such theories are simply particular cases of a vexy

general theory which will now be explained.

Conjugate Functions.

General Theory,

306.

In two-dimensional problems, the equation to be satisfied by the

potential is

d^V C'V

dx* dy*
= 0 (228);

and this has a general solution in finite terms, namely

^ =/(^ + ty) + F{x- iy) (229),

where / and F are arbitrary functions, in which the coefficients may of

course involve the imaginary i.

For V to be wholly real, F must be the function obtained from f on

changing % into - i. Let / (x + iy) be equal to -t- iv where u and v are

real, then F(x-^iy) must be equal to u — iv, so that we must have F' =* 2tt.

If we introduce a second function U equal to — 2v, we have

ZJ-H / r = - 2i; + 2ia

= 2i{u + iv)

= 2if{x + iy)

= <^ (a? + ly) (230),

where <f>{x-\- iy) is a completely general function of the single variable x + iy.

Thus the most general form of the potential which is wholly real, can be

derived from the most general arbitrary function of the single variable ® + ty,

on taking the potential to be the imaginary part of this function.

307.

If 4>{x-\-iy) is a function of x + iy, then i<f>(x + iy) will also be

a function, and the imaginary part of this function will also give a possible

potential We have, however, from equation (230),

i(j> (ic + iy) = i{U -I- 1 T

)

r+iz/,

shewing that CT is a possible potential.

Thus when we have a relation of the type expressed by equation (230),

either U or V will be a possible potential
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308.

Taking V to be the potential, we have by difTereutiation of

equation (230),

dU^ ,dV ^ ,

and hence

Equating real

.fdU
* Vda; dx ) dy dy

*

and imaginary parts in the above equation, we obtain

dJf^dV
dx dy

*

cy dx *

so that
dUdV^ dJldV
?x dx ^ dy dy

(231).

This however is the condition that the families of curves U = cons.,

V = cons., should cut orthogonally at every point. Thus the curves

U = cons, are the orthogonal trajectories of the equipotentials

—

i.e. are

the lines of force.

Representation of complex quantities,

309. If we write

j 4- ly

SO that z is a complex quantity, we can suppose

the position of the point P indicated by the value

of the single complex variable z. If z is expressed

in Demoivre’s form

z = = r (cos 6 + i sin 0),

then we find that r = \/a;’ + y® and 6 — tan”^ -. The
X

quantity r is known as the modulus of z and is denoted by \z\, while 6 is

known as the argument of z and is denoted by arg z. The representation of

a complex (piantity in a plane in this way is known as an Argand diagram.

310. Addition of complex quantities. Let P be ^ = a? + ly, and hit P' be

z = X + iy. The value of z 4- 2' is {x 4- of) + i{y y'), so that if Q represents

the value z + z' it is clear that OPQP' will be a parallelogram. Thus to

add together the complex quantities z and z' we complete the parallelogram

OPP'f aiul the fourth point of this parallelogram will represent z 4- z'.
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The matter may be put more simply by supposing the complex quantity

z — x + iy represented by the direction and length of a line, such that its

projections on two rectangular axes are x, y. For instance in fig. 83, the

value of z will be represented equally b}- either OP or P'Q. We now have

the following rule for the addition of complex quantities.

To find z + z\ describe a path from the origin representing z in magnitude

and direction, and from the extremity of this describe a path representing z,

^J'hc line joining the origin to the extremity of this second path will repre-

sent z-\- z'

311. Multiplication of complex quantities. If

z —X -Viy =T (cos 0 + i sin (9 ),

and / = a?' + iy = / (cos ^ + i sin 0'),

then, by multiplication

zz' = rr (cos {0 + 0') -f i sin {0 +
so that \zz'

\

= rr* =^\z\\z

arg {zz') = 0 -\-0' — arg z + arg z\

and clearly we can extend this result to any number of factors. Thus we

have the important rules:

The modulus of a product is the product of the moduli of the facterrs.

The argument of a product is the sum of the arguments of the factors.

There is a geometrical interpretation of multiplication.

In fig. 84, let OA —
1, OP = z, OP" — z and OQ = zz\

Then the angles QOA, P'0A being equal to 0 0^ and 0’ respectively,

the angle QOP* must be equal to 0, and therefore to PDA.

Moreover

OQ, _ OP
OF " OA '

each ratio being equal to r, so that the triangles

QOP' and POA are similar. Thus to multiply

the vector OP' by the vector OP, we simply

construct on OP' a triangle similar to AOP.

The Shine result can be more shortly ex-

pressed by saying that to multiply z' (= OF) by

z{= OP), we multiply the length OP' by |.?| and

turn it through an angle arg z.

ISo also to divide by z, we divide the length

of the line representing the dividend by |j| and

turn through an angle — arg z. In either Cfise an angle is positive when

the turning is in the direction which brings us from the axis x to that

of y alter an angle 7r/2.
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Conformal Representation.

312. We can now consider more fully the meaning of the relation

IJ + tF = ^{x + iy).

Let us write z^x^-iy, and TK = [7+ iF, z and W being complex

imaginaries, which we must now suppose in accordance with equation (230)

to be connected by the relation

W^j>{z) (232).

We can represent values of z in one Argand diagram, and values of W in

another. The plane in which values of z are represented will be called the

5-plane, the other will be called the IT-plane. Any point P in the 5-plane

corresponds to a definite value of z and this, by equation (232), may give one

or more values of TF, according as is or is not a single- valued function.

If Q is a point in the TF-plane which represents one of these values of W,

the points P and Q are said to correspond.

As P describes any curve S in the 5-plane, the point Q in the ir plane

which corresponds to P will describe some curve T in the F-plane, and the

curve T is said to correspond to the curve S. In particular, corresponding

to any infinitesimal linear path PP' in the 5-plano, there will correspond

a small linear element QQ' in the ir-plane. If OP, OP represent the values

z, z + dz respectively, then the element PP' will represent dz. Similarly the

dW
element QQ' will represent dW or dz.

Hence we can get the element QQ' from the element PP on multiplying

it by + 'T’his multiplier depends solely

on the position of the point P in the 5-plane, and not on the length or

dW
direction of the element dz. If we express or

(f>
(x -|- iy) in the form

dW
= <^' (« + iy) = p (cos X + i sin x).

we find that the element dW can be obtained from the corresponding

dW
element dz by multiplying its length by p or

, and turning it through

an angle ("^') • follows that any element of area in the 5-plane

is represented in the W-plane by an element of area of which the shape

is exactly similar to that of the original element, the linear dimensions are

p times as great, and the orientation is obtained by turning the original

element through an angle x-
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From the circumstance that the shapes of two corresponding elements

in the two planes are the same, the process of passing from one plane to

the other is known as conformal representation.

313. Let us examine the value of the quantity p which, as we have

seen, measures the linear magnification produced in a small area on passing

from the -^-plane to the ly’-plane.

We have
_dW

dz
II

dx

that
dy ^ dx\ V \9a?/ \9y/dy

dW\
The quantity p, or

|

i ,
is called the “ modulus of transformation.”

We now see that if V is the potential, this modulus measures the electric

//3 V\* /0 F’V*
intensity R, or

j
* ^ ~ this circumstance pro-

vides a simple means of finding cr, the surface-density of electricity at

any point of a conducting surface.

0
314. If ^ denote differentiation along the surface of a conductor, on

which the potential V is constant, we have

I
dz ds *

so that
47r 47r 9^

’

The total charge on a strip of unit width between any two points P, Q of

the conductor is accordingly

316. if, on equating real and imaginary parts of any transformation of

the form

U-^iV = <f>{x + iy) (234),

it is found that the curve f(x, y) = 0 corresponds to the constant value

V = C, then clearly the general value of V obtained from equation (234)

will be a solution of Laplace's equation subject to the condition of having

the constant value V=C over the boundary /(a?, y) = 0. It will therefore

be the potential in an electrostatic field in which the curve /(a?, y) = 0 may

be taken to be a conductor raised to potential C.
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316. From a given transformation it is obviously always possible to

deduce the corresponding electrostatic field, but on being given the con-

ductors and potentials in the field, it is by no means always possible to

deduce the required transformation. We shall begin by the examination of

a few fields which are given by simple known transformations.

Special TransformATioNa

I.

317. Considering the transformation W = we have

U + iV = iyY' = r" (cos nO + i sin n6\

so that F = r" sin nd. Thus any one of the surfaces r" sin n$ = constant

may be supposed .to be an equipotential, including as a special case

r" sin nO = 0,

in which the equipotential consists of two planes cutting at an angle ~

.

This transformation can be further discussed by assigning particular

values to n.

« =» 1. This gives simply F == y, a uniform field of force.

11 = 2. This gives F = 2fy, so that the equipotentials are rectangular

hyperbolic cylinders, including as a special ciise two planes intersecting

at right angles (fig. 85).

Fio. 85. Fin. 88.
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This trfinsforin«ation gives the field in the immediate neighbourhood of

two conducting planes meeting at right angles in any field of force. It also

gives the field between two cuaxal rectangular hyperbolas.

n = \. This gives — tF)*, so that

and on eliminating U we obtain

y* = 4 (a- + F*).

Thus the equipotentii Is are confocal and coaxal parabolic cylinders, in-

cluding as a special case (F=0) a semi-infinite plane bounded by the line

of foci.

This transformation clearly gives the fieid in the immediate neighbour-

hood of a conducting sharp straight edge in any field of force (fig. 86).

a = — 1. This gives

+ i F = ' (cos ^ ~ i sin 6),

and the equipotentials are

rF=sin^ or ic* -f-
y* —y= 0.

Thus the equipotentials are a series of circular cylinders, all touching

the plane y = 0 along the axis a; = 0, y = 0 (fig. 87).
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11. Tf = Iogj.

318. The transformation W =^\Qgz gives

U 4- iV=logr + i$,

so that the equ {potentials are the planes ^ = constant, a system of planes all

intersecting in the same line. As a special case, we may take 0=^0 and

d=^7r to be the conductors, and obtain the field when the two halves of a

plane are raised to different potentials. The lines of force, U = constant, are

circles (fig. 88).

If we take U to be the potential, the equipotentials are concentric

circular cylinders, and the field is seen to be simply that due to a uniform

line-charge, or uniformly electrified cylinder.

It may be noticed that the transformation

W = log(2: — a)

gives the transformation appropriate to a line-charge at ^*a.

Also we notice that

W=log
z — a

z + a

gives a field equivalent to the superposition of the fields given by

W =^\ogiz- a) and W = — log{z + a).

This transformation is accordingly that appropriate to two equal and opposite

line-charges along the parallel lines z = a and z^ — tu

This last transformation gives 0 when x = 0, so that it gives the

transformation for a line-charge in front of a parallel infinite plane.
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General Methods.

I. Untcursal Curves.

319. Suppose that the coordinates of a point on a conductor can be

expressed as real functions of a real parameter, which varies as the point

moves over the conductor, in such a way that the whole range of variation

of the parameter just corresponds to motion over the whole conductor. In

other words, suppose that the coordinates x, y can be expressed in the form

and that all real values of p give points on the conductor, while, conversely,

all points on the conductor correspond to real values of p.

Then the transformation

z^/(W) + iF(W) (235)

will give F — 0 over the conductor. For on putting F = 0 in equation (235)

we obtain

w-^iy=/(U) + iF{U),

so that w = / (17), y-F( U),

and by hypothesis the elimination of U will lead to the equation of the

conductor.

320. For example, consider the parabola (referred to its focus as origin),

y* = 4a (a? + a).

We can write the coordinates of any point on this parabola in the form

fl?+ a= aw*, y = 2aw,

and the transformation is seen to be

£ =: ttlf • - a + 2aiW » a (W— <)*,

agreeing with that which has already been seen in § 817 to give a parabola

as a pobsible eqiiipotential.
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As a second example of this method, let us consider the ellipse

The coordinates of a point on the ellipse may be expressed in the form

x = a cos
<f>, y = 6 sin

and the transformation is seen to be

s = a cos IK -f lb sin IK.

Pio. 89.

We can take o = c cosh a, b = c sinh sr, where c* = a* — b\ and the trans-

formation becomes

s = ccos(IK + w) = ccos|^7 + 1(7 + a)}.

The same transformation may be expressed in the better known form

z = c cosh W.

The equipotentials are the confocal ellipses

_?!_+ = i
+ X 6* + X

while the lines of force are confocal hyperbolic cylinders. On taking V
as the potential, we get a field in which the equipotentials are confocal

hyperbolic cylinders.
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IL Schwarzs Transformation,

322. Schwarz has shewn how to obtain a transformation in which one

equipotential can be any linear polygon.

At any angle of a polygon it is clear that the property that small elements

remain unchanged in shape can no longer hold. The reason is easily seen to

be that the modulus of transformation is either infinite or zero (cf. figs. 24

and 25, p. 61). Thus, at the angles of any polygon,

dW .
-j— = 0 or 00 .

dz

The same result is evident from electrostatic considerations. At an angle of a

conductor, the surface-density cr is cither infinite or zero (§ 70), while we have the

relation (§ 313),

_ li \dW\
^ An 4»r

I
dz

|

Let us suppose that the polygon in the ^-plane is to correspond to the

line F = 0 in the IK-plane, and let the angular points correspond to

U = Un U— etc.

Then, when Tr = M,, IF = etc.,

iiz

^ jy
must either vanish or become infinite. We must accordingly have

(236),

whore X,, X,, ... are numbers which may be positive or negative, while F
denotes a function, at present unknown, of W.

Suppose that, as we move along the polygon, the values of U at the

angular points occur in the order m,, u,, .... Then, on passing along the

side of tlie polygon whi di joins the two angles U=u^, U w,, we pass along

a range for which F = 0, and w, < 17 < w,. Thus, along this side of the

polygon, ir — Ml, W — ?/,, W — Mj, etc. are real quantities, positive or negative,

which retain the same sign along the whole of this edge. It follows that, as

we ])ass along this edge, the change in the value of arg
» as given

by equation (236), is equal to the change in argi’, the arguments of the

factors

(]r-«,)"‘(ir-M,)^...

undergoing no change.

Now arg measures the inclination of the axis 7 =» 0 to the edge of

the polygon at any point, so that if the polygon is to be rectilinear, this

must remain constant as we pass along any edge. It follows that there must

be no change in arg F as we pass along any side of the polygon.
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This condition can be satisfied by supposing to be a pure numerical

constant Taking it to be real, we have, equation (236),

.(237).

On passing through the angular point at which the quantities

TF" — «!, TT — Wa, etc. remain of the same sign, while the single quantity

TT - w, changes sign. Thus arg ( TT - «,) increases by tt, whence, by equa-

tion (237), arg increases by

The axis F= 0 does not turn in the TT-plane on passing through the

value TT = M,, while arg measures the inclination of the element of

the polygon in the ^-plane to the corresponding element of the axis F= 0 in

the IT-plane.

Hence, on passing through the value TT = w,, the perimeter of the

polygon in the ^-plane must turn through an angle equal to the increase in

arg I
namely Xq-tt, the direction of turning being from Ox to Oy, Thus

\,7r, XjTT, . . . must be the exterior angles of the polygon, these being positive

when the polygon is convex to the axis Ox. Or, if Oj, ... are the interior

angles, reckoned positive when the polygon is concave to the axis of j?, we

must have

Xi = ~ — 1. eta
TT

Thus the transformation required for a polygon having internal angles

«!, a*, -- ia

"“-1

.(238),

where t^i, t/ti ••• are real quantities, which give the values of U at the angular

points.

323. As an illustration of the use of Schwarz’s transformation, suppose

the conducting system to consist of a semi-infinite plane placed parallel to an

infinite plana

In fig. 90, let the conductor be supposed to be a polygon ABODE, which

is described by following the dotted lino in the direction of the arrows. The

points A, B, (7, E are all supposed to be at infinity, the points B and G
coinciding. Let us take A to be IT == — oo

, 27 or 6* to be IT = 0, Z) to be

TT = 1 and to be TT= + oo . The angles of the polygon are zero at {BC)

and 27r at D. Thus the transformation is

dz _pTT-l
dTT”^ TT ^
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giving upon integration

f = C(Tr-logT7+Z)} (239),

where (7, D are constants of integration which may be obtained from the

w'-Ti

w = +<»

Fio. 90.

condition that the two planes are to be, say, y = 0 and y^h. From these

h
conditions we obtain (7 = -

,
D = iV, so that the transformation is

TT

z=-[W-\ogW^iir] (240).
TT

On replacing z, TTby - W, the ti*ansformation assumes the simpler fonn

z^-{W+\ogW) (241).
IT

III. Successive Trans/ormafious,

821. If f ^=/(f) are any two transformations, then by elimi-

nation of
S’,

a relation

W=^F(z) (242)

is obtained, which may be regarded as a new transformation.

We may regcard the relation f = ^ (^) as expressing a transformation from

the 2-plane into a f-plane, while the second relation W=f(^) expresses a

further transformation from the f-plane into a IF-plane. Thus the final

transformation (242) may be regarded as the result of two successive trans-

formations.

Two uses of successive transformations are of particular importance.

325. Conductor influenced by line-charge. The transformation

Tr= log
f+a'

gives, as we have seen (§ 318) the solution when a line-charge is placed at

f = tt in front of the plane represented by the real axis of f. Let the further

transformation f =f \z) transform the real axis of ? into a surface S, and the

point f= a into the point ^ = ^o. so that a =/ (^p). Then the transformation

ir = iog
/W+/(^o)
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gives the solution when a line-charge is placed at z = ZQin the presence of

the surface S, In this transformation it must be remembered that U, and

not V, is the potential (cf. § 318).

326. Conductors at different potentials. Let us suppose that the trans-

formation transforms a conductor into the real axis of The

further transformation W = C -^D log f (§ 318) will give the solution when

the two parts of this plane on different sides of the origin are raised to

different potentials G and G -i- wD.

Thus the transformation obtained by elimination of
(f,

namely

W = G+ D \og
<f>

(z),

will transform two parts of the same conductor into two parallel planes,

and so will give the solution of a problem in which two parts of the same

conductor are raised to different potentials.

Examples of the use of Conjugate Functions.

327. Two examples of practical importance will now be given to illus-

trate the use of the methods of conjugate functions.

Example I. Parallel Plate Condenser.

328. The transformation

TT

has been found to transform the two plates in fig. 90 into the positive and

negative parts of the real axis of f. The further transformation W = log f

gives the solution when these two parts of the real axis of f are at potentials

0 and TT respectively (§ 326).

Thus the transformation obtained by the elimination of namely

z = -{e'^-W + iir) (243),
TT

Will transform the two planes of fig. 90—one infinite and one semi-infinite-

into two infinite parallel planes. Thus equation (243) gives the trans-

formation suitable to the case of a semi-infinite plane at distance h from

a parallel infinite plane, the potential difference being tt.

By the principle of images it is obvious that the distribution on the

upper plate is the same as it would be if the lower plate wore a semi-

infinite plane at distance 2A instead of an infinite plane at distance h. Tln^

equipotentials and lines of force for either problem are shewn in fig. 91.



326-328] Conjugate Functions 276

Separating real and imaginary parts in equation (243)^

*=-(e‘'cosF-£r),
IT

y = -{e^e,\nV-V+ir).
TT

Thus the equipotential F'= 0 is the line y = h, the equipotential F = w is

the line y = 0.

Fio. 91.

On the former equipotential, the relation between x and U is

x=-ie^-U) (244).
IT

When Cf = — 00
,

a? = 4-oo; as U increases, x decreases until it reaches a

minimum value x = hjir when U= 0; ana as U further increases through

positive values x again increases, reaching a; = oo when i/'= + oo. Thus as

U varies while F = 0, the path described is the path PQR in Eg. 91.

The intensity at any point is

""
dz

At a point on the equipotential F = 0, the surface-density is

R 1

^ 47r 4A(e*^— 1)*
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At — 80 that ^ ^ I
approach Q, o* increases and finally

becomes infinite at Q, while after passing Q and moving along QR, the upper

side of the plate, a decreases, and ultimately vanishes to the order of a*

The total charge within any range Ui, is, by equation (233),

It therefore appears that the total charge on the upper part of the plate QR
is infinite.

Let us, however, consider the charges on the two sides of a strip of the

plate of width I from Q, t.e. the strip between x — hjir and = Z + A/tt. The

two values of U corresponding to the points in the upper and lower faces at

which this strip terminates, are from equation (244) the two real roots of

l + ^
= (245).

IT It

Of these roots we know that one, say Uu is negative and the other (Z/g)

is positive. If I is large, we find that the negative root Ui is, to a first

approximation, equal to

and this is its actual value when I is very large. Thus the charge on the

lower plate within a large distance I of the edge is

h

4

and therefore the disturbance in the distribution of electricity as we approach

Q results in an increase on the charge of the lower plate equal to what would

be the charge on a strip of width hjir in the undisturbed state.

If Z is large the positive root of equation (245) is

so that the total charge on a strip of width Z of the upper plate approximatt^s,

when Z is large, to

47r

Thus although the charge on the upper plate is infinite, it vanishes in

comparison with that on the lower plate.
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Example IT, ' Bend of a Leyden Jar,

329. The method of conjugate functions enables us to approximate to

the correction required in the formula for the capacity of a Leyden Jar, on

account of the presence of the sharp bend in the plates.

A
- GO

— fc
—

F

r--oD

0

s
’'=0

Fia. 93.

As a preliminary, let us find the capacity of a two-dimensional condenser

formed of two conductors, each of which consists of an infinite plate, bent

into an L-shape, the two L’s being fitted into one another as in fig. 92.

Let us assume the five points A, B, (CD), E, F to he f = -x, — a, 0,

+ 6, + 00 respectively, and let us for convenience suppose the potential

difference which occurs on passing through the value = 0 to be tt. Then
the transformation is

where W = log f (cf. § 326).

To int^^iate, we put li = (f+ a)”^ (f — 6)i, and obtain

+ + 0 (S46).

where (7 is a constant of integration.

To make C vanish, we must have z^O when u = 0, i.e, at the point E.

We shall accordingly take E as origin, so that C = 0.
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At we now have f= — a, « — cjo , and therefore

E^± ITA isj^ ±

Thus the distances between the pairs of arms are tt A and ttA

respectively.

Let P be any point in EF which is at a distance from E great compared

with EB, Let the value of ^ at P be ^p, so that tp is positive and greater

than h.

We have W — U’ + tV’* log f, so that along the conductor FED, V^O
and U == log

The total charge per unit width on the strip EP is, by formula (233),

f^<rdS =^ ( ^ ('°g S’P
- log 6)

If P is far removed from E, the value of is very groat, and since

an^ + 6

^ 1 - u*

the value of will be nearly equal to unity at P.

From equation (246),

(248),

so

tan“"> m + 2A log (1 + ti) - A log (1 - u*\

that log (1 - M*) = 2 log (1 + 1*) — 2 tan“‘^\^~~A

in which the terms log(l —zlA, are large at P in comparison with the

others. Again, from equation (248), we have

log f = log (au* + 6) - log (1 - M*) (2/30),

in which log
f, log(l— u*) are large at P, in comparison with the term

log(au* + 6). Combining equations (249) and (250),

log ? =a log (au* + t) - 2 log (1 + w) + 2 tan“* 3
(251),

in which the terms log f and ^ are large at P in comparison with the other

terras. At P we may put u = 1 in all terms except log f and zjA, and obtain

as an approximation

log ?/. = log (a + 6) - 2 log 2 + 2 tan"’
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The value of Zp is of course Xp+ iyp, or KP. Thus, from the equation

just obtained, equation (247) may be thrown into the form

/

= 4
^- {log (l + 1)

- 2 log 2 + 2 tan-
4/j + ^|...(252).

If the lines of force were not disturbed by the bend, we should have

/

Equation (252) shews that [
trds is greater than this, by an amount

J E

i {log (l + I)
- 2 log 2 + 2 tan-

,v/s)
<253)-

Let us denote the distances between the plates, namely irA
\J^

<^nd irA,

by h and k respectively, so that ^ . Expreasion (253) now becomes

SO that the charge on the plate EP is the same as it would be in a parallel

plate condenser in which the breadth of the strip was greater than EP by

If,
1

When k = k, this becomes

+ 2h tail' 1}-

~ 2
^
or *2794.

Multiple-valued Potentiaia

330. There are many problems to which mathematical analysis yields

more than one solution, although it may be found that only one of these

solutions will ultimately satisfy the actual data of the problem. In such

a case it will often be of interest to examine what interpretation has to

be given ‘o the rejected solutions.

The problem of deteniiining the potential when the boundary conditions

are given is not of this class, for it has already been shewn 186—188)

that, subject to specitiod boundary conditions, the termination of the poten-

tial is absolutely unicpie. But it may happen that, in searching for the

required solution, we come upon a multiple-valued solution of Laplace’s

equation. Only one value can satisfy the boundary conditions, but the

interpretation of the other values is of interest, and in this way we arrive

at the study of multiple-valued potentials.
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Conjugate Functions on a Riemanii*s Surface,

331. An obvious case of a multiple-valued potential arises from the

conjugate function transformation

W = <j>{z) (264).

when 0 is not a single-valued function of z. Such cases have already

occurred in §§ 317, 320, 323, etc.

The meaning of the multiple-valued potential becomes clear as soon

as we construct a Riemann’s surface on which can be represented as

a single-valued function of position. One point on this Riemann s surface

must now correspond to each value of W, and therefore to each point in

the IV^-plane. Thus we see that the transformation (254) transforms the

complete T^-plane into a complete Riemann's surface. Corresponding to

a given value of z there may be many values of the potential, but these

values will refer to the different sheets of the Riemann’s surface. If any

region on this surface is selected, which does not contain any branch points

or lines, we can regard this region as a real two-dimensional region, and the

corresponding value of the potential, as given by equation (254), will give

the solution of an electrostatic problem.

332. To illustrate this by a concrete case, consider the transformat ion

F = (255).

>K-plane.

Fia. 98.

which has already been considered in § 317. The Riemann’s surface appro-

priate for the representation of the two-valued function may be supposed

to be a surface of two infinite sheets connected along a bnanch line which

extends over the positive half of the real axis of z.

To regard this surface as a deformation of the TV-plane, we must suppose

that a slit is cut along the line OB (fig. 93) in the TV-plane, and that the
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two edges of the slit are taken and turned so that the angle 27r, which they

originally enclosed in the H'^-plane, is increased to 47r, after which the edges

are again joined together.

The upper sheet of the Riernann's surface so formed will now represent

the upper half of the IT-plane, while the lower sheet will represent the lower

half. Two points /J, which represent equal and opposite values of W,

say + Wo, will (by equation (255)) be represented by points at which z has

the same value; they are accordingly the two points on the upper and

lower sheet respectively for which z has the value

A circular path jjqrs surrounding 0 in the IT-plane becomes a double

circle on the .^-surface, one circle being on the upper sheet and one on

the lower, and the path being continuous since it crosses from one sheet

to the other each time it meets the branch -line.

A line a/S in the upper half of the IK-plane becomes, as we have seen,

a parabola afi on the upper she(‘t of the ^-surface. Similarly a line in

the lower half of the IK-plane will become a parabola on the lower sheet

of the .^-surface. The space outside the parabola a/3 on the upper sheet of

the ^-surface transforms into a space in the IF-plane bounded by the line aff

and the line at infinity. Consequently the transformation under consideration

gives the solution of the electrostatic problem, in which the field is bounded

only by a conducting parabola and the region at infinity. The same is not

true of the space inside the j)arabola a^, for this transforms into a space in

the IT-plane bounded by both the line and the axis AOB. It is now

clear that the transformation has no application to problems in which the

electrostatic field is the space Jiiside a parabola

In general it will be seen that two points, which are close to one another

on one sheet of the z-surface, but are on opposite sides of a branch-line,

will transform into two points which are not adjacent to one another in the

If-plane, and which therefore correspond to different potenti.ds. Conse-

quently we cannot solve a problem by a transformation which requires a

branch-line to be introduced into that part of the Riernann’s surface which

represents the electrostatic field.

Images on a Riernann's Surface.

333. In the theory of electrical images, a system of imaginary charges is

pliiced in a region which does not form part of the actual electrostatic field.

When a two-dimensional problem is solved by a conjugate function trans-

formation, the electrostatic field must, as we have seen, be represented by

a region on a single sheet of the corresponding Riernann’s surface, and this

region must not be broken by branch-lines. The same, however, is not true

of the part of the field in which the imaginary images are placed, for this
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may be represented by a region on one of the other sheets of the Riemann's

surface.

To take the simplest possible illustration, suppose that in the f-plane we

have a line-charge e along the line represented by the point P, in front of

plane z- surface

P* {upper sheet)

B

A O B O A

P‘»{lou'er sheet)

Pro. 94.

the uninsulated conducting plane represented by the real axis AB. The

solution, as we know, is obtained by placing a charge — c at the point P,
which is the image of P in AOB. The value of the potential (U) is given,

as in § 818, by

U+iV=Alogl^l''.

Let us now transform this solution by means of the transformation

(256).

The conducting plane AOB transforms into a semi-infinite plane OB, which

may be taken to coincide with the branch-line of the Riemann's surface.

The charge e at P becomes a charge at a point P on the upper sheet of the

surface, while the image at P' becomes a charge at a point P' on the lower

sheet. Thus we can replace the semi-infinite conductor OB \n the ^-i)Iane

by an image at a point P' on the lower sheet of a Riemann’s surface, and we

obtain the field due to a line-charge and a semi-infinite conductor in an

ordinary two-dimensional space.

From the transformation usod, the potential is found to be given by

U + H^ = A\og

in which U is the potential, z = a is the point (a, a) on the upper sheet, and

z s — a is the image on the lower sheet.

In calculating a potential on a Riemann's surface, we must not assume

the potential of a line-charge e at the point (a, a) to be

C-2e log R (257),

where B is the distance from the point (a, a). In fact, this potential would

obviously have an infinity both at the point (u, a) on the upper sheet, and

also at the point (a, o) on the lower sheet, and 0 would be the potential of

two line-charges, one at the point (a, a) on each sheet.
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The appropriate potential-function for a single charge can easily be

found.

As in the problem just discussed, it is clear that the potential due to the

single line-charge at (a, a) on the upper sheet is the value of U given by

U ^-iV^ C A \og{^z - ^/a)

iZ UL

C + A log (r^^ — or e^)

so that

— (7 -h A log cos
I
— Va cos -I- 1 sin ^ — Va sin ,

U = G+^A log I^Vr cos
^
— Vacos -f- ^^/r sin

|
sin

|

— C + hA Log {r — 2 \/ar cos ^ - o) + a},

and if this is to be the potential due to a line-charge a, it is clear, on

examining the value of U near the point (a, a), that the value of A must be
— 2e. Thus the potential function must be

(7 — e log {r — 2 Vur cos J (^ — a) -H a} (258),

instead of that given by expression (257), namely,

G — e log — 2ar cos (^ - a) + a*} (259).

It will be noticed that both expressions are single-valued for given values

of (r, 0), but that for a given value of z, expression (258) has two values,

corresponding to two values of 0 differing by 27r, while expression (259) has

only one value. Or, to state the same thing in other words, the expression

(259) is y)orio(lic in 0 with a period 27r, while expression (258) is periodic

with a period 4>Tr.

Potential in a liiemanns Space.

334. Sommerfeld* has extended these ideas so as to provide the solution

of problems in three-dimensional space.

His method rests on the determination of a multiple-valued potential

function, tf'c function being capable of representation as a single-valued

function u! position in a “ Kieinann's space,” this space being an imaginary

space which bears the same relation to real three-dimensional space as a

Kieinann’s surface bears to a plane.

336. The best introduction to this method will be found in a study of

the simplest possible example, and this will be obtained by considering the

three-dimensional problem analogous to the two-dimensional problem already

discussed in § 383.

* *‘Ueber verzweigte Potentiale im Baum,*' Fioc, Lond. Math. Soe. 2S, p.895, and SO, p. 161.
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We suppose that we have a single point-charge in the presence of an

uninsulated conducting semi-infinite plane bounded by a straight edge. Let

us take cylindrical coordinates r, 6, z, taking the edge of the plane to be

r s= 0, the plane itself to be ^ = 0, and the plane through the charge at right

angles to the edge of the conductor tjo be ^ = 0. Let the coordinates of the

point-charge be a, a, 0.

The Riemann’s space is to be the exact analogue of the Riemann’s

surface described in § 332. That is to say, it is to be such that one revolu-

tion round the line r = 0 takes us from one *• sheet ” to the other of the

space, while two revolutions bring us back to the starting-point. Thus, for

a function to be a single-valued function of position in this space, it must be

a periodic function of 0 of period 47r.

Let us denote by /(r, 0, z, a, a, 0) a function of r, 0^ and z which is to

satisfy the following conditions :

(i) it must be a solution of Laplace’s equation ;

(ii) it must be a continuous and single-valued function of position in

the Riemann’s space

;

(iii) it must have one and only one infinity, this being at the point

a, a, 0 on the first “sheet” of the space, and the function

approximating near the point to the function where R is

the distance from this point;

(iv) it must vanish when r =* oo

.

It can be shewn, by a method exactly similar to that used in § 186, that

there can be only one function satisfying these conditions. Hence the func-

tion /(r, 0, z, a, a, 0) can be uniquely determined, and when found it will be

the potential in the Riemann’s space of a point-charge of unit strength at the

point a, a, 0.

Consider now the function

/(r, 0, z, a, a, 0) -/(r, 0, z, a, - a, 0) (260).

which is of course the potential of equal and opposite point-charges at the

point a, a, 0, and at its image in the plane ^ = 0, namely, the point

a, - a, 0.

This function, by conditions (i) and (iv), satisfies Laplace's equation and

vanishes at infinity. On the first sheet of the surface, on which a varies

from 0 to 27r (or from 47r to Gtt, etc.), it has only one infinity, namely, at

a, cr, 0, at which it assumes the value
JtC

From the conditions which it satisfies, the function /(r, 0, z, a, o, 0) must

clearly involve 0 and a only through ^ — a, and must moreover be an even

function of ^ — or. It follows that, when 0=^0, expression (260) vanishes.
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A^ain, since the function / is periodic in 0 with a period 27r, it follows

that, when ^ — 27r, expression (260) may be written in the form

/(r, 27r. z, a, a, 0) -/(r, - 2ir, z, a, - a, 0),

and this clearly vanishes. Thus expression (260) vanishes when ^ = 0 and

when 6 2ir, That is to say, it vanishes on both sides of the semi-infinite

conducting plane.

It is now clear that expression (260) satisfies all the conditions which

have to be satisfied by the potential. The problem is accordingly reduced

to that of the determination of the function /(r, x, a, a, 0).

336. Let us write

r = o =

then the distance R from r, 6, z to a, a, 0 is given by

72* = r® — 2ar cos (^ — a) + a* -f z^

= 2ar (cos i (p — p') — cos (0 — a)} +

Take new functions R' and /(u) given by

B'* = 2ar [cos i (p — p') - cos {0 - w)} -h at®,

The function f{u) has infinities when = o ± 27r, a + 47r, its residue

being unity at each infinity. Also, when t* = a, the value of R' becomes R.

Hence the integral

/^//(«)<^“ (261),

where the integral is taken round any closed contour in the w-plane which

surrounds the value ii = a, hut no other of the infinities of/(m), will have as

its value 2i7r We accordingly have

1 1 r 1

The integral just found gives a form for the potential function in ordinary

space which, as we shall now see, can easily be modified so as to give the

potential function in the Riemann’s space which we are now considering.

We notice first that
,
regarded as a function of r, 0, and z, is a solution

of Laplace s equation, whatever value u may have. Hence the integral (261)

will be a solution of Liiplace’s equation for all values of/(a), for each term

of the integrand will satisfy the equation separately.

If we take
iu

e?* -s*
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we see that the infinities of f(v) occur when u = o, a + 47r, a ± Stt, etc., and

the residue at each is unity. Hence, if we take the integral round one

infinity only, say u = a, the value of

will become identical with i at the point at which R' = 0. Moreover,

expression (263) is, as we have seen, a solution of Laplace’s equation: it

is seen on inspection to be a single-valued function of position on the

Riemann’s surface, and to be periodic in 6 with period 4w. Hence it is the

potential-function of which we are in search. Thus

/(r, e, z, a, a, 0) =
47r _

^ e- e

Su

^ — 2ar cos (6 — a* -H

The details of the integration can be found in Sommerfeld’s paper,

value of the integral is found to be

12 /<r + T
P - tan-> A / ,Htt V' <r — t

The

where t = cos ^ — a), o- = cos i (p — pO*

Other systems of coordinates can be treated in the same way
;
details will

be found in the papers to which reference has already been made.

337. The present chapter has attempted to give an account of the

principal methods available for the solution of electrostatic problems. A few

examples have been given of each method, but no attempt has been made to

enumerate all the problems which can be solved. The reader who wishes to

study particular problems more fully may be referred to the following works

:

Sir W. Thomson (Lord Kelvin). Papers on Electricity and Maynetism.

In particular a number of examples of images and inversion will bo found here, with
numerical calculations.

Maxwell. Electricity and Magnetism. Vol. i. (3rd Edn.).

In Chap. IX. the theory of spherical harmonics is developed, and the problem of the

distribution of electricity on a nearly .spherical conductor free in space, as also that on a
ne.irly spherical conductor eiiclo.scd in a nearly spherical and nearly concentric condur t-

ing vessel, are solve<l in detail. The coefficients of ca|)acity and induction of two spherical

conductors are investigated by sphericiil harmonics. Chapter xi. contains examples of the
raethwl of image.s and inversion. Chapter xii. contain.s a number of examples of conjugate
functions, some being of special importance in the theory of electrostatic instruments.

J. J. Thomson. ReccnX Researches in Electricity and Magnetism.

Chapter in. contains important examples of conjugate function transformations. In

particular problems are solved which enable us to estimate the effect on the capacity of a
condcn.ser produced by the slit between a guard ring and the moveable plate of the con-

denser. Transformations are given which solve the problems of (i) a condenser formed by
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two parallel and equal plates of finite breadth ; (ii) a condenser formed hj two parallel and

equal strips placed in the same plane
;

(iii) a pile of plates
;

(iv) a system of 2n plates

arranged radially at angles vr/n with one another, alternate plates being at the same potential.

Eirchhoff. Oeaammelte abhandlungen.

A formula is given for the capacity of two circular plates of an uniform thickness placed

coaxially at any distance apart.

EXAMPLES.

1. An infinite conducting plane at zero potential is under the influence of a charge of

electricity at a point 0. Shew that the charge on any area of the plane is proportional to

the angle it subtends at 0.

2. A charged particle is placed in the apace between two uninsulated planes which

intersect at right angles. Sketch the sections of the equipotentials made by an imaginary

plane through the charged particle, at right angles to the planes.

3. In question 2, let the particle have a charge e, and l)c equidistant from the planes.

Shew that the total charge on a strip, of which one edge is the line of intersection of the

planes, and of which the width is equal to the di.stance of the })articlo from this line of

intersection, is

4. In question 3, the strip is insulated from the remainder of the planes, these being

still to earth, and the particle is removed. Find the potential at the point formerly

occupied by the particle, produced by raising the strip to potential V.

5. If two infinite plane uninsulated conductors meet at an angle of 60°, and there is a

charge at a point equidistant from each, and distant r from the line of intersection, find

the electrification at any point of the planes. Shew that at a point in a principal plane

through the charged point at a distance rj3 from the line of intersection, the surface

density is

6.

Two small pith balls, each of mass ni, arc connected by a light insulating rod.

The rod is supported by parallel threads, and hangs in a horizontal position in front of an

infinite vertical plane at potential zero. If the balls when charged with e units of

electricity arc at a distance a from the plate, equal to half the length of the rod, shew

that the inclination 6 of the strings to the vertical is given by

tand =
Amga^

7. What is the least positive charge that must be given to a spherical conductor,

insulated and influenced by an external point-charge e at distance r from its centre, in

order that the surface density may be everywhere positive?

8. An uninsulated conducting sphere is under the influence of an external electric

charge; find the i*atio in which the induced charge is divided between the part of its

surface in direct view of the external charge and the remainii g part.

9.

A point-charge e is brought near to a spherical conductor of radius a having a

charge K. Shew that the particle will be repelled by the sphere, unless its distance from

the nearest point of its surface is less than Ja n/I ,
approximately.
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10. A hollow conductor has the form of a quarter of a sphere bounded by two

perpendicular diametral planes. Find the imago of a charge placed at any point

inside.

11. A conducting surface consists of two infinite planes which meet at right angles,

and a quarter of a sphere of radius a fitted into the right angle. If the conductor is at zero

potential, and a point-charge e is symmetrically placed with regard to the planes and the

spherical surface at a great distance / from the centre, shew that the charge induced on

the spherical portion is approximately

12. A point-charge is placed in front of an infinite slab of dielectric, bounded by a

plane face. The angle between a line of force in the dielectric and the normal to the face

of the slab is a
;
the angle between the same two lines in the immediate neighbourhood of

the charge is /3. Prove that a, are connected by the relation

1^. An electrified particle is placed in front of an infinitely thick plate of dielectric,

w that the particle is urged towards the plate by a force

K- l ^
K-f i 4c/=»’

where d is the distance of the point from the plate.

14. Two dielectrics of inductive capacities ic| and tire separated by an infinite plane

face. Charges Ci, €2 are placed at points on a line at right angles to the plane, each at a

distance a from the plane. Find the forces on the two charges, and explain why they are

unequal.

15. Two conductors of capacities Cj, C2 in air are on the same normal to the plane

boundary between two dielectrics «|, * 2 ,
at great distances o, b from the boundary. They

are connected by a thin wire and charged. Prove that the charge is distributed between

them approximately in the ratio

J 1 _ K| - 2iC3 1 ,
a K|--)C2 2iC, 1

**
lc2 26 (isi-|-»c2) («i + k2)(«+ &)J

’ jci 2a(<,-fK2) (ki + »'2) (a +W
16. A thin plane conducting lamina of any shape and .size is under the influence of a

fixed electrical di.stribution on one side of it. If cri be the density of the induced charge

at a point P on the side of the lamina facing the fixed distribution, and o-i that at the

coi 1 c.^ponding jioint on the other side, prove that 0*1 — 0-2= (Tq, where o-q is the density at P
of the distribution induced on an infinite plane conductor coinciding with the lamina.

17. An infinite plate with a hemispherical boss of radius a is at zero potential under

the influence of a point-cbaigc e on the axis of the boss distant /from the plate. Find the

surface density at any point of the plate, and shew that the charge is attracted towards

\he plate with a force

4/=^ (/'-«•)«•

18. A conductor is formed by the outer surfaces of two equal spheres, the angle

between tbeir radii at a point of intersection being 27r/3. Shew that the capacity of the

conductor so formed is

2V3
’

where a is the radius of either sphere.
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Within a spherical hollow in a conductor connected to enrth, equal point-charges

€ are placed at equal distances / from the centre, on the same diameter. Shew that each

is acted on by a force equal to

. j_-i
4/^J'

20.

A hollow sphere of sulphur (of inductive capacity 3) whose inner radius is half its

outer is introduced into a uniform field of electric force. Prove that the intensity of the

field in the hollow will be less than that of the original field in the ratio 27 : 34.

21. A conducting spherical shell of radius a is placed, insulated and without charge,

in a uniform field of electric force of intensity F. Shew that if the sphere be cut into two

hemispheres by a plane perpendicular to the field, these hemispheres tend to separate and

require forces equal to to keep them together.

22. An uncharged insulated conductor formed of two equal spheres of radius a

cutting one another at right angles, is placed in a uniform field of force of intensity F^

with the line joining the centres parallel to the lines of force. Prove that the charges

induced on ^ho two spheres are ^Fa^ and ~‘^Fa\

^23^ A conducting plane has a hemispherical boss of radius a, and at a distance/from
the^ntre of the boss and along its axis there is a point-charge e. If the plane and the

boss be kept at zero potential, prove that the charge induced on the boss is

-a

24. A conductor is bounded by the larger portions of two equal spheres of radius a

cutting at an angle and of a third sphere of radius o cutting the two former

orthogonally. Shew that the capacity of the conductor is

c+ a ( 5 — 3 VS) “ {2 (a-+ c®)
“ ^— 2 (a^ -H 3c'®)

“ ^+ (a* -f 4c®)
“

^}.

25. A spherical conductor of internal radius 6, which is uncharged and insulated,

surrounds a spherical conductor of radius a, the distance between their centres being c,

which is small. The charge on the inner conductor is E. Find the potential function

for points between the conductors, and shew that the surface density at a point P on the

inner conductor is

47r \a* h^— a^ )*

where B is the angle that the radius through P makes with the line of centres, and terms

in c® are neglected.

26 If a i>article charged with a quantity e of electricity be placed at the middle point

of the line joining the centres of two equal spherical conductors kept at zero potential,

shew that the charge indut?ed on c:vch sphere is

- 2<jm ( I - wi -I-w* - 3711®+ 4»i*),

neglecting higher powers of m, which is the ratio of the radius to the distance between the

centres of the spheres.

27. Two insulated conducting spheres of radii a, 6, the distance e of whose centres

is large compared with a and 6, have charges Eu E% respectively. Shew that the potential

energy is approximately

19



290 Methodsfor the Solution of Special Problems [ch. viii28.

Shew that the force between two insulated spherical conductors of radius a placed

in an electric field of uniform intensity F perpendicular to their line of centres is

2aS 8a«
.

\

C»
*<!»* "7*

c being the distance between their centres.

29.

Two uncharged insulated spheres, radii a, 6, are placed in a uniform field of force

so that their line of centres is parallel to the lines of force, the distance e between their

centres being great compared with a and h. Prove that the suiface density at the point

at which the line of centres cuts the first sphere (a) is approximately

F ^ 663 28^263 57^3^,3

4^ + +-3r- + -^6- + -is-+-

30.

A conducting sphere of radius a is embedded in a dielectric {K) whose outer

boundary is a concentric sphere of radius 2a. Shew that if the system be placed in

a uniform field of force Fj equal qiiantities of positive and negative electricity are

8ei)aratcd of amount
9/W
6A'-i-7‘

31.

A sphere of glass of radius a is held in air with its centre at a distance c from a

point at which there is a positive charge e. Prove that the resultant attraction la

2c2 e .. a^~^dx\

1-a:* r
where /3«(Ar- 1)/(A'+1).

32. A conducting spherical shell of radius a is placed, insulated and without charge,

in a uniform field of force of intensity F. Shew that if the sphere be cut into two

hemispheres by a plane perpendicular to the field, a force a^F* is required to prevent

the hemispheres from separating.

33. A spherical shell, of radii a, 6 and inductive capacity A, is placed in a uniform

field of force F. Shew that the force inside the shell is uniform and equal to

9KF
9A'-2(A-l)2(63/a»-l)*

34. The surface of a conductor being one of revolution whose equation is

4 I

r 12’

where r, / arc the distances of any point from two fixed points at distance 8 apart, find

the electric density at either vertex when the conductor has a given charge.

35. The curve

1 _ f a+4?
^

a — x
j

1

+ ' {(x+o)J+y»;» {(x-a)2+y»}S<''“’

when rotated round the axis of x generates a single closed surfiice, which is made the

bounding surface of a conductor. Shew that its capacity will be a, and that the surface

density at the end of the axis will he ej^na^ where e is the t<jtal charge.

36. Two equal spheres each of radius a are in contact. Shew that the capacity of the

conductor so formed i.s 2a lug^ 2.
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87. Two spheres of radii a, h are in contact, a being large compared with h. Shew
that if the conductor so formed is raised to potential the charges on the two spheres are

Va ( r;(a+fe)*̂
and Va

(

TrSfta \

(i{a + b)y-

38.

A conducting sphere of radius a is in contact with an infinite conducting plane.

Shew that if a unit point-charge be placed beyond the sphere and on the diameter through

the point of contact at distance c from that point, the charges induced on the plane and

sphere are
Tra ^ rra . ira . ira _

cot— and — cot 1.
c c c c

39.

Prove that if the centres of two equal uninsulated spherical conductors of radius

a be at a distance 2c apart, the charge induced on each by a unit charge at a point

midway between them is

2 ( - l)»8ech na,

1

where c»a cosh a.

40.

Show that the capacity of a spherical conductor of radius a, with its centre at a

distance c from an intinite conducting plane, is

SO

a sinh a X cosech ruu

1

where c«acosh a.

41.

An insulated conducting sphere of radius a is placed midway between two

parallel infinite uninsulated planes at a great distance 2c apart Neglecting
,
shew

that the capacity of the sphere is approximately

a |l -h
^
log2|.

42.

Two spheres of radii ri, rj touch each other, and their capacities in this position

are Ci, Shew that

where /=
ri

43.

A conducting sphere of radius a is placed in air, with its centre at a distance e

from the plane face of an infinite dielectric. Shew that its capacity is

where cosh a = c/a.

a sinh a
n- 1

coscch no,

44.

A point-charge e is placed between two parallel uninsulated infinite conducting

planes, at distances a and b from them respectively. Shew that the potential at a point

between the planes which is at a distance § from the ch.irge and is on the line through the

charge pei'peiidicular to the planes is

€

2(aT6)

f r'/' * ^ r /26+ eN /2>» + g6-c\\

^[ia+ 2b) i,2« + 26; * V 2a + 26 )

] / Z \ ,

^
26-

[

^
(2^+ 26)

^
^[2a +2V

^
^\2a-^'2bj^ ( 2a+26 ))



292 Methodsfor the Solution of Special Problems [oh. vm

45. A spherical conductor of radius a is surrounded by a uniform dielectric A", which

is bounded by a sphere of radius b having its centre at a small distance y from the centre

of the conductor. Prove that if the potential of the conductor is F, and there are no

other conductors in the held, the surface density at a point where the radius makes an

angle 6 with the line of centres is

KM> f 6(A'-l)yaaco8^ 1

4,ra {(A'-l)a+6} f 2(A- I)a3+ (A+2)6»J

’

46. A shell of glass of inductive capacity AT, which is bounded by concentric spherical

surfaces of radii a, 6 {a<h\ surrounds an electrified particle with charge A which is at a

point $ at a small distance c from 0, the centre of the spheres. Shew that the potential

at a point P outside the shell at a distance r from Q is approximately

E , 2A’c(63-a®)(A'-l)* cos^

r “‘2a3(A'-l)2-63(A+2)“(2A"+l) H *

where B is the angle which QP makes with OQ produced.

47. If the centres of the two shells of a spherical condenser be separated by a small

distance prove that the capacity is approximately

ah f alxP )

48. A condenser is formed of two spherical conducting sheets, one of radius b

surrounding the other of radius a. The distance between the centres is c, this being so

small that (c/a)^ may be neglected. The surface densities on the inner conductor at the

extremities of the axis of symmetry of the instrument are o-i, 0-2, and the mean surface

density over the inner conductor is a. Prove that

0-2 ~ <ri _ 6ca^

49. The equation of the surface of a conductor is r=o (I where e is very small,

and the conductor is placed in a uniform field of force F parallel to the axis of harmonics.

Shew that the surface density of the induced charge at any point is greater than it would

be if the surface w'ere perfectly spherical, by the amount

50. A conductor at potential F whose surface is of the form rBsa(l + cy^„) is sur-

rounded by a dielectric (A) whose boundary is the surface (1 -I-17P,,), and outside this

the dielectric is air. Shew that the potential in the air at a distance r from the origin is

EabV ri + + + P^l
('A- 1 )

a

+6 (l-pn-j-TiA) 1 ) (n+ 1 )

where squares and higher powers of c and 17 are neglected.

51. The surface of a conductor is nearly spherical, its equation being

r=a(l+€A'J,

where § is small. Shew that if the conductor is uninsulated, the charge induced on

it by a unit charge at a distance / from the origin and of angular coordinates 6, 0 is

approximately
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A uniform circular wire of radius a charged with electricity of line density e

surrounds an uninsulated concentric spherical conductor of radius c; prove that the

electrical density at any point of the surface of the conductor is

"2cV ^2 ^^2.4.

53. A dielectric sphere is surrounded by a thin circular wire of larger radius h

carrying a charge E. Prove that the potential within the sphere is

6 1^7^ 1) 1+27i(1 + A) 2. 4. 6... 271 VW J'

54. If within a conductor formed by a cone of semi-vertical angle cos~^^ and two

spherical surfaces r— a, r=6 with centres at the vertex of the cone, a charge q on the axis

at distance from the vertex gives potential P, and if we write

^ a
r=ae~\ Xo=log7;»

fii fi ^ fi

the summation with respect to m extending to all positive integers, and that with respect

to n to all numbers integral or fractional for which 0, determine Ann-
the summation with respect to ttz, shew that when r

«2« + l\

(f-
^2»^l\

V r'nfTj V

(f- (r'**—
V

55. A spherical shell of radius a with a little hole in it is freely electrified to potential

V. Prove that the charge on its inner surface is less than VSI&na, where S is the area of

the hole.

56. A thin spherical conducting shell from which any portions have been removed is

freely electrified. Prove that the difference of densities inside and outside at any point is

constant.

57.

Electricity is induced on an uninsulated splu rical conductor of radius a, by a

uniform surface distribution, density a, over an external concentric non-conducting

spherical segment of radius c. Provo that the surface density at the point A of the

conductor at the nearer end of the axis of the s<*graent is

c(c+a)

a*

where B is the point of the segment on its axis, and D is any point on its edge.

58. Two conducting discs of radii a, a' are fixed at right angles to the line which

joins their centres, the length of this line being r, largo compared with a. If the first

have potential V and the second is uninsulated, prove that the charge on the first is

2a7rraF

ir*r*-4aa'‘

59. A spherical conductor of diameter a is kept at zero potential in the presence of a

fine uniform wire, in the form of a circle of radius c in a tangent plane to the sphere with
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its centre at the point of contact, which has a charge E of electricity
;
prove that the

electrical density induced on the sphere at a point whose direction from the centre of the

ring makes an angle yfr with the normal to the plane is

60.

Prove that the capacity of a hemisphericaJ shell of radius a is61.

Prove that the capacity of an elliptic plate of small eccentricity a and area A is

approximately

62.

A circular disc of radius a is under the influence of a charge 9 at a point in its

plane at distance b from the centre of the disc. Shew that the density of the induced

distribution at a point on the disc is

27rW V a-'-r*’

where r, R are the distances of the point from the centre of the disc and the charge.

63.

An ellipsoidal conductor differs but little from a sphere. Its volume is equal to

that of a sphere of radius r, its axes are 2r(l+a), 2r(l+/S), 2r(l+y). Shew that neg-

lecting cubes of a, ft y, its capacity is

r{l+ft(«*+/^*+ /)}.

64.

A prolate conducting spheroid, semi-axes a, 6, has a charge E of electricity. Shew

that repuUion between the two halves into which it is divided by its diametral plane is

Determine the value of the force in the cose of a sphera

65.

One face of a condenser is a circular plate of radius a : the other is a segment of

a sphere of radius R being so large that the plate is almost flat. Shew that the

capacity is ^A/Zlogfi/^o ^herc ^i, are the thickness of dielectric at the middle and edge

of the condenser. Determine also the distribution of the charge.

66. A thin circular disc of radius a is elcctriQcd with charge E and suiTounded by a

spheroidal conductor with charge A\
,
placed so that the edge of the disc is the locus of the

focus S of the generating ellipse. Shew that the energy of the system is

1 — BSC+ i stsG,
2 a 2 a ’

B being an extremity of the polar axis of the spheroid, and C the centre.

67. If the two surfaces of a condenser are concentric and coaxial oblate spheroids of

small ellipticities f and t and polar axes 2c and prove that the capacity is

cc'(c'-c)"*{c'—c+J (fC'-f'c)},

neglecting squares of the ellipticities; and find the distribution of electricity on each

surface to the same order of approximation.
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An Accumulator is formed of two confocal prolate spheroids, and the specific

inductive capacity of the dielectric is Kljm^ where w is the distance of any point from the

axis. Prove that the capacity of the accumulator is

where a, b and ai, 6i are the semi-axes of the generating ellipses.

69.

A thin spherical bowl is formed by the portion of the sphere —

bounded by and lying within the cone ~2 “ 2̂ » connection with the earth

by a fine wire. 0 is the origin, and (7, diametrically opposite to Oy is the vertex of the

bowl
; Q is any point on the rim, and P is any point on the great circle arc CQ. Shew

that the surface density induced at P by a charge E placed at 0 is

Ec_ CQ

where 1=

inabi 0P*(0P^-0(^‘)^’

/•-'/a M
Jo (aUw*e+ b>coa*e)i'

70.

Three long thin wires, equally electrified, are placed parallel to each other so that

they are cut by a plane perpendicular to them in the angular points of an equilateral

triangle of side ^3c ; shew that the polar equation of an equipoteutial curve drawn on the

plane is

r® 4- c® - 2r®c‘® cos 3d= constant,

the pole being at the centre of the triangle and the initial line passing through one of the

wires.

71. A flat piece of corrugated metal (y*»asin7/ij:) is charged with electricity. Find

the surface density at any point, and shew that it exceeds the average density approxi-

mately in the ratio : 1.

72. A long hollow cylindrical conductor is divided into two parts by a plane through

the axis, and the parts are separated by a .small interval. If the two parts are kept at

potentials Vj and Kg, the potential at any point within the cylinder is

^^1 + ^2
.

\\ - iar cose

2 TT

where r is the distance from the axis, and d is the angle b* tween the plane joining the

poiut to the axis and the plane through the axis normal to the plane of separation.

73. Shew that the capacity per unit lengtii of a telegraph wire of radius a at height h

above the surface of the earth is

7A An electrified line with charge e |)cr unit length is parallel to a circular cylinder

of radius a and inductive capacity A', the distance of the wire from the centre of the

cylinder being c. Shew that the force on the wire per unit length is

K - 1 4a*e*

A'-l-l

75. A cylindrical conductor of infinite length, whose cross-section is the outer

boundary of three equal orthogonal circles of radius has a charge e per unit length.

Prove that the electric density at di.stance r from the axis is

e -P g^) (3r^ - a^— ^Gar) (3r* - a^-pN^ar)

Sira r* (9r*- 3aV* a*)
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76. If the cylinder be freely charged, shew that in free space the resultant

force varies as

^
+ 2o< cos \6+

where oos y»r sin 0 ;
and that its direction makes with the axis of x an angle

77. If ftnd the curves for which ^sconstant be closed, shew that

the capacity C of a condenser with boundary surfaces is

KW\
4ir (0i-</>o)

per unit length, where is the increment of yj/ on passing once round a tp-curve.

78. Using the transformation x+iy^ccot^(l7+tV)f show that the capacity C ]xjr

unit length of a condenser formed by two right circular cylinders (radii a, b), one inside

the other, with parallel axes at a distance d apart, is given by

l/C-2cosh-«(“-!i^).

79.

A plane infinite electric grating is made of equal and equidistant parallel thin

metal plates, the distance between their successive central lines being tt, and the breadth

of each plate 2 8in”^^^y Shew that when the grating is electrified to constant

potential, the potential and charge functions T, C in the surrounding space are given

by the equation
sin ((7+ir)=-^8in (x+ty).

Deduce that, when the grating is to earth and is placed in a uniform field of force of unit

intensity at right angles to its plane, the charge and potential functions of the portion of

the field which penetrates through the grating are expressed by

(7+iV^(x+iy\

and expand the potential in the latter problem in a Fourier Scries.

80 A cylinder whose cross-section is one branch of a rectangular hyperbola is

maintained at zero potential under the influence of a lino-charge parallel to its axis

and on the concave side. Prove that the image consists of three such line charges, and

hence find the density of the induced distribution.

81. A cylindrical space is bounded by two coaxial and confocal parabolic cylinders,

whose latera recta are 4a and 46, and a uniformly electrified line which is parallel to the

generators of the cylinder intersects the axes which pass through the foci in points distant

e from them (a>c> 6). Shew that the potential throughout the space is

i ^
fl-r* cos -

i cosh •

A log-
ai-fc4

TTfrisin^-c-)!

' ai-h^ j

Trr® cos ”

cosh——— -pcos-

J-bi

r(r^sin|-f-c^-a^-6^j
|

a*-i» J

where r, 0 are polar coordinates of a section, the focus being the pole. Determine A in

terms of the electrification per unit length of the line.
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82. An infinitely long elliptic cylinder of inductive capacity A, given by (aa where

d;+t7/B>cco8h((+ti7), is in a uniform field P parallel to the major axis of any section.

Shew that the potential at any point inside the cylinder is

^ A'+ootho‘

83. Two insulated uncharged circular cylinders outside each other, given hj rf^ a and
where ^+iy»ctan J (J +1*17), ai*e placed in a uniform field of force of potential Fx.

Shew that the potential due to the distribution on the cylinders is

oET*/ x^«*^’““^sinhn3 +s“**^’’'^^^sinhna
. ^- 2/(c2 (-)* —c—, .

Bin nf.
j

' 8mh«(a+/a) ^

8i. Two circular cylinders outside each other, given by 17 = a and
17
= • 3 where

jr+ty=ctan J(f+2i7),

are put to earth under the influence of a line-charge E on the line y =0. Shew that

the potential of the induced charge outside the cylinders is

>1
1 ® sinh n(i7-^-3)-h« ^s\nhn(a-t7) ^ ^- 4A i v - -——7J7

^ cos -H constant,
n 8iuh?i(a+i3)

'*

the summation being taken for all odd positive integral values of n.

85

.

The cross-sections of two infinitely long metallic cylinders are the curves

(j?*+y“+ c-)*- 4c-j:
2 s=a* and

where h>a>c. If they are kept at potentials T, and V2 respectively, the intervening

space being filled with air, prove that the surface densities per unit length of the

electricity on the opposed surfaces are

• and

47ra-log - 47r6'Mog-® a ®a
respectively.

86. What problems are solved by the transformation

'd
,

. c(fi-l)i

>r(V'+!i^)) =log^*

where a> 1 ?

87 . What problem in Electrostatics is solved by the transformation

x-h2y=cn

where yfr is taken as the potential function, (/> being the function conjugate to it ?

88. Cue half of a hyperbolic cylinder is given by 7= ± 171 ,
where

1 71 1 <^, and 7 are

given in terms of the Cartesian coordinates j;, y of a principal section by the tiaus-

lormation
.T-p f'y = c cosh (5 + 17)

The half-cylinder is uninsulated and under the induence of a charge of density E per unit

length placed along the line of internal loci. Prove that the surface density at any point

of the cylinder is

- E/ sj2c7i cosh >/cosh 2£ - oos 271-
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89. Verif7 that, if r, < be real positive oonstanta, fbe

neld of force outside the conductors j:*+y+ 2«j;«0, 47*+y*-2r.r—0 duo to a doublet at

the point »msa^ outside both the circles, of strength /i and inclination a to the axis, is

given by putting

where is the inverse point to z^a with regard to either of the circles.

90. A very thin indefinitely great conducting plane is bounded by a straight edge of

indefinite length, and is connected with the earth. A unit charge is placed at a point P.

Pk^ve that the potential at any point Q due to the charge at P and the electricity induced

on the conducting plane is

where P' is the image of P in the plane, the cylindrical coordinates of Q and P are

(^> 01 {ft the straight edge is the axis of z, the angles lie between 0 and 27r,

on the conductor,

_ Kr+r^+Cr-O*)*
i irr' ;

>

and those values of the inverse functions are taken which lie between ^ir and n*.

91.

A semi-infinite conducting plane is at zero potential under the influence of an

electric charge ^ at a point Q outside it. Shew that the potential at any point P is

given by

where r, d, i are the cylindrical coordinates of the point P, (ri, ^i, 0) of the point Q, d«0
is the equation of the conducting plane, and

2rri cosh ij= r*+ ri*+ z*

Hence obtain the potential at any point due to a spherical bowl at constant potential,

and shew that the capacity of the bowl is

where a is the radius of the aperture, and a is the angle subtended by this radius at the

centre of the sphere of which the bowl is a part.

92.

A thin circular conducting disc is connected to earth and is under the influrnce

of a charge g of electricity at an external point P. The position of any point Q is denoted

by the peri>polar coordinates p, d, 0, where p is the logarithm of the ratio of the distances

from Q to the two points /2, S in which a plane QPS through the axis of the disc cuts its

rim, $ is the angle PQS, and 0 is the angle the plane Q/iS makes with a fixed plane

through the axis of the disc, the coordinate ^ having values between - ir and + w, and

changing from +fr to - w in passing through the disc. Prove or verify that the potential

of the charge induced on the disc at any point Q (p, d, 0) is

-^ i sin - • {«» i (^ - ^o) seoh Jo}
J -^ ^

sin- • { - cos J (fl+ 8#) «ech Jo}
J

,
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where po? the coordinates of P, do being positive, the point P* is the optical

image of P in the disc, a is given by the equation

cos a= cosh p cosh po - sinh p sinh po cos {<f)
-

and the smallest values of the inverse functions are to be taken.

Prove that the total charge on the disc is - gOo/ir,

Explain how to adapt the formula for the potential to the case in which the circular

disc is replaced by a spherical bowl with the same rim.

93.

Cy is

Shew that the potential at any point P of a circular bowl, electrified to potential

C
n

AB
AB+BP

,

0^
+ ^,«n

(

OP AB M
OA^ AP+BP)f*

where 0 is the centre of the bowl, and Ay B are the points in which a plane through P
and the axis of the bowl cuts the circular rim.

Find the density of electricity at a point on either side of the bowl and shew that the

capacity is

- (a+ sin a),
TT

where a is the radius of the sphere, and 2a is the angle subtended at the centre.

94. Two spheres arc charged to potentials Vq and Vi . The ratio of the distances of

any point from the two limiting points of the spheres being denoted by and the angle

between them by £, prove that the potential at the point 7 is

OQ

Vq ^{2 (cosh 7
~ cos f)}

0

sinh 0+7)
sinh (n + J) (/8+a)

/>, (cos {)«-<"+*>•

+ Vi (cosh 7 - cos f)} 2
0

sinh (n-i-t) (a

-

7)

sinh (n + i)(3+a)

Vf^here are the equations of the spheres. Hence find the charge on either

sphere.



CHAPTER IX

STEADY CURRENTS IN LINEAR CONDUCTORS

Physical Principles.

338. If two conductors charged with electricity to different potentials

are connected by a conducting wire, we know that a flow ot* electricity will

take place along the wire. This flow will tend to equalise the potentials

of the two conductors, and when these potentials become equal the flow of

electricity will cease. If we had some means by which the charges on the

conductors could be replenished as quickly as they were carried away by

conduction through the wire, then the current would never cease. The con-

ductors would remain permanently at different potentials, and there would

be a steady flow of electricity from one to the other. Means are known by

wliich two conductors can be kept permanently at different potentials, so that

a steady flow of electricity takes place through any conductor or conductors

joining them. We accordingly have to discuss the mathematical theory of

such currents of electricity.

We shall begin by the consideration of the flow of electricity in linear

conductors, by a linear conductor being meant one which has a definite

cross-section at every point. The coniinoiiest instance of a linear conductor

is a wire.

339. Definition. The strength of a current at any point in a wire or

other linear conductor, is measured by the number of units of electricity which

flow across any cross-section of the conductor per unit time.

If the units of electricity are measured in Electrostatic Units, then the

current also will be measured in Electrostatic Units. These, however, as will

be explained later, are not the units in which currents are usually measured

in practice.

Let P, Q be two cross-sections of a linear conductor in which a steady

current is flowing, and let us suppose that no other conductors touch this

conductor between P and Q. Then, since the current is, by hypothesis,

steady, there must be no accumulation of electricity in the region of the
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conductor between P and Q, Hence the rate of flow into the section of the

conductor across P must be exactly equal to the rate of flow out of this

section across Q. Or, the currents at P and Q must be equal. Hence we
speak of the current in a conductor, rather than of the current at a point in

a conductor. For, as we pass along a conductor, the current c^annot change

except at points at which the conductor is touched by other conductors.

0hm*8 Law,

340. In a linear conductor in which a current is flowing, we have

electricity in motion at every point, and hence must have a continuous

variation in potential as we pass along the conductor. This is not in

opposition to the result previously obtained in Electrostatics, for in the

previous analysis it had to be assumed that the electricity was at rest.

In the present instance, the electricity is not at rest, being in fact kept

in motion by the difference of potential under discussion.

The analogy between potential and height of water will perhaps help. A lake in

which the water is at rest is analogous to a conductor in which electricity is in equi-

librium. The theorem that the potential is constant over a conductor in which electricity

is in equilibrium, is analogous to the hydrostatic theorem that the surface of still water

must all le at the same level. A conductor through which a current of electricity is

flowing linds its analogue in a stream of running water. Hero the level is not the same at

all points of the river— it is the difference of level which causes the water to flow. The

water will flow more rapidly in a river in which the gradient is large than in one in

which it is small. The electrical analogy to this is expressed by Ohm’s Law.

OfiM’s Law. The difference of potential between any two points of a wire

or other linear conductor in which a current is flowing, stands to the current

flowing through the conductor in a constant ratio, which is called the resistance

between the two points.

It is here assumed that there is no junction with other conductors

between these two points, so that the current through the conductor is

a definite quantity.

341. Thus if G is the current flowing between two points P, Q at which

the potentials are Vi,,Vq, we have

Vr-V^^CR (264),

where R is the resistance between the points P and Q, Very delicate

experiments have failed to detect any variation in the ratio

(fall of potential)/(cuiTent),

as the current is varied, and this justifies us in speaking of the resistance as

a definite quantity associated with the conductor. The resistance depends

naturally on the positions of the two points by which the current enters and

leaves the conductor, but when once these two points are fixed the resistance
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is independent of the amount of cuirent. In general, however, the resistance

of a conductor varies with the temperature, and for some substances, of which

selenium is a notable example, it varies with the amount of light falling on

the conductor.

The Voltaio Cell

342. The simplest arrangement by which a steady flow of electricity can

be produced is that known as a Voltaic Cell. This is represented diagram-

matically in Fig. 95. A voltaic cell consists essentially of two conductors

A, B of different materials, placed in a liquid which acts chemically on at

least one of them. On establishing electrical contact between the two ends

of the conductors which are out of the liquid, it is found that a continuous

current flows round the circuit which is formed by the two conductors and

the liquid, the energy which is required to maintain the current being

derived from chemical action in the cell.

To explain the action of the cell, it will be necessary to touch on a subject

of which a full account would be out of place in the present book. As an

experimental fact it is found that two conductors of dissimilar material, when

placed in contact, have different potentials when there is no flow of electricity

from one to the other*, although of course the potential over the whole of

either conductor must be constant. In the light of this experimental fact,

let us consider the conditions prevailing in the voltaic cell before the two

ends a, h of the conductors are joined.

So long as the two conductors A, B and the liquid C do not form a closed

circuit, there can be no flow of electricity. Thus there is electric equilibrium,

* For a long time there has been a divergence of opinion ae to whether this difference of

potential ie not due to the ehemical chauge at the surfaces of the conductors, and therefore

dependent on the presence of a layer of air or other third substance between the conductors. It

seems now to be almost certain that this is the case, but the question is not one of vital

importance as regards the vMthematieal theory of electric currents.
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and the three conductors have definite potentials Vq. The difference

of potential between the two “ terminals ” a, 6 is — F,. but the peculiarity

of the voltaic cell is that this difference of potential is not equal to the

difference of potential between the two conductors when they are placed

in contact and are in electrical equilibrium without the presence of the

liquid (7. Thus on electrically joining the points a, h in the voltaic cell

electrical equilibrium is an impossibility, and a current is established in the

circuit which will continue until the physical conditions become changed or

the supply of chemical energy is exhausted.

Electromotive Force,

343. Let A,B,C he any three conductors arranged so as to form a closed

circuit. Let be the contact difference of potential between A and B when
there is electric equilibrium, and let yuo. VcA have similar meanings.

If the three substances can be placed in a closed circuit without any

current flowing, then we can have equilibrium in which the three conductors

will have potentials such that

yn-Va=Vj,c\

Thus we must have

+ ^30 + VlJA = ^
a result known as Volta!s Law,

If, however, the three conductors form a voltaic cell, the expression on

the left-hand of the above equation does not vanish, and its value is called

the electromotive force of the cell. Denoting the electromotive force by E,

we have

Vab ^Bc + VcA ~ L/ (265).

We accordingly have the following definition

:

Definition. The Electromotive Force of a cell is the algebraic sum of the

discontinuities of poteritial encountered in passing in order through the aeries

of conductors of which the cell is composed.

Clearly an electromotive force has direction as well as magnitude. It

is usual to speak of the two conductors which pass into the liquid as the

high-potential terminal and the low-potential terminal, or sometimes as the

positive and negative terminals. Knowing which is the positive or high-

potential terminal, we shall of course know the direction of the electromotive

force.

344. If the conductors (7, of a voltaic cell ABC are separated, and

then joined by a fourth conductor D, such that there is no chemical action

between D and the conductors G or il, it will easily be seen that the sum of

the discontinuities in the new circuit is the same as in the old.
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For by hypothesis CDA can form a closed circuit in which no chemical

action can occur, and therefore in which there can be electric equilibrium.

Hence we must have

+ = 0 (266).

Moreover the sum of all the discontinuities in the circuit is

+ ^BC + ^CD +
by equation (266)

= r^s+v,c+K,,

= E, by equation (265),

proving the result. A similar proof shews that we may introduce any series

of conductors between the two terminals of a cell, and so long as there is no

chemical action in which these new conductors are involved, the sum of all the

discontinuities in the circuit will be constant, and equal to the electromotive

force of the cell.

Let AEG,,. MN be any series of conductors, including a voltaic cell,

and let the material of N be the same as that of A, UN and A are joined

we obtain a closed circuit of electromotive force such that

YlB + ^BC + ••• + Kfjv

Moreover v„^=0, since the material of N and A is the same. Thus the

relation may be rewritten as

VtB + ^Bc+ . . . + l'j/,v= N (2G7).

In the open series of conductors ABC ... MN, there can be no current, so

that each conductor must be at a definite uniform potential If we denote

the potentials by l^, ... li. Fv, we have

V^-V^ = ViB.

Tjf
—

Hence equation (267) becomes

We now see that the electromotive force of a cell ta the difference of
potential between the ends of the cell when the cell forms an open ^circuit,

and the materials of the two ends are the same.

A series of cells, joined in series so that the high -potential terminal of

one is in electrical contact with the low-potential terminal of the next, and

so on, is called a battery of cells, or an "electric battery*' arranged in series.

It will be clear from what has just been proved, that the electromotive

force of such a battery of cells is equal to the sum of the electromotive turces

of the separate cells of the series.
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Units,

345. On the electrostatic system, a unit current has been defined to be

a current such that an electrostatic unit of electricity crosses any selected

cross-section of a conductor in unit time. For practic«al purposes, a different

unit, known as the ampere, is in use. The ampere is equal very approximately

to 3 X 10® electrostatic units of current (see below, § 587).

To form some idea of the actual magnitude of this unit, it may be stated that the

amount of current required to ring an electric bell is about half an amp6re. About the

same amount is required to light a 200 c.p. 240-volt gas-filled lamp.

As an electromotive force is of the same physical nature as a difference

of potential, the electrostatic unit of electromotive force is taken to be the

same as that of potential. The practical unit is about of the electrostatic

unit, and is known as the volt (see below, § 587).

It may be mentioned that tho electromotive fi)rce of a single voltaic cell is generally

intorniLiliate between one and two volts; the electromotive force which produces a

pcicoiitiblo shock in the human body is about 30 volts, while an electromotive force

of .500 volts or more is dangerous to life, lloth of these latter quantities, however, vary

cnonnously w'ith the condition of tho body, and particularly with the state of drynesa

or nioi.'atiiro of tho .skin. The electromotive force used to work an electric bell is

corninonly 0 or 8 volts, while an electric light installation will generally have a voltage

of about 240 volts.

The unit of resistance, in all systems of units, is taken to be a resistance

such that unit difference of potential between its extremities produces unit

ciiirent through the conductor. We then have, by Ohm’s Law,

current =
difference of potential at extremities

resistance
(268).

In the practical system of units, the unit of resistance is called the ohm.

From what has already been said, it follows that when two points having a

potential-difference of one volt are connected by a resistance of one ohm, the

current flowing through this resistance will be one aniphre. In this case the

difference of potential is electrostatic units, and the current is 3 x 10®

elecLrostatic units, so that by relation (268), it follows that one ohm must be

equal to
y

electrostatic units of resistance (see below, § 587).

Somo idea of the amount of this unit may bo gathered from the statement that

tho resist.'ince of a mile of ordinary telegraph wire is about 10 ohms. The resistance

of a good telegraph insulator may be billions of ohms.

20
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Physical Theories op Conduction.

Electron-theory of conduction,

346 a. As has been already explained (§ 28), the modem view of

electricity regards a current of electricity as a material flow of electric

charges. In all conductors except a small class known as electrolytic

conductors (see below, § 345 6), these charged bodies are believed to be

identical with the electrons.

In a solid some of the electrons are supposed to be permanently bound to

particular atoms or molecules, whilst others, spoken of as “free” electrons,

move about in the interstices of the solid, continually having their courses

changed by collisions with the molecules. Both kinds of electrons will be

influenced by the presence of an electric field. It is probable that the

restricted motions of the “ bound ” electrons account for the phenomenon of

inductive capacity (§ 151) whilst the unrestricted motion of the free electrons

explains the phenomenon of electric conductivity.

Even when no electric forces are applied, the free electrons move about

through a solid, but they move at random in all directions, so that as many

electrons move from right to left as from left to right and the resultant

current is nil. If an electric force is applied to the conductor, each electron

has superposed on to its random motion a motion impressed on it by the

electric force, and the electrons as a whole are driven through the conductor

by the continued action of the electric force. If it were not for their collisions

with the molecules of the conductor, the electrons would gain indefinitely in

momentum under the action of the impressed electric force, but the effect of

collisions is continually to check this growth of momentum.

Let us suppose that there are N electrons per unit length of the

conductor, and that at any moment these have an average forward velocity

u through the material of the conductor. If m is the mass of each electron,

the total momentum of the moving electrons will be Nmu. The rate at

which this total momentum is checked by collisions will be proportional to

N and to u, and may be taken to be N^u. The rate at which the momentum

is increased by the electric forces acting is NXe, where X is the electric

intensity and e is the charge, measured positively, of each electron. Thus

we have the equation

^iNmu) = JH'Xe-Nyu (a).

In unit time the number of electrons which pass any fixed point in the

conductor is Nu, so that the total flow of electricity per unit time past any

point is Neu, This is by definition equal to the current in the conductor, so

that if we call this i, we have

Eeu = i (6).
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This enables us to reduce equation (a) to the form

di _ iW* fy 7 A
dt m\ 7

.(c).

The equation shews that if a steady electric force is applied, such that

the intensity at any point is JT, the current will not increase indefinitely

but will remain stationary after it has reached a value i given by

7

If V is the potential at any point of a conducting wire, and if s is a

dV
coordinate measured along the wire, we have A' = — , so that

as "iVe**-

Integrating between any two points P and Q of the conductor, we have

This is the electron-theory interpretation of equation (264), and explains

how the truth of Ohm’s Law is involved in the modern conception of the

nature of an electric current. It will be noticed that on this view of the

matter, Ohm’s Law is only true for steady currents.

We notice that the resistance of the conductor, on this theory, is y/AV
per unit length. Thus, generally speaking, bodies in which there are many
free electrons ought to be good conductors, and conversely.

The cliarge on the electron being 4*803x10“*® electrostatic units, we may notice

that a current of one ampere (3 x 10® electrostatic units of current) is one in which

6*3 X 10*® electrons pass any given point of the conductor every second. Consider a

conductor in which the number of electrons per cubic centimetre is 10®* (cf. § 615, below).

Then in a wire of 1 square inni. cross-section there are 10*® electrons per unit length, ao

that the average velocity of these when the wiro is conveying a current of 1 ampere is of

the order of one cm. per sec. This average velocity is superposed on to a random velocity

which is known to bo of the order of magnitude of 10^ cms. per sec., so that the additional

velocity produced by even a strong current is only very slight in comparison with the

normal velocity of agitation of the elections.

Electrolytic conduction.

346 h. Besides the type of electric conduction just explained, there is a

second, and entirely different type, known as Electrolytic conduction, the

distinguishing characteristic of which is that the passage of a current is

accompanied by chemical change in the conductor.

For instance, if a current is passed through a solution of potassium

chloride in water, it will be found that some of the salt is divided up by the

passage of the current into its chemical constituents, and that the potassium
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appears solely at the point at which the current leaves the liquid, while the

chlorine similarly appears at the point at which the current enters. It thus

appears that during the passage of an electric current, there is an actual

transport of matter through the liquid, chlorine moving in one direction and

potassium in the other. It is moreover found by experiment that the total

amount, whether of potassium or chlorine, which is liberated by any current

is exactly proportional to the amount of electricity which has flowed through

the electrolyte.

These and other facts suggested to Faraday the explanation, now
universally accepted, that the carriers of the current are identical with the

matter which is transported through the electrolyte. For instance, in the

foregoing illustration, each atom of potassium carries a positive charge to the

point where the current leaves the liquid, while each atom of chlorine,

moving in the direction opposite to that of the current, carries a negative

charge. The process is perhaps explained more clearly by regarding the total

current as made up of two parts, first a positive current and second a negative

current flowing in the reverse direction. Then the atoms of chlorine are the

carriers of the negative current, and the atoms of potassium are the carriers

of the positive current.

Electrolytes may be solid, liquid, or gaseous, but in most cases of

importance they are liquids, being solutions of salts or acids. The two parts

into which the molecule of the electrolyte is divided are called the ions

(/eii/), that which carries the positive current being called the positive ion,

and the other being called the negative ion. The point at which the current

enters the electrolyte is called the anode, the point at which it leaves is

called the cathode. The two ions are also called the anion or cation

according as they give up their charges at the anode or cathode respectively.

Thus we have

The anion carries — charge against current, and delivers it at the

anode.

The cation carries + charge with current, and delivers it at the

cathode.

When ipotassium chloride is the electrolyte, the potassium atom is the

cation, and the chlorine atom is the anion. If experiments are peilt^rmed

with different chlorides (say of potassium, sodium, and lithium), it will be

found that the amount of chlorine liberated by a given current is in every

case the same, while the amounts of potassium, sodium, or lithium, being

exactly those required to combine with this fixed amount of chlorine, are

necessarily proportional to their atomic weights. This suggests that each

atom of chlorine, no matter what the electrolyte may be in which it occurs,

always carries the same negative charge, say — e, while each atom of potassium,
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sodium, or lithium carries the si^me positive charge, say + E. Moreover E
and e must be equal, or else each undissociated molecule of the electrolyte

would have to be supposed to carry a charge E — e, whereas its charge is

known to be nil.

It is found to be a general rule that every anion which is chemically

monovalent carries the same charge — e, while every monovalent cation

carries a charge + e. Moreover divalent ions carry charges + 2e, trivalent

ions carry charges + 3e, and so on.

As regards the actual charges carried, it is found that one ampere of

current flowing for one second through a salt of silver liberates 0001118

grammes of silver. Silver is monovalent and its atomic weight is 107‘88

(referred to O = 16), so that the amount of any other monovalent element of

atomic weight m deposited by the same current will be 0 00001036 x m
grammes. It follows'that the passage of one electrostatic unit of electricity

will result in the liberation of ^ ^ 10“*® x m grammes

of the substance.

We can calculate from these data how many ions are deposited by one unit

of current, and hence the amount of charge carried by each ion. It is found

that, to within the limits of expcrinu-ntal error, the negative charge carried

by each monovalent anion is exactly equal to the charge carried by the electron.

It follows that each monovalent anion has associated with it one electron

in excess of the number required to give it zero charge, while each monovalent

cation has a deficiency of one electron; divalent ions have an excess or

deficiency of two electrons, and "O on.

345 c. Ohm’s Law appears, in general, to be strictly true for the resist-

ance of electrolytes. In the light of the e.xplanation of Ohm’s Law given in

§ 345 tt, this will be seen to sugg(‘.st that the ions are free to move as soon as

an electric intensity, no matter how small, begins to act on them. They

must therefore be already in a state of dissociation
;
no part of the electric

intensity is required to etfoct the separation of the molecule into ions.

Other facts conlirm this conclusion, such as for instance the fact that various physical

properties—ch'ctric conductivity, coUnir, optical rotatory po\^e^, etc.—are additive in the

sense that the amount possessed by the whole eloitrolyto is the sum of the amounts

known to be possessc<l by the separate ions.

We may therefore suppose that as soon as an electric force begins to act,

all the positive ions begin to move in the direction of the electric force, while

all the negative ions begin to move in the opposite direction. Let us suppose

the average velocities of the positive and negative ions to be u, v respectively;

and let us suppose that there are N of each per unit length of the electrolyte

measured along the path of the current. Then across any cross-section of the

electrolyte there piiss in unit time Nu positive ions each carrying a charge so
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in the direction in which the current is measured, and Nv negative ions each

carrying a charge - se in the reverse direction, s being the valency of each

ion. It follows that the total current is given by

i — Nse (m + v) (d).

E^ch unit of time Nu positive ions cross a cross-section close to the

anode, having started from positions between this cross-section and the

anode. Thus each unit of time Nu molecules are separated in the neigh-

bourhood of the anode, and similarly Nv molecules are separated in the

neighbourhood of the cathode. The concentration of the salt is accordingly

weakened both at the anode and at the cathode, and the ratio of the amounts

of these weakenings is that of u : v. This provides a method of determining

the ratio of u : v.

Also equation (d) provides a method of determining u + v, for % can be

readily measured, and Nse is the total charge which must be passed through

the electrolyte to liberate the ions in unit length, and this can be easily

determined.

Knowing u-\-v and the ratio u : v, it is possible to determine u and v.

The following table gives results of the experiments of Kohlraiisch on three

chlorides of alkali metals, for different concentrations, the current in each

case being such as to give a potential fall of 1 volt per centimetre.

Concentration Potassium chloride

U V

Sodium chloiidc

U V
Lithium chloride

U V

0 660 690 450 690 360 690
•0001 654 681 448 081 3.j0 681
•001 643 670 440 670 343 670
•01 619 644 415 644 318 644
•03 697 621 390 623 298 619
•1 564 589 360 592 259 594

[The unit in every case is a velocity of 10"® cms. •per secoiMi,^

We notice that when the solution is weak, the velocity of the chlorine

ion is the same, no matter which electrolyte it has originated in. This

gives, perhaps, the best evidence possible that the conductivity of the

electrolyte is the sum of the conductivities of the chlorine and of the metal

separately.

By arranging for the ions to produce discoloration of the electrolyte as

they move through it. Lodge, Whetham and others have been able to observe

the velocity of motion of the ions directly, and in all cases the observed

velocities have agreed, within the limits of experimental error, with the

theoretically determined valuc.s.
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Conduction through gases.

345 d. In a gas in its normal state, an electric current cannot be carried

in either of the ways which are possible in a solid or a liquid, and it is

consequently found that a gas under ordinary conditions conducts electricity

only in a very feeble degree. If however Rontgen rays are passed through

the gas, or ultra-violet light of very short wave-length, or a stream of the

rays from radium or one of the radio-active metals, then it is found that the

gas acquires considerable conducting powers, for a time at least. For this

kind of conduction it is found that Ohm’s Law is not obeyed, the relation

between the current and the potential-gradient being an extremely complex

one.

The complicated phenomena of conduction through gases can all be

explained on the hypothesis that the gas is conducting only when “ ionised,”

and the function of the Rontgen rays, ultra-violet light, etc. is supposed to

be that of dividing up some of the molecules into their component ions.

The subject of conduction through gases is too extensive to be treated here.

In what follows it is assumed that the conductors under discussion are not

gases, so that Ohm’s Law will be assumed to be obeyed throughout.

Kirchhoff’s Laws.

346. Problems occur in which the flow of electricity is not through

a single continuous series of conductors : there may be junctions of three or

more conductors at which the current of electricity is free to distribute itself

between different paths, and ii may be important to determine how the

electricity will pass through a network of conductors containing junctions.

The first principle to be used is that, since the currents are supposed

steady, there can be no accumulation of electricity at any point, so that the

sum of all the currents which enter any junction must be equal to the sum
of all the currents which leave it. Or, if we introduce the convention that

currents flowing into a junction are to be counted as positive, while those

leaving it are to be reckoned negative, then we may state the principle in

the form:

The algebraic sum of the currents at any junction must he zero.

From this law it follows that any network of currents, no matter how

complicated, can be regarded as made up of a number of closed currents, each

of uniform strength throughout its length. In some conductors, two or more

of these currents may of course be superposed.

Let the various junctions be denoted by A, B, C, ..., and let their

potentials be Ki, 1^, IJ, .... Let be the resistance of any single con-

ductor connecting two junctions A and R, and let current flowing



312 Steady Currents in Linear Conductors [cn. ix

through it from A to B. Let us select any path through the network of

conductors, such as to start from a junction and bring us back to the starting

point, say ^5(7... Then on applying Ohm’s Law to the separate con-

ductors of which this path is formed, we obtain (§ 341)

V — P P
•i: ^

By addition we obtain 'lCR—0 (269),

where the summation is taken over all the conductors which form the closed

circuit.

In this investigation it has been assumed that there are no discontinuities

of potential, and therefore no batteries, in the selected circuit. If dis-

continuities occur, a slight modifi(‘ation will have to be made. We shall

treat points at which discontinuities occur as junctions, and if A is a junction

of this kind, the potentials at A on the two sides of the surface of separation

between the two conductors will be denoted by and VL Then, by Ohm’s

Law, we obtain for the falls of potential in the different conductors of the

circuit,

"Vff “"1(7= etc.,

and by addition of these equations

The left-hand member is simply the sum of all the discontinuities of

potential met in passing round the circuit, each being measured with its

proper sign. It is therefore equal to the sum of the electromotive forces of

all the batteries in the circuit, those also being measured with their proper

signs.

Thus we may write = (270),

where the summation in each term is taken round any closed circuit of

conductors, and this equation, together with

2C = 0 (271).

in which the summation now refers to all the currents entering or leaving a

single junction, suffices to determine the current in each conductor of the

network.

Equation (271) expresses what is known as Kirchhoff’s First I^aw, whih

equation (270) expresses the Second Law.
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Conductors in Series.

347. When all the coiuhictors form a single closed circuit, the current

through each conductor is the same, say G, so that equation (270) becomes

G)Ln = IE.

The sum 272 is spoken of as the “resistance of the circuit,” so that the

current in the circuit is equal to the total electromotive force divided by the

total resistance. Conductors arranged in such a way that the Avhole current

passes through each of them in succession are said to be arranged “in

series.”

Conductors in Parallel.

348. It is possible to connect any two points Ay B hy a number of

conductors in such a way that the current divides itself between all these

Fia. 96.

conductors on its journey from A to B, no part of it passing through more

than one conductor. Conductors placed in this way are said to be arranged

“in parallel.”

Let us suppose that the two points A, B are connected by a number of

conductors arranged in parallel. Let i2i, liiy ... be the resistances of the

conductors, and O',, Cj,, ... the currents flowing through them. Then if Ki,

are the potentials at A and 72, we have, by O Inn’s Law,

The total current which enters at A is 0, + (7, + ..., S'ay G.

have

Kc-

i2,

Thus we

The an ingemont of conductors in parallel is therefore seen to offer the

same resistance to the current as a single conductor of resistance

1

The reciprocal of the resistance of a conductor.is called the “ conductivity
”

of the conductor. The conductivity of the system of conductors arranged

in parallel is ^ +"n therefore equal to the sum of the
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conductivities of the separate conductors. Also we have seen that the

current divides itself between the different conductors in the ratio of their

conductivities

Measurements.

The Measurement of Current

349. The instrument used for measuring the current passing in a circuit

at any given instant is called a galvanometer. The theory of this instrument

will be given in a later chapter (Chap. xiii).

For measuring the total quantity of electricity passing within a given

time an instrument called a voltameter is sometimes used. The current,

in passing through the voltameter, encounters a number of discontinuities

of potential in crossing which electrical energy becomes transformed into

chemical energy. Thus a voltameter is practically a voltaic cell run back-

wards. On measuring the amount of chemical energy which has been stored

in the voltameter, we obtain a measure of the totaf quantity of electricity

which has passed through the instrument.

The Measurement of Resistance,

360. The Resistance Box, A resistance box is a piece of apparatus

which consists essentially of a collection of coils of wire of known resistances,

arranged so that any combination of these coils can be arranged in series.

The most usual arrangement is one in which the two extremities of each

coil are brought to the upper surface of the box, and are there connected

to a thick band of copper which runs over the surface of the box. This

band of copper is continuous, except between the two terminals of each coil,

and in these places the copper is cut away in such a way that a copper plug

can be made to fit exactly* into the gap, and so put the two sides of the gap

in electrical contact through the plug. The arrangement is shewn diagram-

matically in fig. 97. When the plug is inserted in any gap DE, the plug

and the coil beneath the gap DE form two conductors in parallel connecting
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the points D and E, Denoting the resistances of the coil and plug by S,, Rp,

the resistance between D and E will be

1

Rc^ R,

and since Rp is very small, this may be neglected. When the plug is

removed, the resistance from D to E may be taken to be the resistance of

the coil. Thus the resistance of the whole box will be the sum of the

resistances of all the coils of which the plugs have been removed.

361. Tlie Wheatstone Bndge, This is an arrangement by which it is

possible to compare the resistances of conductors, and so determine an

unknown resistance in terms of known resistances.

The “ bridge ” is represented diagrammatically in fig. 98. The currenc

enters it at A and Ifeaves it at D, these points being connected by the lines

ABD, ACD arranged in parallel. The line .di) is composed of two con-

ductors AB, BD of resistances i?,, and the line ACD is similarly composed

of two conductors AC, CD of resistances R3 ,
R^.

If current is allowed to flow through this arrangement of conductors, it

will not in general happen that the points B and C will be at the same

potential, so that if B and C are connected by a new conductor, there will

usually be a current flowing through BC, The method of using the

Wheatstone bridge consists in varying the resistances of one or more of the

conductors Ri, R^, R^, R4 until no current flows through the conductor BC.

When the bridge is adjusted in this way, the points B, C must be at the

same potential, say v. Let Vo denote the potentials at A and 2), and

let the current through ABD be G, Then, by Ohm’s Law,

Va-V^GR,, V-Vjy^CR,,

so that
R^ Va-v
R.'v-Vn

From a similar consideration of the flow in ACD, we obtain

R^__VA-v
Rrv-Vj,*

R^ R^
so that we must have (272),
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as the condition to be satisfied between the resistances when there is no

current in BG,

Clearly by adjusting the bridge in this way we can determine an unknown

resistance Ri in terms of known resistances R^, R^, In the simplest

form of Wheatstone’s bridge, the line AGD is a single uniform wire, and the

position of the point G can be varied by moving a “sliding contact’* along

the wire. The ratio of the resistances R^ : R^ is in this case simply the ratio

of the two lengths AG, GD of the wire, so that the ratio Ry : R^ can be found

by sliding the contact G along the wire AGD until there is observed to be

no current in BG, and then reading the lengths AG and GD.

Examples of Currents in a Network.

I. Wheatstones Bridge not in adjustment

352. The condition that there shall be no current in the “ bridge ” BC
in fig. 98 has been seen to be that given by equation (27 2).

Fui. 99.

Suppose that this condition is not satisfied, and let us examine the flow

of currents which then takes place in the network of conductors. Let the

conductors AB, BD, AG, GD as before be of resistances R^, R^, R^, R^, and

let the currents flowing through them be denoted by x,, x^, x^, x^. Let the

bridge BG be of resistance 74, and let the current flowing through it from

7y to C be iTft.

From Kirchhoff’s Laws, we obtain the following equations:

(Law I, point B) Xy — — xi, = 0 (273),

(Law I, point G) x^- x^-^ xi, = 0 (274),

(Law II, circuit ABG) xjli -k- xi,Ri, — xji^ 0 (275),

(Law II, circuit BGD) x^Hf, + xj{^ - xAl. = 0 (276).

These four equations enable us to determine the ratios of the five currents

a:,, ATg, x^, x^, xi,. We may begin by eliminating x^ and x^ from equations

(273), (274) and (276), and obtain

(74 + -Rg + 74) + xj{^ — XiR^ = 0,

and from this and equation (275),

'^ij ^8 _
ltjt\ ~ liJTilTll, + It,) + IhH, ~ + It,) + UtR,

C^77).
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The ratios of the other currents can be written down from symmetry.

If the total current entering at A is denoted by X, we have JT = a:, + a?,.

Thus if each of the fractions of equations (277) is denoted by

A = 0 {(-Ri + Rj) (Rj + R4) + R& (Ri + Ra + R3 + R4)) (278),

and this gives 0^ and hence the actual values of the currents, in terms of the

total current entering at A.

The fall of potential from -4 to Z) is given by

Vyl — 1^ = Ria*J +

and from equations (277) this is found to reduce to

where

X = R1R3 (Rj + R4) + RiRi (R3 + Ri) + Rb ( RiR* + R>Ri + R, R4 + .R0R3),

so that X is the sum of the products of the five resistances taken three at

a time, omitting the two products of the three resistances which meet at the

points B and C,

There is now a current X flowing through the network, and having a

fall of potential Vj — 1^. Hence the equivalent resistance of the network

^ Vi -Vn
X

_xe

X
” (Ri + R3) Ou + R.) + A (Ri + R. + R, + R4

)^

by equation (278).

II. Telegraph wire with faults.

353. As a more complex example of the flow of electricity in a system

of linear conductors, we may examine the case of a telegraph wire, in which

there are a number of connexions through which the current can leak to

earth. Such leaks are technically known as “faults.”

F| F.J F.» F,,-! Fn
I

^’3

Ri R< Rj R
II -

1

R. ^n4l

B

Fia. 100.

Let AR be the wire, and let i?, ... Fn be the points on it at

which faults occur, the resistances through these faults being Ri, R*, ...
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and the resistances of the sections AF^, I[F̂, ... and F^B

being n, rj, ... rn, ^n+i. Let the end B be supposed put to earth, and let the

current be supposed to be generated by a battery of v/hich one terminal is

connected to A while the other end is to earth.

The equivalent resistance of the whole network of conductors from A to

earth can be found in a very simple way. Current arriving at F^, from the

section Fn-iFn passes to earth through two conductors arranged in parallel,

of which the resistances are Rn and r^+j. Hence the resistance from F^ to

earth is

1

_L _L*
Rfi ^n+i

and the resistance from to earth, through F^ is

rn+----— (279).

R’n ^n+i

Current reaching can, however, pass to earth by two paths, either

through the fault at or past Fn. These paths may be regarded as

arranged in parallel, their resistances being Rn^i and expression (279)

respectively. Thus the equivalent resistance from is

1

or, written as a continued fraction,

1 111
Rn--i~^ + + BrT^ + ^'n+l

We can continue in this way, until finally we find as the whole resistance

from A to earth,

1 1^ J_ 1^ _1__ J_
Rr' + 7\, + Rf^ + ”' + r„ + Rn-^ + Tn+I

'

If the currents or potentials are required, it will be found best to attack

the problem in a different manner.

Let Va, Vi, K, ... be the potentials at the points A, Fi, ij, then, by

Ohm’s Law,
V -V

the current from F^^i to i? =
,

r,

jp 4.^ IP _ K Vg^i
>j M i> A to — — ,

^»+i

V
„ „ „ Fg through the fault = .
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Hence, by Kirchhoff’s first law,

K-,-K v.-v.» y.

r. r.^, R.~ '

or y+, r,„-* - K

(

R,-' + r,-' + r.+r') + K-i r,-' = 0,

and from this and the system of similar equations, the potentials may be

found.

If all the R’s are the same, and also all the ra are the same, the equation

reduces to a difference equation with constant coefficients. These conditions

might arise approximately if the line were supported by a series of similar

imperfect insulators at equal distances apart. The difference equation is in

this case seen to be

K+.-K(2 +

and if we put
^ ^ ~

the solution is known to be

Vg = A cosh sa-\- B sinh sa (280),

in which A and B are constants which must be determined from the

conditions at the ends of the line. For instance to express that the end B
IS to earth, we have = 0, and therefore

A = ^ B tanh (n + 1) a.

III. Submarine cable imperfectly insulated.

354. If we pass to the limiting case of an infinite number of faults, we
have the analysis appropriate to a line from which there is leakage at every

point. The conditions now contemplated may be supposed to be realised in

a submarine cable in which, owing to the imperfection of the insulating

sheath, the current leaks through to the sea at every point.

The problem in this form can also be attacked by the methods of the

infinitesimal calculus. Let V be the potential at a distance x along the

cable, V now being regarded as a continuous function of x. Let the

resistance of the cable be supposed to be R per unit length, then the re-

sistance from X \,o x + dx will be Rdx, The resistance of the insulation from

X to x + dx, being inversely proportional to dx, may be supposed to be ^ .

Let G be the current in the cable at the point x, so that the leak from

the cable between the points x and x -f dx is — This leak is a current
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which flows through a resistance ^ with a fivll of potential V. Hence by

Ohm’s Law,

7= dG, /S\

or

dx

dC^_V
dx S

.mi).

dV
Also, the fill! of potential along the cable from a? to a? + rfj? is —

current is G, and the resistance is Rdx, Hence by Ohm’s Law,

dx
.(282).

Eliminating G from equations (281) and (282), we find as the differential

equation satisfied by K,

^(i^\_y
dx\R dx)~’

If R and S have the same values at all points of the cable, the solution

of this equation is _ _
F= A cosh ,y/^ x^ B oinh

^

which is easily seen to be the limiting form assumed by equation (280).

Generation of Heat in Conductors.

The Joule Effect,

365. Let P, Q be any two points in a linear conductor, let Vp, Vq be

the potentials at these points, R the resistance between them, and x the

current flowing from P to Q, Then, by Ohm’s Law,

Vp- Vq = Rx (288).

In moving a single unit of electricity from Q to P an amount of work is

done against the electric field equal to Vp — Vq. Hence when a unit of

electricity passes from P to Q, there is work done on it by the electric field

of amount Vr — Vq, The energy represented by the work shews itself in

a heating of the conductor.

The electron theory gives a .simple explanation of the mechanism of this transform.i-

tion of energy. The electric forces do work on the electrons in driving them through the

field. The total kinetic energy of the electrons can, as we have seen (§ 345 a), be regarded

as made up of two parts, the energy of random motion and the energy of forward motion.

The work done by the electric field goes directly towards increasing this second part of

the kinetic energy of the electrons. But after a number of collisions the direction of the

velocity of forward motion is completely changed, and the energy of this motion has

become indistinguishable from the energy of the random motion of the electrons. Thus

the collisions are continually transforming forward motion into random motion, or what

is the same thing, into heat
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We are supposing that x units of electricity pass per unit time from

P to Q. Hence the work done by the electric field per unit time within the

region PQ is x{yp — Vq\ and this again, by equation (283), is equal to RiP,

Thus in unit time, the heat generated in the section PQ of the con-

ductor represents R{P units of mechanical energy. Each unit of energy is

equal to
j

units of heat, where J is the “ mechanical equivalent of heat.”

Thus the number of heat-units developed in unit time in the conductor PQ
will be

J ,(284).

It is important to notice that in this formula x and R are measured in

electrostatic units. If the values of the resistance and current are given in

practical units, we must transform to electrostatic units before using formula

(284)

Let the resistance of a conductor be R' ohms, and let the current flowing through it

be sf amperes. Then, in electrostatic units, the values of the resistance R and the current

X are given by

Thus the number of heat-units produced per unit time is

Rx^ (3xl0®)2
,

and 00 substituting for J its value 4'2 x 10^ in c.G.s.-centigi’ade units, this becomes

0-24

Generation of Heat a minimum.

356. In general the solution of any physical problem is arrived at by the

solution of a system of equations, the number of these equations being equal

to the number of unknown quantities in the problem. The condition that

any function in which these unknown quantities enter as variables shall be a

maximum or a minimum, is also arrived at by the solution of an equal

number of equations. If it is possible to discover a function of the unknown

quantities such that the two systems of equations become identical,

—

i.e. if

the equations which express that the function is a maximum or a minimum

are the same as those which contain the solution of the physical problem

—

then we may say that the solution of the problem is contained in the single

statement that the function in question is a maximum or a minimum.

Examples of functions which serve this purpose are not hard to find. In

§ 189, we proved that when an electrostatic system is in equilibrium, its

potential energy is a minimum. Thus the solution of any electrostatic

problem is contained in the single statement that the function which
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expresses the potential energy is a minimum. Again, the solution of any

dynamical problem is contained in the statement that the ** action" is a

minimum, while in thermodynamics the equilibrium state of any system

can be expressed by the condition that the “ entropy " shall be a maximum.

It will now be shewn that the function which expresses the total rate of

generation of heat pla3’s a similar r61e in the theory of steady electric

currents.

367. Theorem. ^Vhen a steady current flows through a network of

conductors in which no discontinuities of potential occur {and which, therefore,

contains no hatterie8\ the currents are distributed in such a way that the rate of

generation of heat in the network is a minimum, subject only to the conditions

imposed by Kirchhoffs first laiu ; and conversely.

To prove this, let us select any closed circuit PQR ... P in the network,

and let the currents and resistances in the sections PQ, QR, ... be a?,, ...

and Pi, P2 .
•••• Let the currents and resistances in those sections of the net-

work which are not included in this closed circuit be denoted by a?®, ar^, ...

and Pfl. Pft, .... Then the total rate of production of heat is

2Paa:«2 + 2Pia?,» (285).

A different arrangement of currents, and one moreover which does not

violate Kirchhoff ’s first law, can be obtained in imagination by supposing all

the currents in the circuit PQR ... P increased by the same amount e. The

total rate of production of heat is now

^PaV + -Pj («i + €)\

and this exceeds the actual rate of production of heat, as given by expression

(285), by
2Pi(2a?i€ + €*) (286).

Now if the original distribution of currents is that which actually occurs

in nature, then

2Pia?i = 0,

by Kirchhoff s second law. Thus the rate of production of heat, under the

new imaginary distribution of currents, exceeds that in the actual distribu-

tion by e^XRi, an essentially positive quantity.

The most general alteration which can be supposed made to the original

system of currents, consistently with Kirchhoff's first law remaining satisfied,

will consist in superposing upon this system a number of currents flowing

in closed circuits in the network. One such current is typified by the

current e, already discussed. If we have any number of such currents, the

resulting increase in the rate of heat-production

= 2Pl {Xi + 6 + + ...)*— SPi®!*,
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where e, ... arc the additional currents flowing through the resistance

Ri, As before this expression

= (e + e' + e'' +...) + ^R^ (e + e' + e" + ...)*

= :£i2,(6 + €' + 6" + ...y,

by Kirchhoff's second law. This is an essentially positive quantity, so that

any alteration in the distribution of the currents increases the rate of heat-

production. In other words, the original distribution was that in which the

rate was a minimum.

To prove the converse it is sufficient to notice that if the rate of heat-

production is given to be a minimum, then expression (28C) must vanish as

far as the first power of 6, so that we have

= 0.

and of course similar equations for all other possible closed circuits. These,

however, are known to be the equations which determine the actual dis-

tribution.

358. Theorem. When a system of steady currents flows through a net-

work of conductors of resistances R^R^, ... ,
containing batteries of electromotive

forces the currents x^, ... are distributed in such a way that the

function
lRx^-2XEx (287)

is a minimum, subject to the conditions imjyosed by Kirchhoff*s first law ; and

conversely.

As before, we can imagine the most general variation possible to consist

of the superposition of small currents e, e', e", ... flowing in closed circuits.

The increase in the function (287) produced by this variation is

2i^[(a; + €-h6' + ...)*-a?T-22A^[(.z;-h€ + €'+ ...)-a;]

= 2t' . ijlRx — SA*) + (...) + ...

-P2i2 (€ + €+ ...)« (288).

If the system of currents x, x , ... is the natural system, then the first line

of this expression vanishes by Kirchhotf’s second law (cf. equations (270)),

and the increase in heat-production is the essentially positive quantity

2i2(€+€'+ ...)=,

shewing that the original value of function (287) must have been a minimum.

Conversely, if the original value of function (287) was given to be a

minimum, then expression (288) must vanish as far as first powers of

so that we must have
'S^Rx = E, etc.,

shewing that the currents x, x, ... must be the natural system of currents.
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369. Theorem. If two 'points A, B are connected by a network of con-

ductors^
a decrease in the resistance of any one of these conductors will decrease

(or, in special cases, leave unaltered) the equivalent resistance fro'm A to B.

Let X be the current flowing from A to B, R the equivalent resistance of

the network, and the fall of potential. The generation of heat per

unit time represents the energy set free by x units moving through a

potential-difference Thus the rate of generation of heat is

or. since - Tr = the rate of generation of heat will be Ra?.

Let the resistance of any single conductor in the network be supposed

decreased from to Rf, and let ^r, be the current originally flowing through

the network. If we imagine the currents to remain unaltered in spite of the

change in the resistance of this conductor, then there will be a decrease in

the rate of heat-production equal to {Ri — Ri) x^. The currents now flowing

are not the natural currents, but if we allow the current entering the network

to distribute itself in the natural way, there is, by § 357, a further decrease

in the rate of heat-production. Thus a decrease in the resistance of the

single conductor has resulted in a decrease in the natural rate of heat-

production.

If R, R! are the equivalent resistances before and after the change, the

two rates of heat-production are Rx^ and jRV. We have proved that

Ra^<Ra?, so that R'<R, proving the theorem.

General Theory of a Network.

360. In addition to depending on the resistances of the conductors, the

flow of currents through a network depends on the order in which the con-

ductors are connected together, but not on the geometrical shapes, positions

or distances of the conductors. Thus we can obtain the most general case of

flow through any network by considering a number of points 1, 2, ... n, con-

nected in pairs by conductors of general resistances which may be denoted by

Ri2 , jRaa, .... If, in any special problem, any two points P, Q are not joined

by a conductor, we must simply suppose Rpg to be infinite. Discontinuities

of potential must not be excluded, so we shall suppose that in passing through

the conductor PQ, we pass over discontinuities of algebraic sum Epq. This

is the same as supposing that there are batteries in the arm FQ of total

electromotive force Epq, We shall suppose that the current flowing in FQ
from P to Q is and shall denote the potentials at the points 1, 2, ... by

K. V„ ....

The total fall of potential from F to Q'\^Vp—Vq, but of this an amount
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— Epq is contributed by discontinuities, so that the aggregate fall from P to

Q which arises from the steady potential gradient in conductors will be

Tp — Tq + EpQ,

Hence, by Ohm’s Law,

"Vp Tq EPQ PpQ^pQ.

If we introduce a symbol iTp^ to denote the conductivity jr- ,
we have

lip

the current given by
ajpg — /fTpQ (Ip — Ty + Epq') (289).

Suppose that currents X,, ... enter the system from outside at the

points 1, 2, then we must have

= Xi2 -f- ^13 + + ...»

since there is to be no accumulation of electricity at the point 1. and so on

for the points 2, 3, .... Substituting from equations (2S9) into the right

hand of this equation,

X, = (K - K+ A\,) + (K- K + p,3) + ...

= V,{K,2-hK,2 + ...)

- + K,N. + ...) + Eu + (290).

The symbol Kpp has so far had no meaning assigned to it. Let us use it

to denote —{Kpi + Kp^ + A’p, + ...) ; then equation (290) may be written in

the more concise form

-X'l = - {KNi + A" +...) + KuEy, 4- /r,3 +

.

....(291).

There are n equations of this type, but it is easily seen that they are not

all independent. For if we add corresponding members we obtain

Xi + X2 + ... 4 Art = — -F(A^ji + Ai2 + ... + Ajrt) 4 —^ (Kpf^Epq 4 A qpE^^p).
\

The first term on the right vanishes on account of the nu'aning which has been

assigned to A"„, etc.; while the second term vanishes because Epq — —

while A’py = A^yp. Thus the equation reduces to

X\ 4 X2 4 . . . 4 A rt
= 0,

which simply expresses that the total flow into the network is equal to the

total flow out of it, a condition which must be satisfied by A\, A'.,, ... X^ at

the outset. Thus we arrive at the conclusion that the equations of system

(291) are not independent.

This is as it should be, for if the equations wore independent, we sliould have

n equations from which it would be possible to detonninc the values of Ti, ... in

terms of A'l, X2, ...; whereas clearly from a knowledge of the currents entering the

network, we must be able to determine di/erencea of potential only, and not absolute

values.
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To the right-hand side of equation (291), let ns add the expression

{K\\+ K-a + . . . -h ir,„) Ti,

of which the value is zero by the definition of ifu> The equation becomes

Ky, (IT- t;) ir„ (y,-7„)+...+K,,*i—

I

— — Xi + Ki^Eyn + KnEyg + ••• +

There are n equations of this type in all. Of these the first (n — 1) may
be regarded as a system of equations determining

K-K. K-K. .... K-,-7n.

That these equations are independent will be seen d posteriori from the fact

that they enable us to determine the values of the n — 1 independent

quantities

7-Fn. .... K-I-7n.

Solving these equations, we have

K-7n

— +-^21-^21 + ... + -^2n-^2ni ^22. “^23. •••» -^2,11—1 I

1 ^ -^n—1,

1

... + Kn--j,n -^n—i,n» -^n—1,2. -^71—1,2.

Ku, K„. . ... 1

K„. /Tja, • -^2,71—1

1,1. • ... -^71—1,71—1

The current flowing in conductor In follows at once from equation (289),

and the cuirents in the other conductors can be written down from

symmetry.

If we denote the determinant in the denominator of the foregoing

equation by A, and the minor of the term Kpq by Apg, we find that the

value of K— Ki can be expressed in the form

K-i;= {-X, + K,,E,,+ ... + K,nE,n)^

+ (— Xt -H KyiEg ... +KmEm) -I- (292).

361. Suppose first that the whole system of currents in the network is

produced by a current X entering at P and leaving at Q, there being no

batteries in the network. Then all the Ea vanish, and all the X'a vanish

except Xp and Xq, these being given by
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Eiquation (292) now becomes

so that ir-K=(K-K;)-(K-T?;)

= I (A<p - Ag, - Ap, + A„) (293).

Replacing 1, 2 by P, Q and P, Q by 1, 2, we find that if a current X
enters the network at 1 and leaves it at 2, the fall of potential from P
to Q is

^ (A,p - A„- A., + A,«) (294),

and since Art = A«r, it is clear that the right-hand members of equations

(293) and (294) are identical.

From this we have the theorem

:

The potential-fall from A to B when unit current traverses the network

from G to D is the same as the potential-fall from G to D when unit current

traverses the networkfrom A to B,

362. Let it now be supposed that the whole flow of current in the

network is produced by a battery of electromotive force E placed in the

conductor PQ. We now take all the equal to zero in equation (292)

and all the equal to zero except Ppv '''hich we put equal to P, and

Eqp which we put equal to — P. We then have

V—V — K F j- JC F
Yi — Yn — Vi rjpQ -h ii ^jp rjf^p

—

Hence K - (A„ - A„ - A„ + A,,) (295).

and, by equation (289), the current flowing in the arm 12 is

^Ap, - A„ - + A^,) C’lJd).

This expression remains unaltered if Ave replace 1, 2 by P, Q and P, Q by

1, 2. From this we deduce the theorem

:

The current which flows from A to B when an electromotive force E is

introduced into the arm CD of the network, is etjual to the current which ft avs

from G to D when the same electromotive force is introduced into the

arm AB.
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Conjugate Conductors,

363. The same expression occurs as a factor in the right-hand members
of each of the equations (293), (294), (295), and (296), namely, ^

^i»i + “ ^P2 (297).

If this expression vanishes, the two conductors 12 and PQ are said to be
" conjugate.”

By examining the form assumed by equations (293) to (296), when
expression (297) vanishes, we obtain the following theorems.

Theorem I. If the conductors AB and CD are conjuga/te, a current

entering at A and leaving at B will produce no current in CD. Similarly,

a current ente^'ing at C and leaving at D will produce no current in AB,

Theorem II. If the conductors AB and CD are conjugate, a battery

introdvwed into the arm AB produces no current in CD. Similarly, a battery

introduced into the arm CD produces no current in AB.

As an illustration of two conductors which are conjugate, it may be

noticed that when the Wheatstone’s Bridge (§ 352) is in adjustment, the

conductors AD and BC are conjugate.

Equations expressed in Symmetrical Form.

364. The determinant A is not in form a symmetric function of the

n points 1, 2, ..., w, so that equations and conditions which must necessarily

involve these n points symmetrically have not yet been expressed in

symmetrical form.

We have, for instance.

Ai3 — A.JI, A'a4, A^26> ••• I lio.n—

1

>

A». 1\. 34 ,
A *

1

A'n-,. li An—1,4» 1 7̂4—1,61 •••!
1 7vn—i,n—

1

in which the points which enter uiisymmetrically are not only 1 and 3, but

also n. Similarly, we have

^14 — A^21 I 1
h 2,n—

1

t

K«, 7^33, 7v35,
> 7^3, n-1

n—

1

,1> A,I_1^2, —i,8j 77'n—i,6» 1

SO that, on subtraction,

Ai3 — Ai4= A^2Ii 7^28 + 7^24, A 29, .... A^n—

1

A,,. K^. IVas + TTst, A.a, .... A,.n—

1

/^n—i, 4» An_|^n—

i
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From the relation

+ ... + Ap^n-i + = 0 (298),

it follows that the sum of all the terms in the first row of the above deter-

minant is equal to ~ A^ni f^he sum of all the terras in the second row is equal

to — And so on. Thus the equation may be replaced by

and similarly,

K^.

K,,,

K„. ...

K^. ...

1 Aj^n—1 » Ai^n

1 Ag^n

1 . if.-.. 3 » A,i_i^i, ,,, 1 -AVi—ijn—ii An—i,n

l)n-i
•^11 > if,,. .... K,,n

Am, Ajg, ....

Afi—iji

,

An—1,1, An—i,•> •••» An—i,n

These two determinants differ only in their first row, so that on sub-

traction,

(A]f — Am) — (A33 — Ajj)

»(— 1 )** Kxx’\‘ Kfii Kx^"^ + -^261 •••> +

^31, A'u, •••»

1 i,*> An—i,a> .... /i'.-.,. 1

K„, K„. Ajig, •• • * As^ n

Kn-,. 1 . An__i,a» •• •1 An—i,n
(299).

Kn.u Kn.,. An, I, .. •» An,n

the last transformation being effected by the use of relation (298).

The relation which has now been obtained is in a symmetrical shape. If

D is a symmetrical determinant given by

K„, K„. K„. ... . K,.n

K„. Kn. A^23f ••• • A2,n

Kn,i. An,!, • •

,

A’,..,

then the determinant on the right-hand of equation (299) is obtained from

D by striking out the lines and columns which contain ihe terms and

Thus equation (299) may be written in the form

All + A|4 — An — Ai4 —
0*Z)

dKx,dK^-
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Again the determinant A given by

• ••» 1

^211 Kn, K^. •••1 1

(300)

^n—i,9t

may be written in the form

A =
dD

This is not of symmetrical form, for the point n enters unsymmetrically.

We can, however, easily shew that the value of A is symmetrical, although its

form is unsymmetrical.

By application of relation (298), we can transform equation (300) into

A = 11

.. »
A

^n—i,i» -^^n—i,2f i,s» •• i,n—

1

= (-!)“-* P-n 1 A'„, ..., 1

-1,2> 1,S> . .
. ,
A , -i,n—

1

K„.x. K„, 9> ^n,Sf .... A'„,n—

I

= K„. ...
. P\n-U

1,3» •••j
» i,n—ii An—i,n

Kn.,, ^n,2» •••» A n, ?i—1

,

dP

Thus A is the differential coefficient of P with rt'spect to either Kji or

Kn,n» or of course with respect to any other one of the terms in the leading

diagonal of P. Thus, if K denote any term in the leading diagonal of P,

we have

and this virtually expresses A in a symmetrical form.

We can now express in symmetrical form the relations which have been

obtained in §§ 3G0 to 362, as follows

:

I. (§ 362.) The conductors 1, 2 and P, Q will he conjugate if
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11. (Equation 293.) If the conductors 1, 2 and P, Q are not conjugate,

a current X entering at P and leaving at Q produces in 1, 2 a fall of
potential given bg

S‘D

v,-r,=-x

dK

III. (Ekjuation 296.) If the conductors 1, 2 and P, Q are Ttot conjugate,

a battery of electromotiveforce E placed in the arm PQ produces in 1, 2 a fall

ofpotential given by
»D

W
and a currentfrom 1 to 2 given hy

Xys = jE?-

dw
dKi pdK^ Q

dK

All these results and formulae obtain illustration in the results already

obtained for the Wheatstone's Bridge in ^ 351 and 352.

Slowly-varying Currents.

366. All the analysis of the present chapter has proceeded upon the

assumption that the currents are absolutely steady, shewing no variation

with the time. Changes in the strength of electric currents are in general

accompanied by a series of phenomena, which may be spoken of as

“ induction phenomena/’ of which the discussion is beyond the scope of the

present chapter. If, however, the rate of change of the strength of the

currents is very small, the importance of the induction phenomena also

becomes very small, so that if the variation of the currents is slow, the

analysis of the present chapter will give a close approximation to the truth.

This method of dealing with slowly-varying currents will be illustrated by

two examples.

I. Discharge of a Condenser through a high Resistance.

366. Let the two plates A, B of a condenser of capacity C be connected

by a conductor of high resistance R, and let the condenser be discharged by

leakage through this conductor. At any instant let the potentials of the two

plates be Va,Vb, so that the charges on these plates will be ±G

—

Let i be the current in the conductor, measured in the direction from A to B.
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Then, by Ohm’s Law,

whence we find that the charges on plates A and B are respectively + CJti

and — CJit. Since t units leave plate A per unit time, we must have

i.

a differential equation of which the solution is

^
t — IqB ,

where to is the current at time t = 0. The condition that the strength of

the current shall only vary slowly is now seen d posteriori to be that CR
shall be large.

At time t the charge on the plate A is CRi or

t

CRiyc^.

This may be written as

where Qq is the charge at time t = 0. Thus both the charge and the current

are seen to fall off exponentially with the time, both having the same modulus

of decay CR,

Later (§ 516) we shall examine the same problem but without the limita-

tion that the current only varies slowly.

II. Transmission of Signals along a Cable.

367. It has already been mentioned that a cable acts as an electrostatic

condenser of considerable capacity. This fact retards the transmission of

signals, and in a cable of high-capacity, the rate of transmission may be so

slow that the analysis of the present chapter can be used without serious

Let a? be a coordinate >vhich measures distances along the cable, let F, i

be the potential at x and the current in the direction of a?-increasing, and let

K and R be the capacity and resistance of the cable per unit length, these

latter quantities being supposed independent of x.

The section of the cable between points A and B at distances x and

x + dx is a condenser of capacity Kdx, and is at the same time a conductor
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of resistance Rdx. The potential of the condenser is K so that its charge is

VKdx, The fall of potential in the conductor is

so that by Ohm’s Law,

—^ dx = iRdx
ox .(301).

The current enters the section AB at a rate i units per unit time, and

leaves at a rate of » +^ dx units per unit time. Hence the charge in this

section decreases at a rate ^ dx per unit time, so that we must have

|(Fir*)—
at

^ dx'

Eliminating t from equations (301) and (302), we obtain

at

.(302).

.(303).

368. This equation, being a partial differential equation of the second

order, must have two arbitrary functions in its complete solution. We shall

shew, however, that there is a particular solution in which F is a function of

the single variable xj^ijt, and this solution will be found to give us all the

information we require.

Let us introduce the new variable u, given hy u = x[y/t, and let us assume

provisionally that there is a solution V of equation (303) which is a function

of u only. For this solution we must have

djV^ld^V
dx^ t du^

*

du dt ^ du,

'

dt

so that equation (303) becomes

d*F
du,^

^tKR
\ ^ du)du)

du
.(304,).

The fact that this equation involves F and u only, shews that there is an

integral of the original equation for which F is a function of u only. This

integral is easily obtained, for equation (304) can bo put in the form

.h.nc S-®*''”"'
in which (7 is a constant of integi-ation.
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Integrating this, we find that the solution for V is

in which the lower limit to the integral is a second constant of integration.

Introducing a new variable y such that y® = J.K’jRu®, and changing the

constants of integration, we may write the solution in the form

fy=ixjKR[t
V=- Vo + G'J e-y^y (305).

369. We must remember that this is not the general solution of cciua-

tion (303), but is simply one particular solution. Thus the solution cannot

be adjusted to satisfy any initial and boundary conditions we please, but will

represent only the solution corresponding to one definite set of initial and

boundary conditions. We now proceed to examine what these conditions are.

At time i = 0, the value of xj^Jt is infinite except at the point j; = 0.

Thus except at this point, we have F= when ^ = 0. At this point the

value of xjtjt is indeterminjxte at the actual instant ^ = 0, but immediately

after this instant assumes the value zero, which it retains through all time.

Thus at x — the potential has the constant value

V=K+G'j\-^"dy.

or, say, V=T^, where O' = .

Y TT

At a? = 00
,
the value of F is F=F through all time.

Thus equation (305) expresses the solution for a line of infinite length

which is initially at potential F= and of which the end a?= x remains at

this potential all the time, while the end a? = 0 is raised to potential F by

being suddenly connected to a battery-terminal at the instant t = 0.

The current at any instant is given by

1 0F
i = — ^ , from equation (301),

Cl /KR
^~"R2y ~r ^ equation (305),

.(306).

We see that the current vanishes only when £ = 0 and when t = cc

.

Thus even within an infinitesimal time of making contact, there wiW,

according to equation (306), be a current at all points along the wire. It

must, however, be remembered that equation (306) is only an approxima-

tion, holding solely for slowly-varying currents, so that we must not apply
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the solution at the instant ^ = 0 at which the currents, as given by equation

(306), vary with infinite rapidity. For larger values of t, however, we may
suppose the current given by equation (306).

The maximum current at any point is found, on differentiating equation

(306), to occur at the instant given by

t = iKRx^ (307),

so that the further along the wire we go, the longer it takes for the current

to attain its maximum value. The maximum value of this current, when it

occurs, is

and so is proportional to - . Thus the further we go from the end d; = 0, the

smaller the maximum current will be.

We notice that K occurs in expression (307) but not in (308). Thus the

electrostatic capacity of a cable will not interfere with the strength of signals

sent along a cable, but will interfere with the rapidity of their transmission.

Equation (307) expresses what is commonly called the *'KR law”—the

retarding effect is proportional to the product of K and K The theory just

developed is commonly spoken of as the Electrostatic Theory of propagation

of signals. It was first given by Lord Kelvin in 1855 in a paper* which is

notable as having established the theoretical feasibility of an Atlantic cable.

We shall discuss in a later chapter the more general problem of the trans-

mission of signals along a wire of any kind. It will then be possible to

estimate the degree of error involved in the simple assumptions of the

Electrostatic Theory.

EXAMPLES.

1. A length 4a of uniform wire is bent into the form of a square, and the opposite

angular points are joined with straight pieces of the same wire, which are in contact

at their intersection. A given current entera at the intersection of the diagonals and

leaves at an angular point : find the current strength in the various parts of the network,

and shew that its whole resistance is equal to that of a length

SV2+I
of the wire.

2. A network is formed of uniform wire in the shape of a rectangle of sides 2a, 3a,

with parallel wires arranged so as to divide the internal space into six squares of sides a,

the contact at points of intersection being perfect Shew that if a current enter the

framework by one comer and leave it by the opposite, the resistance is equivalent to that

of a length 121a/69 of the wir&

* “On the Theory of the Eleotrio Telegraph,” Proc. Poy. Soc, 1855.
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3. A fault of given earth-resistance develops in a telegraph lino. Provo that the

current at the receiving end, generated by an assigned battery at the signalling end, is

least when the fault is at the middle of the lino.

4. The resistances of three wires BC^ CA, AB, of the same uniform section and

material, are a, 6, c respectively. Another wire from A of constant resistance d can make
a sliding contact with BC. If a current enter at A and leave at the point of contact

with BC^ shew that the maximum resistance of the network is

d
+ A+ c+ Ad *

and determine the least resistance.

5. A certain kind of cell has a resistance of 10 ohms and an electromotive force of

‘85 of a volt. Shew that the greatest current \vhich can be produced in a wire whoso

resistance is 22*5 ohms, by a battery of five such cells arranged in a single series, of

which any element is either one cell or a set of cells in parallel, is exactly 'OG of an

ampere.

6. Six points A^ A\ B, B\ O', C‘ arc connected to one another by copper wire whose

lengths in yards are as follows: A/l'=16, /?C"= iB'C"=*2, AB— A'B*

Also B and B' are joined hy wires, each a yard in length, to the terminals

of a battery whose internal resistance is equal to that of r yards of the wire, and all the

wires are of the same thickness. Shew that the current in the wire AA' is equal to that

which the battery would maintain in a simple circuit consisting of 31r+101 yards of

the wire.

7. Two places A, B are connected by a telegraph line of which the end at A is

connected to one terminal of a battery, and the end at B to one terminal of a receiver,

the other terminals of the battery and receiver being connected to earth. At a point C
of the line a fault is developed, of which the resistance is r. If the resistances of AC7, CB
be p, ^ respectively, shew that the current in the receiver is diminished in the ratio

: qr+rpA-pq,

the resistances of the bhttery, receiver and earth circuit being neglected.

8. Two cells of electromotive forces and resistances r^, are connected in

parallel to the ends of a wire of resistance B, Shew that the current in the wire is

eirz

+

riliArT^ti-A

and find the rates at which the cells are working.

9. A network of conductors is in the form of a tetrahedron PQRS
;
there is a battery

of electromotive force JS in PQ^ and the resist/ince of P§, including the battery, is II.

If the resistances in QR, RP are each equal to r, and the resistances in PS^ RS are each

equal to Jr, and that in C*S'=§r, find the current in each branch.

10. A, jB, C, i) are the four junction points of a Wheatstone’s Bridge, and the

resistances c, /S, 5, y in A^, BD^ AC, CD respectively are such that the battery sends no

current through the galvanometer in BC. If now a new battery of electromotive force E
be introduced into the galvanometer circuit, and so raise the total resistance in that

circuit to a, find the current that will flow thix)ugh the galvanometer.

11. A cable A B, 50 miles in length, is known to have one fault, and it is necessary to

localise it. If the end A is attached to a battery, and has its potential maintained

at 200 volts, while the other end B is insulated, it is found that the potential of B when
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steaily is 40 volts. Similarly when A is i nsulated the potential to which B must he raised

to give A a steady potential of 40 volts s 300 volts. Shew that the distance of the fault

from A is 19*05 miles.

12. A wiro is interpolated in a circAit of given resistance and electromotive force.

Find tlio resistance of the interpolated wire in order that the rate of generation of heat

may bo a maximum.

13. The resistances of the opposite sid^ of a Wheatstone’s Bridge are a, a' and 6,
6'

rc.spcctively. Shew that when the two diagonals which contain the battery and galvano-

meter are interchangedi

E E {a-a:)\h~V){G-^R)

(J

where Cand C* are the currents through the galvanometer in the two cases, Q and R arc

the resistances of the galvanometer and battery Conductors, and E the electromotive force

of the battery.

14. A current C is introduced into a netwoi^ of linear conductors at A^ and taken

out at Z?, the heat generated being //|. If the iKtwork be closed by joining A^B by a
resistance in which an electromotive force E is inserted, the heat generated is iZj.

Prove that

Ex rlTo

El =

15. A nunibtT y of incandescent lamps, each of Vesistance r, are fed by a machine of

rc^isUnce R (including the leads). If the light cmitmd by any lamp is proi>ortional to

the square of the heat produced, prove that the mostXeconomical way of arranging the

lamps is to place them in parallel arc, each arc containiiW n lamps, where n is the integer

nearest to VAVf/r.

16. A battery of electromotive force and of resistance B is connected with the two

terminals of two wires arranged in parallel. The first wire includes a voltameter which

contains discontinuities of potential such that a unit current passing through it for a

unit time does p units of work. The resistance of the first vnre, including the voltameter,

is R'. that of the second is r. Shew that if is greater ^lan p(/^ + r)/r, the current

through the battery is

E{l{+r)—pr
AV+Z;(A*+r)-

17. A sysitem of 30 conductora of equal resistance are connVctccl in the same way as

the edges of a dodecahedron. Shew that the resistance of the nnwork between a pair of

opposite corners is { of the resistance of a single conductor. \

18. In a network AA, PBy PC. PD^ A By BC, CDy DAy the reliances are a, y, 3,

y+8, 3+a, a+/3, /3+y respectively. Shew that, it AD contains a biktery of electromotive

force Ey the current in BC is

P{iifi+ yb),E
2/'2(^+ (da-iiy)*^’

where /’=a + /3 + y + 3, + + .

19. A wiro forms a regular hexagon and the angular points are mined to the centre

by wires each of which has a resistance ^ of the resistance of a side of the hexagon.

Shew that the resistance to a current entering at one angular point (X the hexagon and

leaving it by the opposite point is

2 (71+3)

(n+l)(n+4)

times the resistance of a side of the hexagon.
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20. Two long equal parallel wires AB^ A'B\ of length have their ends B^ B* joined

by a wire of negligible resistance, while A* are joined to the poles of a cell whose

resistance is equal to that of a length r of the wire. A similar cell is placed as a bridge

across the wires at a distance x from A, A\ Shew that the effect of the second cell is to

increase the current in BB' in the ratio

2 (2i+r) (j;+r)/{r(4^+r)+2j:(2i— r)-4x*}.

21. There are n points 1, 2, ... n, joined in pairs by linear conductors. On introducing

a current C at electrode 1 and taking it out at 2, the potentials of these are F|, V2 t ... V^.

If Xi2 is the actual current in the direction 12, and any other that merely satisfies the

conditions of introduction at 1 and abstraction at 2, shew that

: = ( ^1“ ^2) C'=2 (ri2^12®)f

and interpret the result physically.

If X typify the actual current when the current enters at 1 and leaves at 2, and y
typify the actual current when the current enters at 3 and leaves at 4, shew that

2 (^12^12 ^/12)= (A 3
— AC|) C= ( C\

where the A'’s are potentials corresponding to currents x, and the y’s are potentials

corresponding to currents y.

22. Af B, C are three stations on the same telegraph wire. An operator at A knows

that there is a fault between A and B, and observes that the current at A when he uses a

given battery is t, H or i", according as B is insulated and 0 to earth, B to earth, or B
and C both insulated. Shew that the distance of the fault from A is

where AB=a, 130=b — a, 4= .-^-7,, 1^=^ v, .

23.

Six conductors join four points A^ Bf Cj D in pairs, and have resistances

a, a, 6, j8, c, y, where a, a refer to BC^ AD respectively, and so on. If this network

be used os a resistance coil, with A^ B aa electrodes, shew that the resistance cannot

lie outside the limits

24.

Two equal straight pieces of wire AoAf^, BoBf^ are each divided into n equal parts

at the points Ai ... A^^i and Bi...Btt^i respectively, the resistance of each part and

that of A^B^ being Ji. The corresponding points of each wire from 1 to n inclusive

are joined by cross wires, and a battery is placed in AqBq. Shew that, if the current

through each cross wire is the same, the resistance of the cross wire AgB, is

{(n-«)»+ (n-s)4 1}R.

25.

If n points are joined two and two by wires of equal resistance r, and two of

them are connected to the electrodes of a battery of electromotive force E and rcsistaitce

A, shew that the current in the wire joining the two points is

2E
2r-^nR’

26.

Six points A, iB, (7, Z>, P, Q are joined by nine conductors AB^ AP^ BC^ BQ^

QC, PD^ DC^ AD. An electromotive force is inserted in the conductor AZ>, and a

galvanometer in PQ. Denoting the resistance of any conductor ATK by shew that

if no current passes through the galvanometer,

O'BO+ ^BQ-i-^'OQ) (^AB^DP-f^AP^Jic) +^£0 (^BQ^DP “ ^AP^Cq)
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27. A network is made by joining the five points 1, 2, 3, 4, 6 by conductors in every

possible way. Shew that the condition that conductors 23 and 14 are conjugate is

(A 15+ Kih + A35+ ^45)
— Ai3A04)

= -^62 (^64^13— A'34Ai5)+ ^63 (A’'24A5i — A^Ajil),

where A^, is conductivity of conductor rj.

28. Two endless wires are each divided into mn equal parts by the successive

terminals of mn connecting wires, the re.sistance of each part being R. There is an
identically similar battery in every with connecting wire, the total resistance of each

being the same, and the resistance of each of the other mw— w connecting wires is A
Prove that the current through a connecting wire which is the rth from the nearest

battery is

JC'(1 - tan a) (tan** a 4- tan™ “*«)< (tan n - tan™ a),

where C is the current through each battery, and sin 2a=/i/(A+A).

29. A long line of telegraph wire A Jo ... + i
is supported by n equidistant

insulators at Ji, J21 ••• The end A is coniiectca to one pole of a btittery of electro-

motive force E and resistance and the other pole of this battery is put to earth, as

also the other end Jn + i
of" the wire. The resistance of each portion AAi, A 1A 2 , ...

is the same, R. In wet weather there is a leakage to earth at each insulator,

whose resistance may bo tiiken equal to r. Shew that the current strength in ApAp^,i is

Acosh (2/1— 2/? 4-1) g

B cosh (2?i 4 1 ) a 4-V shih (2h 4- 2) a
*

w here 2 sinh a=VR/r.

30. A regular polygon J1J3... An is formed of n pieces of uniform wire, each of

resistance <r, and the centre 0 is joineil to each angular point by a straight piece of the

same wire. Shew that, if the point 0 is maintained at zero potential, and the point A|

at potential K, the current that flows in the conductor ArA^+i is

2 Psinh asinh (n-2r4-l)a

O’ cosh Tia
’

where a is given by the equation

cosh 2a=1 4- sin —

.

n

31.

A resistance network is constructed of 27i rectangular meshes forming a truncated

cylinder of 2/1 faces, with two ends each in the form of a regular polygon of 2» sides.

Each of these sides is of resistance r, and the other edges of resistance R, If the

electrodes be two opposite corners, then the resistance is

i?ir4-4/f
tanh 0

taiih 710 ’

where sinh^d*
2A*

32.

A network is formed by a system of conductors joining every pair of a set of

n points, the resistances of the conductors being all equal, and thera is an electromotive

force in the conductor joining the points A 2 . Shew that there is no current in any

conductor except those which pass through Ai or J21 I'bc current in these

conductors.
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Each member of the series of n points Ai^ ^21 is united to its successor

by a wire of rcsistauco p, and similarly for the scries of n points B2 , ... Each

pair of points corresponding in the two series, such as iil,. and B^ is united by a wire

of resistance R, A steady current i enters the network at and leaves it at B^. Shew

that the current at divides itself between AiA^ and AiBi in the ratio

sinh a+ sinh (n— 1 ) a+ sinh (n ~ 2) a : sinh a+ sinh (n - 1) a- siuh (n - 2) a,

whero cosha=—

.

It,

34.

An underground cable of length a is badly insulated so that it has faults

throughout its length indefinitely near to one another and uniformly distributed. The
conductivity of the faults is 1/p' per unit length of cable, and the resistance of the

cable is p per unit length. One pole of a battery is connected to one end of a cable

and the other pole is earthed. Prove that the current at the farther end is the same
as if the cable were free from faults and of total resistance

Vpp

35.

Two parallel conducting wires at unit distance are connected by n+ 1 cross pieces

of the same wire, so as to form n squares. A current enters by an outer corner of the

first square, and leaves by the diagonally opposite corner of the last. Shew that, if

the resistance is that of a length of the wire,

«n + l
=
a,+ 2*

36. At B are the ends of a long telegraph wire with a number of faults, and C is

on intermediate point on the wire. The resistance to a current sent from A is when

C is earth connected, but if C is not earth connected the resistance is iS or 7^ according

as the end B is to earth or insulated. If R\ S\ T* denote the resistances under similar

ciicumstauccs when a current is sent from B towards A, shew that

r{R^S)^W{R-T),

37. The inner plates of two condensers of capacities (7, C are joined by wires of

resistances fZ, to a point P, and their outer plates by wires of negligible resistance

to a point Q, If the inner plates be also connected through a galvanometer, shew that

the needle will sufi'er no sudden deflection on joining P, Q to the poles of a battery,

\1CR= C'R\

38.

An infinite cable of capacity and resistance K and R per unit length is at zero

potential. At the instant t—0 one end is suddenly connected to a battery for an
infinitesimal interval and then insulated. Shew that, except for very small values of e,

the potential at any instant at a distance x from this end of the cable will be pro-

portional to

1 KJlx»



CHAPTER X

STEADY CURRENTS IN CONTINUOUS MEDIA

Components of Current

370. In the present chapter we shall consider steady currents of elec-

tricity flowing through continuous two- and three-dimensional conductors

instead of through systems of linear conductors.

We can find the direction of flow at any point P in a conductor by

imagining that we take a small plane of .area dS and turn it .about at the

point P until wo find the position in which the amount of electricity crossing

it per unit time is a maximum. The normal to the plane when in this

position will give the direction of the current at P, .and if the total amount

of electricity crossing this plane per unit time when in this position is CdS,

then C may be defined to be the strength of the current at P.

If m, n are the direction-cosines of the direction of the curnmt at P,

then the current C may be treated fis the superposition of three currents

IC, mCy nC parallel to the axes. To prove this we need only notice that the

flow across an area dS of which the normal makes an angle 0 with the direc-

tion of the current, and has direction-cosines l\ m\ n', must be CdS cos 0, or

CdS {lU -f mm' + wn').

The first term of this expression may be regarded as the contribution from

a current IC parallel to the axis Ox, and so on. The quantities IC, mC, nC

are called the components of the current at the point P.

Lines and Tubes of Flow,

371. Definition. A line of flow is a line drawn in a conductor such

that at every point its tangent is in the direction of the current at the point

Definition. A tube of flow is a tubular region of inflnitesimal cross-

section, hounded by lines of flow.



342 Steady Currents in continuous Medm [ch. x

It is clear that at every point on the surface of a tube of flow, the current

is tangential to the surface. Thus no current crosses the boundary of a tube

of flow, from which it follows that the aggregate current flowing across all

cross-sections of a tube of flow will be the same.

The amount of this current will be called the strength of the tube.

Thus if C is the current at any point of a tube of flow, and if a> is the

cross-section of the tube at that point, then Cro is constant throughout the

length of the tube, and is equal to the strength of the tube.

There is an obvious analogy between tubes of flow in current electricity and tubes

of force in statical electricity, the current C corresponding to the polarisation P.

In current electricity, is constant and equal to the strength of tlie tube of flow,

while in statical electricity Pm is constant and equal to the strength of the tube of force

129).

Specific Redatance.

372. The specific resistance of a substance is defined to be the resistance

of a cube of unit edge of the substance, the current entering by a perfectly

conducting electrode which extends over the whole of one fiice, and leaving

by a similar electrode on the opposite face.

Tho specific resistances of some substances of which conductors and insulators are

frequently made are given in the following table. The units are the centimetre and

the ohm.

Silver at 18* C l-66xl0*« Graphite ... ... ... 0003.

Copper at 18” C l-78x 10-« Guttapercha ... 2x109.

Iron (pure) at 60* C. 11 5xl0-« Glass (soda-lime) fixlO^b

Steel at 18* C i9yxio-« „ (pyrex) ... 10‘*.

Mercury at 0* C 94-07 xlO-« Paraflin wax ... 3xl0«.

If T is the specific resistance of any substance, the resistance of a wire

of length I and cross-section 8 will clearly be
s

Ohm*s Law.

373. In a conductor in which a current is flowing, different points

will, in general, be at different potentials. Thus there will be a system

of equipotentials and of lines of force inside a conductor similar to those

in an electrostatic field. It is found, as an experimental fact, that in a

homogeneous conductor, the lines of flow coincide with the lines of force

—

or, in other words, the electricity at every point moves in the direction of

the forces acting on it.

In considering the motion of material particles in general it is not usually true that the

motion of the particles is in the direction of the forces acting upon them. The velocity
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of A particle at the end of any small interval of time is compounded of the velocity at

the beginning of the interval together with the velocity generated during the intervaL

I'he latter velocity is in the direction of the forces acting on the particle, but is generally

insignificant in comparison with the original velocity of the particle. In the particular

case in which the original velocity of the particle was \ ery small, the direction of motion

at the end of a small interval will be that of the force acting on the particle. If the

particle moves in a resisting medium, it may bo that the velocity of the particle is kept

permanently very small by the resistance of the mcdinni : in this case the direction of

motion of the particle at every instant, relatively to the medium, may be that of the

forces acting on it.

Oil the modern view of electricity, a current of electricity is composed of electrons

wliich are driven through a conductor by the electric forces acting on them, and in

their motion c.xpeiioiice fmpient collisions with the molecules «)f the conductor. The
efloi t of these collisions is continually to chock the forward velocity of the electrons, so

tli.it this forward \clocity is kept small just as if they were moving through a resisting

medium of the ordinary kind, and so it comes about that the direction of flow of curieut

is ill the direction of the electric intensity (cf. 31.*) a).

374. Let us select any tube of force of small cross-section inside a

conductor, and let P, Q be any two points on this tube of force, at which

the potentials are Vp and 1^, the former being the greater. Let these

points be so near together that throughout the range PQ the cross-section

of the tube of force may be supposed to have a constant value a>, while the

specific resistance of the material of the conductor may be supposed to

have a constant value t.

From what has been said in § 373, it follows that the tube of force under

consideration is also a tube of flow. If C denotes the current, then the

current flowing through this tube of flow in the direction from P to Q
will be C(o. This current may, within the range PQ, be regarded as flowing

through a conductor of cross-section w and of specific resistance t. The
PQ.t

resistance of this conductor from P to Q is accordingly —

^

,
while the fall

of potential is - 1^. 'J’hus by Ohm's Law

so that

PQ.t
,

Vp-V(. = — -— X Co>,

j,Q

9
If — denotes differentiation along the tube of force, the fraction on the

os

left of the foregoing equation reduces, when P and Q are made to coincide,

dV
to —

, so that the equation assumes the form.
05
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Let Z, n be the direction-cosines of the line of flow at P, and let u, v, w
be the components of the current at P, so that u = IC, etc. Then

in— = I IGt = — UT, etc.,
dx ds

and we see that equation (309) is equivalent to the three equations

U s
1 djr\

T dx

1 djr
V —

T

dv\
tv =

T dz 1

.(310).

These equations express Ohm’s Law in a form appropriate to flow through

a solid conductor.

Equation of Continuity.

375. Since we are supposing the currents to be steady, the amount of

current which flows into any closed region must be exactly equal to the

amount which flows out. This can be expressed by saying that the integral

algebraic flow into any closed region must be nil.

Let an}^ closed surface S be taken entirely inside a conductor. Let Z, m, n

be the dircction-cosines of the inward normal to any element dS of this

surface, and let u, v, w be the components of current at this point. Then

the normal component of flow across the element dS is lu + mv + 7iw, and the

condition that the integral algebraic flow across the surface S shall be nil is

expressed by the equation

//<'
u + mv + mu) (IS = 0.

By Green’s Theorem (§ 17G), this equation may be transformed into

and since this integral has to vanish, whatever the region tlirough which it Is

taken, each integrand must vanish separately. Hence at every point inside

the conductor, we must have

du dv dw
__

dz:

^ (311).

This is the so-called “equation of continuity,” expressing that no elec-

tricity is created or destroyed or allowed to accumulate during the passage

of a steady current through a conductor.
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The same equation can be obtained at once on considering the current-

flow across the different &ces of a small rectangular parallelepiped of edges

dx, dy, dz (cf. § 49).

Equation (311) of course expresses that the vector C of which the

components are v, w, must be solenoidal. The equation of continuity

can accordingly be expressed in the form

div C = 0.

Equation satisfied by the Potential.

376. On substituting in equation (311) the values for u, v, w given by
equations (310), we obtain

dx Vt dx) dy \t dy) dzKr dz)
0 (312).

The potential must accordingly be a solution of this differential equation.

The equation is the same as would be satisfied by the potential in an

uncharged dielectric in an electrostatic field, provided the inductive capacity

at every point is proportional to Z If the specific resistance of the con-

ductor is the same throughout, the difierential equation to be satisfied by

the potential reduces to

V*F=0.

377. We may for convenience suppose that the current enters and leaves

by perfectly conducting electrodes, and that the conductor through which the

current flows is bounded, except at the electrodes, by perfect insulators. Then,

over the surface of contact between the conductor and the electrodes, the

potential will be constant. Over the remaining boundaries of the conductor,

the condition to be satisfied is that there shall be no flow of current, and this

dV
is expressed mathematically by the condition that shall vanish.

Thus the problem of determining the current-flow in a conductor amounts

mathematically to determining a function V such that equation (312^ is satis-

dV
fled throughout the volume of the conductor, while either^ = 0, or else V has

a specified value, at each point on the boundary. By the method used in § 188,

it is easily shewn that the solution of this problem is unique.

It is only in a very few simple cases that an exact solution of the problem

can be obtained. There are, however, various artifices by which approxima-

tions can be icached
,
and various ways of regarding the problem from which it

may be possible to form some ideas of the physical processes which determine

the nature of the flow in a conductor. Some of these will be discussed later

(§§ 38G—394). At present we consider general characteristics of the flow of

currents through conductors.
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Conditions to juo satisfjkd at the Boundary of two
Conducting Media.

378. The conditions to be satibtied at a boundary at which the current

flows from one conductor to another arc as follows:

(i) Since there must be no accumulation of electricity at the boundary,

the normal flow across the boundary must be the same whether calculated in

the first medium or the second. In other words

1 r* K
T on

must be continuous,

wlierc ^ denotes diflTorentiation along the rionnal to the boundary.
on

(ii) The tangojiti.d force must be continuous, or else the potential would

not be continuous. Thus

dX
os

must be continuous,

where denotes differentiation along any line in the boundary.

These boundary conditions are just the same as w^ould be satisfied in an

electrostatical problem at the boundary between two dielectrics of inductive

capacities equal to the two values of Thus the equipotentials in this

idcctrostatic problem coincide wdth the equipotentials in the actual current

problem, and the lines of force in the electrostatic problem correspond with

the lines of flow in the current ])roblcm.

Ch'.irly these results could bo deduced at ouce from the diObrcutial equation (312) on

passing to the limit and making t become discoiitimiou.s on uros.'sing a boundary.

Refraction of Linos of Floiu,

379. Let any line of flow cross the boundary betw’^cen two different

conducting ino<lia of specific resistances Tj, t», making angles ej, with the

normal at the point at which it meets the boundary in the tw'o media

respectively. The lines of flow satisfy the same conditions as would be

satisfied by electrostatic lines of force cros.sing the boundaiy between two

dielectrics of inductive capacities —
,

i
, so that we mu.st have (cf. equa-

t ion (71))

— cot €, = — cot €3 .

Ti T.

Hence Tj tan €1 = t.j tan 62 ,

expressing the law of refraction of lines of flow.



378-381] Boundary Conditiom 347

380. As an example of refraction of lines of current flow, we may
consider the case of a steady uniform current in a conductor being dis-

turbed by the presence of a sphere of different metal inside the conductor.

The lines shewn in fig. 78 will represent the lines of flow if the specific

resistance of the sphere is less than that of the main conductor. The lines

of flow tend to crowd into the sphere, this being the better conductor—in

the language of popular science, the current tends to take the path of least

resistance.

Charge on a Surface of Discontinuity,

381. If u is the normal component of current flowing across the

boundary between two different conductors, we have by Ohm's Law,

1 dV, 1 dV
t« = --

Ti VU Tg Oh

0
where .r- denotes differentiation along the normal which is drawn in the

dn °

direction in which u is measured (say from (1) to (2)), and T^, are the

potentials in the two conductors.

If there is no charge on the boundary between the two conductors we

must, from equation (70), have the relation

dn - dn ’

where 7f,, are the inductive capacities of the two conductors. This

condition will, however, in general be inconsistent with the condition which,

as we have just seen, is made necessary by the continuity of u. Thus there

will in general be a surface charge on the boundary between two conductors

of different materials.

The amount of this charge is given at once by equation (72), p. 125. If (

denotes the surface density at any point, we have

. ^ dV, j. dV
47ro- = K.,;r-

dn (Ju

= -(/i,Ti-7raTa)tt (313).

This surface charge is very small compared with the charges which occur in statical

electricity, r^or instance, if we have curreut of 100 anip5rcs per sq. cm. passing from one

inetiillic conductor to another, we take in formula (313),

w= 100 ampfere8=3x 10” electrostatic units,

10 “®

r= 10- ohms

^=1,

» n

the last two being true as regards order of magnitude only. The value of 4ir<r is of the

order of magnitude of Ktu, or 10~® in electrostiUic units. As has been said, the value

of 47ro- at the surface of a conductor chargeil as highly as possible in air is of the order

of 100.
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382.

As an example of the distribution of a surface charge, we may
notice that the surface-density of the charge on the surface of the sphere

dV
considered in § 380 will be proportional to either value of ^ ,

and therefore

to cos 6, where 6 is the angle between the radius through the point and the

direction of flow of the undisturbed current.

Generation of Heat.

383.

Consider any small element of a tube of flow, length ds, cross-

1 dV
section o). The current per unit area is, by equations (310),

1 dV
that the current flowing through the tube is — -— The resistance of

the element of the tube under consideration is . Hence, as in § 355, the

amount of heat generated per unit time in this element is

(IdV yrds 1 fdVy ,
1-^ 0) — or - — tods,
\t os / (o TV os )

1 fdVy
Thus the heat generated per unit time per unit volume is “

( »
a-rid

the total generation of heat per unit time will be

" ///;{©’ +
Q* (^)’}

Thus the heat generated per unit time is Stt times the energy of the

whole field in the analogous electrostatic problem (§ 169).

Rate of generation of heat a minimum,

384.

It can be shewn that for a given current flowing through a con-

ductor, the rate of heat generation is a minimum when the current distributee

itself as directed by Ohm's Law. To do this we have to compare the rate of

heat generation just obtained with the rate of heat generation when the

current distributes itself in some other way.

Let us suppose that the components of current at any point have no

longer the values

_ldV _ldV _ld_V
T dx

'

T oy * r dz

assigned to them by Ohm’s Law, but that they have different values

IdV IdV \dV
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In order that there may be no accumulation at any point under this new

distribution, the components of current must satisfy the equation of con-

tinuity, so that we must have

du dv dw
__ -

dx dy^ dz~ ,(315).

By the same reasoning as in § 383, we find for the rate at which heat is

generated under the new system of currents,

{(” ;^ T% "')}

which, on expanding, is equal to

+ JjJr
(u* + V* + w^) dxdydz (316).

On transforming by Green's Theorem, the second terra

=
2 jJJ

^ ^ ^ ^ + wiv + nw) dS.

The volume integral vanishes by equation (315), the integrand of the

surface integral vanishes over each electrode from the condition that the total

flow of current across the electrode is to remain unaltered, and at every point

of the insulating boundary from the condition that there is to be no flow

across this boundary. Thus the new rate of generation of heat is represented

by the first and third terms of expression (316). The first terra represents

the old rate of generation of heat, the third term is an essentially positive

quantity. Thus the rate of heat generation is increased by any deviation

from the natural distribution of currents, proving the result.

385. An immediate result of this is that any increase or decrease in the

specific resistance of any part of a conductor is accompanied by an increase

or decrease of the rcsistfince of the conductor as a whole. For on decreasing

the value cf t at any point and keeping the distribution of currents

unaltered, the rate of heat production will obviously decrease. On allow-

ing the currents to assume their natural distribution, the rate of heat

production will further decrease. Thus the rate of heat production with a

natural distribution of currents is lessened by any decrease of specific

resistance. But if I is the total current transmitted by the conductor, and

R the resistance of the conductor, this rate of heat production is RI\
Thus R decreases when r is decreased at any point, and obviously the

converse must be true (cf. § 359).
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The Solution of Special Problems.

Current-flow in an Inflnite Conductor.

386. A good approximation to the conditions of electric flow can

occasionally be obtained by neglecting the restrictive influence of the

boundaries of a conductor, and regarding the problem as one of flow between

two electrodes in an infinite conductor. For simplicity, we shall consider only

the case in which the conductor is homogeneous.

The conditions to be satisfied by the potential V are as follows. We
must have V over one electrode, and V—V, over the second electrode,

dV 1
while — must vanish at infinity to a higher order than — and throughout

the conductor we must have V2F = 0 (§ 37fi). We can easily see (cf. 186,

187) that these conditions determine V uniquely.

Consider now an analogous electrostatic problem. Let the conducting

medium be replaced by air, while the electrodes remain conductors. Let

the electrodes receive equal and opposite charges of electricity until their

difference of potential is K -K* At this stage let denote the electro-

static potential at any point in the field. Let be the values of over

the two electrodes, so that i/tj — = K K- Then there will be a constant

G (namely K — such that + C assumes the values K, K respectively

over the two electrodes. Moreover V*>|r = 0 throughout the field, so that

V-(>/r + C) = 0 throughout the field, and \[r = 0 at infinity except for terms

1 0
in - (cf. § 67), so that 0) vanishes at infinity to a higher order

than

Hence yfr + G satisfies the conditions which, as we have seen, must be

satisfied by the potential V in the current problem, and these are known to

suffice to determine V uniquely. It follows that the value of V must be

Vr + a.

Thus the lines of flow in the current problem are identical with the lines

of force when the two electrodes are charged to different potentials in air.

The normal current-flow at any point on the surface of an electrode is

T dn
*

so that the total flow of current outwards from this electrode

//
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IfE is the charge on this electrode in the analogous electrostatic problem

we have, by Gauss* Theorem,

so that the total flow of current is seen to be
T

If Pill Pu, Pa are the coefficients of potential in the electrostatic problem

^i=PnJ^-pi*-&,

so that

K - K = ^1- = (Pii - 2p„ +P22) E.

If 7 is the total current, and R the equivalent resistance between the

electrodes, we have just seen that

so that

7 =
^sTtE

R-
Vi-V. T

.(ni7).

If we regard the two electrodes in air as forming a condenser, and denote

its capacity by (7, we have

so that

R = V,-V,_ r

I ~inG ,(318).

387. As instances of the applications of formulae (317) and (318) to

special problems, we have the following:

I. The resistance per unit length between two concentric cylinders of

radii a, b (as, for instance, the resistance between the core of a submarine

cable and the sea), is, by formula (318),

II. The resistance per unit length between two straight parallel

cylindrical wires of radii a, 6, placed with their centres at a great distance r

apart, in an infinite conducting medium, is, by formula (317),

-^ (log a - 2 log r + log b)

T , r*
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TTL The resistance between two spherical electrodes, radii a, h, at a

great distance r apart, in an infinite conducting medium, is, by formula (317),

47r (a 6 r)

308. If two electrodes of any shape are placed in an infinite medium at

a distance r apart, which is great compared with their linear distances, we

may take p,a in formula (317) equal, to a first approximation, to This is

small compared with and so that, to a first approximation, we may

replace formula (317) by

It accordingly appears that the resistance of the infinite medium may be

regarded as the sum of two resistances—a resistance at the crossing of

the current from the first electrode to the medium, and a resistance at
47r

the return of the current from the medium to the second electrode. Thus

we may legitimately speak of the resistance of a single junction between an

electrode and the conducting medium surrounding it.

For instance, suppose a circular plate of radius a is buried deep in the earth, and acts

as electrode to disfributo a current through the earth. The value of pu for a disc of

ratlius a is so that the resistance of the junction is So also if a disc of radius a

is placed on the earth’s surface, the re.'^istance at the junction is and clearly this

also is the resistance if the electrode is a semicircle of radius a buried vertically in the

earth with its diameter in the surface.

Flow in a Plane Sheet of Metal,

389. When the flow takes place in a sheet of metal of uniform thickness

and structure, so that the current at every point may be regarded os flowing

in a plane parallel to the surface of the sheet, the whole problem becomes

two-dimensional. If x, y are rectangular courdiiiatcs, the problem reduces to

that of finding a solution of

dV
winch shall be such that either V has a given value, or else ^ = 0, at every

point of the boundary. The methods already given in Chap, viil for obtain-

ing two-dimensional solutions of Laplace’s equation are therefore available

for the present problem. The method of greatest value is that of Conjugate

Functions.
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If the conducting medium extends to infinity, or is bounded entirely by
the two electrodes, the transformations will be identical with those already

discussed for two conductors at different potentials (§ 386). If the medium
dV

has also boundaries at which ^ procedure must be slightly different.

We must try to transform the two electrodes into lines V= constant, and the

other boundaries into lines If= constant, so that the whole of the medium
becomes transformed into the interior of a rectangle in the 17, V plane.

Let U 4- 1F = + iy)

be a transformation which gives the required value for V over both electrodes,

dV
and gives — = 0 over the boundary of a conductor. Then V will be the

potential at any point, the lines V = constant will be the equipotentials, and

the lines U = constant, being the orthogonal trajectories of the equipotentials,

will be the lines of flow.

At any point the direction of the current is normal to the equipotential

through the point, and the amount of the current is given by

T 0/1

0 J/" p) JJ 0
But ^ is equal to

,
where ^ denotes differentiation in the equipotential.

Thus the current flowing across any piece PQ of an equipotential

If P, Q are any two points in the conductor, a path from P to Q can be

regarded as made up of a piece of an equipotential PiV, and a piece of a line

of flow ^Q. The flow across ATQ is zero, that across is

-{Uy-Up).
T

This is accordingly the total flow across PQ, and since Pv= Uq, it may
be written as

huQ-Up).

390. As an illustration, let us suppose that the conducting plate is a

polygon, two or more edges being the electrodes. We can transform this

into the real axis in the f-plane by a transformation of the type

j
= (f a,)' (319),
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and this real axis has to be transformed into a rectangle formed (say) by the

lines F= K, F = = 0, 17 = C in the TT-plana The transformation

for this will be

[(?- a.)(?- ap)(f- a,)(f- a,)]'* (320),

where Oo, and aq, ar are the points on the real axis of f which determine

the ends of the electrodes. By elimination of f from the integrals of equa-

tions (319) and (320) we obtain the transformation required.

391. The following example of this method is taken from a paper by

H. F. Moulton (Proc Land. Math, Soc. ill. p. 104).

° C S R

R

» B Q ^» Q

2-l/iane. n^plane.

Fio. 101. Fio. 102.

In fig. 101, let ABCD be a rectangular plate, the piece PQ of one or more

sides being one electrode, and the piece RS of one or more other sides being

the other electrode. Let the rectangle PQRS in fig. 102 be its transforma-

tion in the TT-plane. In the intermediate plane, let the points A, D
transform to 5’= a, h, c, d respectively, and let the points P, Q, R, S transform

tu
J' - p, q, r, s respectively. Then the transformations are

[(?-«) (?-t)(r- cxr- d)]"^

^ =[(?-!>)(?- 2) (r- r)({r- .)] -1.

If we write

(b-c){a-d)_ (g- r)( p-5)
(a-c){b-d) *’ ip-~r){q-8)

2m = y/{a — c)(b — d), 2m' = — —
«),

the integrals are

^_ a (b ^ d) - h (a ^ d) sn* mz (mod k)

^ h — d~-[a — d) sn* mz (mod k) ^

_p (g — g) — ^ ( p — s) sn* m'W (mod X.)

’ ~
g — s — (p — s) sn* w'lf (mod X)

.(322).

JST xK*
The sides AB, AD of the first rectangle are the periods — , of

f7i m
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sn mz (mod k) ;
the sides PQ, PS of the second rectangle are the periods in

IT, say ~ ^ , of sn m' TT(mod X).

In the TT-plane, the potential difference of the two electrodes is PS, or ~

,

1 U
while the current is - PQ, or ^7

^
The equivalent resistance of the plate

is accordingly rUfL, so that the quantity we are trying to determine is LfL,

Let the coordinates of P, Q, R, S in the e-plarie be z,, -^2 , z^. In the

f-plane the coordinates of these points are p, q, r, s. Hence from equations

(32 1 ), we have

_a(h — d) — h {a — d) sn* mz^ (mod k)

^ (h — d) — (a — d) sn* mz^ (mod k)
*

and similar equations for q, r, a. The ratio UjL of whicli we are in search

is now given by

1/ _{q — r)(p — s) ^ (sn* mzo — sn* mz^) (sn* mzi — sn* mz^)

L {p — a) (sn* viZi — sn* mz^) (sn* niz^ — sn* inz^)
*

the whole being to modulus k. The values of sn mz can be obtained from

Legendre's Tables.

Moulton has calculated the resistance of a square sheet with electrodes,

each of length equal to one-fifth of a side, in the following four cases

:

( 1 ) Electrodes at middle of two opposite sides, Resistance = 1*745P,

(2) Electrodes at ends of two opposite sides and lacing one another,

Resistance = 2 -408 P,

(3) Electrodes at ends of two opposite sides and not facing one

another, Resistance = 2’589P,

(4)

Electrodes bent equally round two opposite corners of square,

Resistance — 3 027P,

where R is the resistance of the square when the whole of two opposite sides

form the electrodes. A comparison of the results in cases (2) and (3) shews

how large a part of the resistance is due to the crowding in of the lines of

force near tlie electrode, and how small a part arises from the uncrowded

part of the path.

Limits to the Resistance of a Conductor,

392. The result obtained in § 38G enables us to assign an upper and

a lower limit to the resistance of a conductor, when this resistance cannot be

calculated accurately. For if any parts of the conductor are made into

perfect conductors, the resistance of the whole will be lessened, and it may

be possible to change parts of the conductor into perfect conductors in such
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a way that the resistance of the new conductor can be calculated. This

resistance will then be a lower limit to the resistance of the original con-

ductor.

As an illustration, we may examine the case of a straight wire of variable

cross-section S. Let us imagine that at small distances along its length we

take cross-sections of infinitely small thickness, and make these into perfect

conductors. The resistance between two such sections at distance ds apart,

Tds
^\ ill be ,

where S is the cross-section of either. Thus a lower limit to

the resistance is supplied by the formula

393. Again, if we replace parts of the conductor by insulators, so causing

the current to flow in given channels, the resistance of the whole is increased,

and in this way we may be able to assign an upper limit to the resistance

of a conductor.

394. As an instance of a conductor to the resistance of which both

upjx.T and lower limits can be assigned, let us consider the case of a

cylindrical conductor AB terminating in an infinite

conductor G of the same material. This example is

of practical importance in connection with mercury

resistance standards. The appropriate analysis was

first given by Lord Rayleigh, discussing a parallel

problem in the theory of sound.

Let I be the length and a the radius of the tube. „
. Fio. 103.

To obtain a lower limit to the resistance, we imagine

a perfectly conducting plane inserted at B. The resistance then consists of

the resistance to this new electrode at B, plus the resistance from this with

It
the infinite conductor C. The former resistance is—-, the latter, by § 388,

TTtt*
» ^ a »

is , so that a lower limit to the whole resistance is
4a

— +-
Tra* 4a

'

which is the resistance of a length ^ the tube.

To obtain am upper limit to the resistance, wc imagine non-conducting

tubes placed inside the main tube AB, so that the current is constrained to

flow in a uniform stream parallel to the axis of the main tube until the

end B is reached. After this the current flows through the semi-infinite

conductor G as directed by Ohm’s Law.
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The resistance of the tube AB is, as before, . To obtain the resist-
ira,

ance of the conductor (7, we must examine the corresponding electrostatic

problem. If I is the total current, the flow of current per unit area over

the circular mouth at B is I lira?. In order that the potentials in the

electrostatic problem may be the same, we must have a uniform surface

density of electricity

on the surface of the disc.

The heat generated is where R is the resistance of the conductor C.

It is also

taken through the conductor G. Now if W is the electrostatic energy of

tI
a disc of radius a, having a uniform surface density a = on each side,

we have

^=8^ j'

+

where the integral is taken through all space, or again,

^ IIflC£J +®

(

2)1
where the integral is taken through the semi-infinite space on one side of

the disc, i.e. through the space (7, if the disc is made to coincide with the

mouth B. On substituting for the volume integral in expression (323), we

find that

rR^ 47rTr
(324).

Following Maxwell, we shall find it convenient to calculate TF directly

from the potential. If a disc of radius r has a uniform surface density a

on each side, the potential at a point P on its edge will be

where the integral is taken over one side of the disc, and r is the distance

from P to the element dxdi/. Taking polar coordinates, with P as origin,

the equation of the circle will be r=26cos^; wc may replace dxdy by

rdrdOf and obtain

Vp = 2<rj’'

r=>26 cos

0

drtW = Sb<T,
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On increasing the radius of the disc to h-\-dh, we bring up a charge

^hcdh from infinity to potential 86<r, so that the work done is

dW = 327r6Vd6,

and integrating from h = 0 to 6 = a, we find for the potential energy of the

complete disc of radius a,

Tr= ^7raV.

Thus, firom equation (324),

P _ 47r IT_ 1287r*a*o'*

/V“ 37V“'
rl

or, since «r = —r-i

,

47r-a*

Thus an upper limit to the whole resistance is

It 8t

irit? STT'a
*

8
which is the resistance of a length Z +^ a of the tube.

Thus we may say that the resistance of the whole is that of a length

• TT 8 t

Z + aa of the tube, where a is intermediate between j and -
, i.e, between

4 oTT

•785 and •849. Lord Rayleigh*, by more elaborate analysis, has shewn that

the upper limit for a must be less than ^8242, and believes that the true

value of a must be pretty close to ’82.

The passage of Electricity through Dielectrics.

395. Since even the best insulators are not wholly devoid of conducting

power, it is of importance to consider the flow of electricity in dielectrics.

Using the previous notation, we shall denote the potential at any point

in the dielectric by K, the specific resistance by r, and the inductive capacity

by K. We shall consider steady flow first.

If the flow is to be steady, the equation of continuity, namely

must be satisfied. Also if there is a volume density of electrification p, the

potential must satisfy equation (62), namely

* Theory oj Sounds Yol. ii. Appendix A.
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From a comparison of equations (325) and (326), it is clear that steady

flow will not generally be consistent with having p = 0. Hence if currents

are started flowing through an uncharged dielectric, the dielectric will

acquire volume charges before the currents become steady. When the

currents have become steady, the value of Y will be determined by
equation (325) and the boundary conditions, and the value of p is then

given by equation (326).

From equations (325) and (326), we obtain

1

^ 47rT dx das ^ dy dy ^ dz dz

The condition that p shall vanish, whatever the value of V, is that Kr shall

be constant throughout the dielectric: if this condition is satisfied the value

of p necessarily vanishes at every point for all systems of steady currents.

The most important case of this condition being satisfied occurs when the

dielectric is' homogeneous throughout. If Kt is not constant throughout

the dielectric, equation (327) shews that we can have p = 0 at every point

provided the surfaces 1^= 0008. and A"r = cons, cut one another at right

angl(‘s at every point, i.e, provided Kr is constant along every line of flow.

We have already had an illustration (§ 381) of the accumulation of

charge which occurs when the value of Kr varies in passing .along a line

of flow.

Time of Relaxation in a Homogeneous Dielect't'ic.

396. Let a homogeneous dielectric be charged so that the volume

density at any point is p.

If any closed surface is taken inside the dielectric, the total charge

inside this surface must be

while the rate at which electricity flows into the surface will, as in § 37 5, be

inv + Uio) dS,

where u, v, w .are the components of current and I, in, n are the direction

cosines of the normal drawn into the surface. Since this rate of flow into

the surface must be equ.al to the rate at which the charge inside the surface

increases, we must have

j
l(lu + mv + nw) dS = ^ jjjpdxdydz
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The integral on the left may, by Green’s Theorem, be transformed into

and this again is equal, by equations (310), to

Thus we have

and since this is true whatever surface is taken, each integrand must vanish

separately, and we must have, at every point of the dielectric,

^ dp

dx^ ^ dz^ dt *

We have also, as in equation (326),

02 y' 021/ 0a 47rp

dx^ ^ dy^ ^ dz^ K *

80 that dT—KrP-

The integral of this equation is

P

where po is the value of p at time t = 0.

Thus the charge at every point in the dielectric falls off exponentially

with the time, the modulus of decay being . The time
,
in which

all the charges in the dielectric are reduced to Ije times their original

value, is called the “time of relaxation,” being analogous to the corresponding

quantity in the Dynamical Theory of Gases*.

The relaxation-time admits of experimental determination, and as t is

easily determined, this gives us a means of determining K experimentally

for conductors. In the case of good conductors, the relaxation-time is too

small to be observed with any accuracy, but the method has been employed

by Cohn and Arons
-f*

to dotciirnine the inductive capacity of water. The

value obtained, K = 73’6, is in good agreement with the values obtained in

other ways (cf. § 84).

* Gf. Maxwell, Collected WorkH, zi. p. 681, or Jeans, Dynamical Theory of Oases, p. 294.

t Wied, Ann. xxviii. p. 4u4.
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Discharge of a Condenser,

397. Let us suppose that a condenser is charged up to a certain

potential, and that a certain amount of leakage takes place through the

dielectric between the two plates. Then, as we have just seen, the dielectric

will, except in very special cases, become charged with electricity.

Now suppose that the two pkates are connected by a wire, so that, in

ordinary language, the condenser is discharged. Conduction through the

wire is a very much quicker process than conduction through the dielectric,

so that we may suppose that the plates of the condenser are reduced to the

same potential before the charges imprisoned in the dielectric have begun to

move. For simplicity, let us suppose that the plates of the condenser are

both reduced to potential zero. Then the surface of the dielectric may,

with fair accuracy, be regarded as an equipotential surface, the potential

being zero all over it. It follows that there can be no lines of force outside

this equipotential : all lines of force which originate on the charges im-

prisoned in the dielectric, and which do not terminate on similar charges,

must terminate on the surface of the dielectric. Thus we shall have a

system of charges on the surface of the dielectric, these charges being equal

in magnitude but opposite in sign to those of the Green’s “equivalent

stratum *’ corres])onding to the system of charges impi isoned in the dielectric.

'J'liis system of charges on the surface of the dielectric is of the kind which

Faraday w’ould call a “bound ” charge (cf. § 141).

Suppose the plates of the condenser to be again insulated. The system

of charges inside the dielectric and at its surface is not an equilibrium dis-

tribution, so that currents will be set up in the dielectric, and a general

rearrangement of electricity will take phxce. The potentials throughout the

dielectric will change, and in paiticular the potentials of the condenser-plares

at the surface of the dielectric will change. In other words, the charge on

these plates is no longer a “bound ” charge, but becomes, at least paitially, a

“free” charge. On joining the two plates by a wire, a new discliaige >vill

take place.

This is Maxwell’s explanation of the phenomenon of “residual discharge.
’

It is found that, some time after a condenser has been discharged and

insulated, a second and smaller ilischarge can be obtained on joining the

plates, after this a third, and so on, almost indetiiiitely. It should be

noticed that, on the explanation which has been given, no residual discharge

ought to take place if the dielectric i.s perfectly homogeneous. It thus become.s

possible to test the theory by experiments on homogeneous dielectrics.

Rowland and Nichols* tested calcspar, which is a perfectly homogeneous

crystal, and found no trace of residual discharge. Hertzf found traces of a

• Phil. Mag. [6J vol. ii. p. 414 (1S81). t H'u'd. xx. (1S83), p. 279.
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residual discharge in a homogeneous fluid, benzene, but found that these dis-

appeared as impurities were removed from the fluid; Arons* obtained the

same result with paraffin. Finally Muraokaf experimented with various

oils, paraffin, resin, turpentine and xylol. Residual discharges were not found

in the oils singly, but appeared as soon as two or more were mixed together.

These facts are in agreement with Maxwell's theory of residual discharge

and afford strong contirination of the theory. On the other hand there are a

large number of experimental facts which are difficult to explain in terms

of Maxwell’s theory alone, and which seem to suggest that the theory is

incomplete.

EXAMPLES.

1.

The ends of a rectangular coiniucting lamina of breadth c, length «/, and uniform

thickness r, are maintained at diflerent potentials. If /'fj?, y) be the specific resistance p
at a point whose distances from an end and a side arc x, y, prove that the resistance of

./.r _ ,
1

<'• dy *

Jo
' '

the lamina cannot be less than

Jo P

blliti] —
T

I p dx
\iJo

2. Two large vessels filled with mercury are connected by a capillary tube of uniform

bore. Find superior and inferior limits to the conductivity.

3. A cylindrical cable consists of a conducting core of copper surrounded by a thin

insulating sheath of material of given specific resistance. Shew that if the sectional

areas of the core and sheath are given, the resistance to lateral leakage is greatest when

the surfaces of the two materials are coa.xal right circular cylinders.

4. Prove that the product of the resistance to leakage per unit length between two

practically infinitely long parallel wires insulated by a unifonn dielectric and at different

^>otentials, and the capacity jMsr unit length, is A'p/4n', where K is tho inductive capacity

and p the specific resistance of the dielectric. Prove also that the time that e.la{>ses before

the potential difference sinks to a given fraction of its original value is independent of the

sectional dimensions and relative positions of the wires.

5. If the right sections of tho wires in the bust question are semicircles dcscril^ed on

opposite sides of a square as diameters, and outside the square, while tho cylindrical space

whose section is the semicircles similarly described on tho other two sides of tlic .square is

filled up with a dielectric of infinite specific resistance, and all tho neighbouring space is

filled up with a dielectric of resistance p, prove that the leakage per unit length in unit

time is 2 P/p, where V is tho potential dillbieiiee.

6. If + and tho curves for which
<f)
= cona. bo closed curves, shew that

the insulation rosistauoe between lengths I of the surfaces 0 = iaw
where is the increment of ^ on p:issing once round a ^-curve, and p is the specific

resistance of the dielectric

Wied. Ann. zxzv. (1888), p. 291. t Wied. Ann, xl. (1890), p. 328.
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7. Current enters and leaves a uniform circular disc through two circular wires of

small radius e whose central lines pass through the edge of the disc at the extremities of

a chord of length d. Shew that the total resistance of the sheet is

(2o-/ir) log {dje).

8. Using the transformation

log(*+tV)={+»h

prove that the resistance of an infinite strip of uniform breadth ir between two electrodes

distant 2a apart, situated on the middle line of the strip and having equal radii d, is

|loggtai,hoj-

9. Shew that the transformation

of+iy =cosh TT (jf+ty)/a

enables us to obtain the potential due to any distribution of electrodes upon a thin

conductor in the form of the semi-infinite strip bounded by y— 0, y=^cLy and ^—0.

If the margin be uninsulated, find the potential and flow due to a source at the point

x=c^y= ^
Shew that if the flows across the three edges arc equal, then n-c=acosh"* 2.

10. Equal and opposite electrodes are placed at the extremities of the base of an

isosceles triangular lamina, the length of one of the equal sides being a, and the vertical

27r
angle . Shew that the lines of flow and equal potential are given by

u 1 . 1 to 1 + cn M
smh**

+

,

2 1 - cn a ’

and the modulus of cn u is sin 75”, the origin being at the vertex.

11. A circular sheet of copper, of specific resistance o-j per unit area, is inserted in a

very largo sheet of tinfoil (ag), and currents flow in the composite sheet, entering and

leaving at electrodes. Prove that the current-function in the tinfoil cori-esponding to an

electrode at which a current e enters the tinfoil is the coefficient of i in the imaginary

part of

where

^0 « fi
log(3-c)-|-

O-q+ CTi

where a is tlio radius of the copper sheet, a is a complex variable with its origin at the

001111*0 of the sheet, and c is the distance of the electrode from the origin, the real axis

passing through the electrode.

Generalise the expression for any position of the electrode in the copper or in the

tinfoil, and investigate the corresponding expressions determining the lines of flow in the

copper.

12.

A uniform conducting sheet has the form of the catenary of revolution

y*+ x*= c* cosh* - .

Provo that the potential at any point due to an electrode at ^Tq, yo> introducing a

current C, is

\ 0 ‘J(s‘+^)W+‘9‘y



CHAPTER XI

PERMANENT MAGNETISM

Physical Phenomena.

398. It is found that certain bodies, known as magnets, will attract or

repel one another, while a magnet will also exert forces on pieces of iron

or steel which are not themselves magnets, these forces being invariably

attractive. The most familiar fiict of magnetism, namely the tendency of

a magnetic needle to point north and south, is sim[)ly a particular instance

of the first of the sets of phenomena just mentioned, it being found that

the earth itself may be regarded as a vast aggregation of magnets.

The simplest piece of apparatus used for the experimental study of

magnetism is that known as a bar-magnet. This consitits of a bar of steel

which shews the property of attracting to itself small piect‘s of steel or iron.

Usually it is found that the magnetic properties of a bar-magnet reside

largely or entirely at its two ends. For instance, if the wliole bar is dij)p(,‘d

into a collection of iron filings, it is found that the tilings are attracted in

great numbers to its two ends, while there is hardly any attraction to the

middle parts, so that on lifting the bar out from the, collt*ction of filings, we

.shall find that filings continue to cluster round the ends of the bar, while

the middle regions will be comparatively free.

Poles of a Magnet.

399. The two ends of a magnet—or, more strictly, the two regions

in which the magnetic properties are concentrated—are spoken of as the

“poles” of the magnet. If the magnet is frcMjly suspended, it will t?irn

so that the line joining the two poles points approximately north and

south. The ])ole which places itself so as to point towards the north is

called the “north-seeking pole,” while the other pule, pointing to the south,

is called the “ soulh-seoking pole*.”

By experimenting with two or more magnets, it is found to be a general

law that similar poles repel one another, while dissimilar poles attract one

another.
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The earth may roughly be regarded as a single magnet of which the two

magnetic poles are at points near, to the geographical north and south poles.

Since the northern magnetic pole of the earth attracts the north-seeking

pole of a suspended bar-magnet, it is clear that this northern magnetic pole

must be a south-seeking pole
;
and similarly the southern pole of the earth

must be a north-seeking pole. Lord Kelvin speaks of a south-seeking pole as

a “ true north ” pole

—

i.e, a pole of which the magnetism is of the kind found

in the northerly regions of the earth. But for purposes of mathematical

theory it will be most convenient to distinguish the two kinds of pole by

the entirely neutral terms, positive and negative. And, as a matter of

convention, we agree to call the north-seeking pole positive. Thus we

have the following pairs of terms:

North-seeking = True South = Positive,

South-seeking = True Nortn = Negative.

Law of Force hetiueen Magnetic Poles,

400. By experiments with his torsion-balance, Coulomb established that

the force between two magnetic poles varies inversely as the square of the

distance between them. It was found also to be proportional to the product

of two quantities spoken of as the “ strengths ” of the poles. Thus if F is the

repulsion between two poles of strengths m, m at a distance r apart, we have

F = emm'
—T- ,(328).

It is found that c depenils on the medium in which the poles are placed,

but is otherwise constant. Clearly if we agree that the strength of positive

poles is to be reckoned as positive, while that of negative poles is reckoned

negative, then c will be a positive quantity

The Unit Magnetic Pule.

401. Just as Coulomb’s electrostatic law of force supplied a convenient

way of measuring the strength of an electric charge, so the law expressed

by equation (328) provides a convenient way of measuring the strength of a

magnetic pole, and so gives a system of magnetic units. A system of units,

analogous to the electrostatic system (§§ 17, 18) is obtained by defining the

unit pole to be such as to make c*= 1 in equation (328). This system is

called the Magnetic (or, more generally, Electromagnetic) system of units.

We define a unit pole, in this system, to be a pole of strength such that

when placed at unit distance from a pole of equal strength the repulsion

between the two poles is one of unit force.
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Thus the force F between two poles of strengths m, m', measured in the

Electromagnetic system of units, is given by

(329 ).

The physical dimensions of the magnetic unit can be discussed in just

the same way in which the physical dimensions of the electrostatic unit

have already been discussed in § 18.

Moment of a Line-Magnet.

402. It is found that every positive pole has associated with it a

negative pole of exactly equal strength, and that these two poles are

always in the same piece of matter.

Thus not only are positive and negative magnetism necessarily brought

into existence together and in equal quantities, as is the case with positive

and negative electricity, but, further, it is impossible to separate the positive

and negative magnetism after they have been brought into existence, and in

this respect magnetism is unlike electricity.

It follows that it is impossible to have a body “ charged with magnetism
"

in the way in which we can have a body charged with electricity. A mag-

netised body may possess any number of poles, and at each pole there is, in

a sense, a charge of magnetism
;
but the total charge of magnetism in the

body will always be zero.

Hence it follows that the simplest and most fundamental piece of matter

we can imagine which is of interest for the theory of magnetism, is not a

small body cariying a charge of magnetism, but a small body carrying (so

to speak) two equal and opposite charges at a certain distance apart.

This leads us to introduce the conception of a line-magnet. A line-

magnet is an ideal bar-magnet of which the width is infinitesimal, the

length finite, and the poles at the two extreme ends. Thus geometrically

the ideal line-magnet is a line, while its poles are points.

The strengths of the two poles of a line-magnet are necessarily equal

and opposite. The product of the numerical strength of either pole and the

distance between the poles is called the “ moment " of the line-magnet.

Magnetic Particle.

403. If we imagine the distance between the two poles of a line-magnet

to shrink until it is infinitesimal, the magnet becomes what is spoken of as a

magnetic particle. If ± m are the strengths of its poles and da is the distance

between the two poles, the moment of the magnetic particle is mda.
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It is easily shewn that, as regards all phenomena occurring at a finite

distance, two co-axial magnetic particles have the same effect if their moments

are equal
;
their length and the strengths of their poles separately are of no

importance. To see this we need only consider the case of two magnetic

particles, each having poles + m, and length and therefore moment mds.

Clearly these will produce the same effect at finite distances whether they

are placed end to end or side by side. In the latter case, we have a magnet

of length (/«, poles + 2m, while in the former case the two contiguous poles,

being of opposite sign, neutralise one another, and the arrangement is in

effect a magnCt of length 2ds and poles + m. Thus in each case the moment

is the same, namely 2mdst while the strengths of the poles and their distances

apart are different.

If we place a large number n of similar magnetic particles end to end,

all the poles will neutralise one another except those at the extreme ends,

so that the arrangement produces the same effect as a line-magnet of length

nds. By taking ^ •
where I is a finite length, we see that the effect of

a line-magnet of length I can be produced exactly by n magnetic particles

of length da.

The two arrangements will be indistinguishable by their magnetic effects

at all external points. There is, however, a way by which it would be easy

to distinguish them. If the arrangement were simply two poles ± m, at the

ends of a wire of length I, then on cutting the wire into two pieces, we should

have one pole remaining in each piece. If, however, the arrangement were

Fia. 104.

that of a series of magnetic particles, we should be able to divide the series

between two particles, and should in this way obtain two complete magnets.

The pair of poles on the two sides of the point of division which have so far

been neutralising one another now figure as independent poles.

As a matter of experiment, it is not only found to be possible to produce

two complete magnets by cutting a single magnet between its poles, but it

is found that two new magnets are produced, no matter at what point the

cutting takes place. The inference is not only that a natural magnet must

be supposed to consist of magnetic particles, but also that these particles

are so small that when the magnet is cut in two, there is no possibility of
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cutting a magnetic particle in two, so that one pole is left on each side of

the division. In other words, we must suppose the magnetic particles either

to be identical with the molecules of which the matter is composed or else

to be even smaller than these molecules. At the same time, it will not

be necessary to limit the magnetic particle of mathematical analysis by

assigning this definite meaning to it: any collection of molecules, so small

that the whole space occupied by it may be regarded as infinitesimal, will

be spoken of as a magnetic particle.

404. Axis of a magnetic particle. The axis of a magnetic particle is

defined to be the direction of a line drawn from the negative to the positive

pole of the particle.

It will be clear, from what has already been said, that the effect of

a magnetic particle at all external points is known when we know its

position, axis and moment.

Intensity of Magnetisation,

405. In considering a bar-magnet, which must be supposed to have

breiuith as well as length, we have to consider the magnetic particles as

being stacked side by side as well as placed end to end. For clearness, let

us suppose that the magnet is a rectangular parallelepiped, its length being

parallel to the axis of x, while its height and breadth are parallel to the two

other axes. The poles of this bar-magnet may be supposed to consist of

a uniform distribution of infinitesimal magnetic poles over each of the two

faces parallel to the plane of yz^ let us say a distribution of poles of aggregate

strength I per unit area at the positive pole, and — I per unit area at the

negative pole, so that if A is the area of each of these faces, the poles of

the magnet are of strengths ± IA.

As a first step, we may regard the magnet as made up of an infinite

number of line-magnets placed side by side, each line-magnet being a

rectangular prism parallel to the length of the magnet, and of very small

cross-section. Thus a prism of cross-section dydz may be regarded as a line-

magnet having poles + 1dydz. This again may be regarded as made up of

a number of magnetic particles. As a type, let us consider a particle of

length dx, so that the volume of the magnet occupied by this particle is

dxdydz. The poles of this particle are of strength + Idydz^ so that the

moment of the particle is

Idxdydz.

If we take any small cluster of these particles, occupying a small volume

dv, the sum of their moments is clearly Idv, and these produce the same

magnetic effects at external points as a single particle of moment

Idv.



3G9403-407] The Magnetic Field of Force

The quantity I is called the “ intensity of magnetisation ’* of the magnet.

The magnetisation has direction as well as magnitude. In the present

instance the direction is that of the axis of x.

406. In general, we define the intensity and direction of magnetisation

as follows

:

The intensity of magnetisation at any point of a magnetised body is defined

to he the ratio of the magnetic moment of any small particle at this point to

the volume of ths particle.

The direction of magnetisation at any point of a magnetised body is defined

to he the direction of the magnetic axis of a small particle of magnetic matter

at the point.

Instead of specifying the magnetisation of a body in terms of its poles,

it is both more convenient from the mathematical point of view, and more

in accordance with truth from the physical point of view, to specify the

intensity at every point in magnitude and direction. Thus the bar-magnet

which has been under consideration would be specified by the statement

that its intensity of magnetisation at every point is / parallel to the axis

of X. A body such that the intensity is the same at every point, both in

magnitude and direction, is said to be uniformly magnetised.

TriE Magnetic Field of Force.

407. The field of force produced by a collection of magnets is in many

respects similar to an electrostatic field of force, so that the various conceptions

which were found of use in electrostatic theory will again be employed.

The first of these conceptions was that of electric intensity at a point.

In electrostatic theory, the intensity at any point was defined to be the

force per unit charge which would act on a small charged particle placed

at the point. It was necessary to suppose the charge to be of infinitesimal

amount, in order that the charges on the conductors in the field might not

be disturbed by induction.

There is, as we shall see later, a phenomenon of magnetic induction,

which is in many respects similar to that of electrostatic induction, so that

in defining magnetic intensity we have again to introduce a condition to

exclude etVects of induction.

Also, to avoid confusion between the magnetic intensity and the intensity

of magnetisation defined in § 406, it will be convenient to speak of magnetic

force at a point, rather than of magnetic intensity. We accordingly have the

following definition, analogous to that given in § 30.



870 Permanent Magnetism [ch. xi

The magnetic fm'ce at any point is given, in magnitude and direction,

by the force per unit strength of pole, which would CLCt on a magnetic pole

situaied at this point, the strength of the pole being supposed so small that

the magnetism of the field is not affected by its presence.

408. The other quantities and conceptions follow in order, as in

Chapter li. Thus we have the following definitions:

A line of force is a curve in the magnetic field, such that the tangent at

eve^y point is in the direction of the magnetic force at that point (cf. § 31).

The potential at any point in the field is the work per unit strength of pole

which has to he done on a magnetic pole to bring it to that point from infinity,

the strength of the pole being supposed so small that the magnetism of the field

is not affected by its presence (cf. § 33).

Let n denote the magnetic potential and a, /?, 7 the components of

magnetic force at any point x, y, z, then we have from this definition

(cf. equation (6)),

n = —J
(adx+ ^dy + 7CZ2) (330),

and the relations (cf. equations (9)),

an
a = —

dx'
R̂ = -0y-

an
.(331).

A surface in the magnetic field such that at every point on it the potential

has the same value, is called an Equipotential Surface (cf. § 35).

From this definition, as in § 35, follows the theorem

:

Equipotential Surfaces cut lines offorce at right angles.

The law of force being the same as in electrostatics, we have as the value

of the potential (cf. equation (10)),

^ = 2? (332),

where m is the strength of any typical pole, and r is the distance from it

to the point at which the potential is being evaluated.

As in § 42, we have Gauss' Theorem:

jj^dS=-4,7rlm (333).

where the integration is over any closed surface, and Xm is the sum of

the strengths of all the poles inside this surfiice. If the surface is drawn

BO as not to cut through any magnetised matter, Xm will be the aggregate

strength of the poles of complete magnetic particles, and therefore equal

to zero. Thus for a surface drawn in this w.ay

ffdn
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If the position of the surface S is determined by geometrical conditions

—

if, for instance, it is the boundary of a small rectangular element dxdydz—
then we cannot suppose it to contain only complete magnetic particles, and

equation (334) will not in general be true.

If there is no magnetic matter present in a certain region, equation (334)

is true for any surface in this region, and on applying it to the surface of the

small rectangular element dxdydz, we obtain, as in § 50,

0-n a n
da? d,f -oz‘

.(335),

the differential equation satisfied by the magnetic potential at every point

of a region in which there is no magnetic matter present.

Tabes of Force.

409. A tubular surface bounded by lines of force is, as in electrostatics,

called a tube of force. Let Wi, Wj be the areas of any two normal cross-

sections of a thin tube of force, and let ifi, be the values of the

intensities at these points. By applying Gauss’ Theorem to the closed

surface formed by the two cross-sections and the portion of the tube

which lies between them, we obtain, as in § 66,

— /Lci)^= 0,

provided there is no magnetic matter inside this closed surface.

Thus in free space the product 11(d remains constant. The value of this

product is called the strength of the tube.

Id electrostatics, it was found convenient to define a unit tube to be one which ended

on a unit charge, so that the product of intensity and cross-section was not equal to unity

but to 4n'.

Potential of a Magnetic Particle.

410. Let a magnetic particle consist of a pole of strength — ?iij at 0, and

a pole of strength -Hthi at P, the distance OP being ^
infinitesimal.

The potential at any point Q will be

OQ
.(336).

this becomes

^ m, (OQ — PQ) _ nil OP cos ^ /a cos 9
“ PQ . OQ^

“
~PQ . OQ - .(337),

where fi = nii . OP, the moment of the particle.
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The analysis here given and the result reached are exactly similar to

those already given for an electric doublet in § 64. The same result can also

be put in a different form.

0
Let us put OP = ds, and let ^ denote differentiation in the direction of

OPy the axis of the particle. Then equation (336) admits of expression in

the form

Let I, viy n be the direction-cosines of the axis of the particle, then

formula (338) can also be written

where, in differentiation, jj, y, 2 are supposed to be the coordinates of the

particle, and not of the point Q.

411. Resolution of a magnetic particle. Equation (339) shews that the

potential of the single {»article we have been considering is the same as the

potential of thiee separate particles, of strengths ply pm and p7i, and axes in

the directions Oxy Oy, O2 respectively. Thus a magnetic particle may be

resolved into components, and this resolution follows the usual vector law.

The same result can be seen geometrically.

Let us start from 0 and move a distance Ids parallel to the axis of a, then

a distance mds parallel to the axis of y, and then

a distance nds parallel to the axis of z. This

series of movements brings us from O to P, a «

distance ds in the direction Z, m, n. Let the

path be Or/rP in fig. 106. The magnetic particle

under consideration has poles — m, at 0 and + m,

at P. Without altering the field, we can super-

pose two equal and opposite poles + at and

also two e(pial and opposite poles + nii at r.

The six poles now in the fic-ld can be taken

in three pairs so as to constitute three doublets 9».

of strengths m^ . Oq, nii . qr and rrii rP respcc- Fio. 106.

tively along O7 ,
qr and rP. These, however, are

doublets of strengths ply pm and pn parallel to the coordinate axes.

Potential of a Magnetised Body,

412. Let I be the intensity of magnetisation at any point of a mag-
netised body, and let Z, m, n be the direction-cosines of the direction of

magnetisation at this point.
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The matter occupying any element of volume dxdydz at this point will

be a magnetic particle of which the moment is Idxdydz and the axis is in

direction I, m, n. By formula (339), the potential of this particle at any

external point is

^H (S + I © +
" I (^)}

so that, by integration, we obtain as the potential of the whole body at any
external point y,

=///^ S) + C) ”
I'z S)}

in which r is the distance from Q to the element dxdydz, and the integration

extends over the whole of the magnetised body.

If we introduce quantities A, B, C defined by

A =11

B=Im
(J= la

then equation (340) can be put in the form

(341),

(342).

The quantitie.s A, B, 0 arc called the components of magnetisation at the

point X, y, z. Equation (342) shews that the })otential of the original magnet,

of magnetisation /, is the same as the potential of three superposed magnets,

of intensities A, B, G parallel to the three axes. This is also obvious from

the fiict that the particle of strength Id.rdydz, which occupies the element of

volume dxdydz, may be resolved into three ])arti( Ies parallel to the axes, of

which the strengths will be Adxdydz, Bdxdydz and Cdxdydz, if A, B, C are

given by equations (341).

Potentifd of a uniformly Muynetisf'd Body.

413 . If the magnetisation of any body is uniform, the values of A, B, C

are the same at all points of the body.

Let the coordinates of the point Q in cipiation (342) be x\ y ,
z!, so that

1 = [(a; - xj + (y - y? + 0- z )
'j
"t

T

Then, clearly.
dx \rJ dx \r/
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Beplatcing differentiation with respect \x> x, y, t by differentiation with

respect to x', y\ t' in this way, we find that equation (342) assumes the form

+ <’“>•

9 9 9
the quantities A, B, G and the operators being taken outside the

sign of integration, since they are not affected by changes in x, y, z.

If V denote the potential of a uniform distribution of electricity of volume

density unity throughout the region occupied by the magnet, we have

VQ’-jjj^dxdydi (344),

so that equation (343) becomes

or

dV^ ^dVo
Qq— J—

^

0®' “ dz'

nQ=^AX + BY+CZ,

(345).

where X, Y, Z are the components of electric intensity at Q produced by

this distribution.

Or again if~ denotes differentiation with respect to the coordinates of Q

in a direction parallel to that of the magnetisation of the body, namely that

of direction-cosines I, m, n, equation (345) becomes

,(34C).

414. Yet another expression for the potential of a uniformly magnetised

body is obtained on transforming equation (342) by Green’s Theorem. If

l\ m', n' are the direction-cosines of the outward-drawn normal to the magnet

at any element dS of its surface, the equation obtained after transformation is

fig = JJ
{AV + Bm’ + Cn')

J
dS.

By equations (341),

AV + Bin + Cn = / {U + mm' -I- nn')

= I cos 6,

where 0 is the angle between the direction of magnetisation and the outward

normal to the element dS of surface. The equation now becomes

««=//-”— d-Sr (347),

shewing that the potential at any external point is the same as that of a

surface distribution of magnetic poles of density 1 cos 0 per unit area, spread

over the surface of the magnet.
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This distribution is of course simply the “ Green's Equivalent Stratum
"

(§ 204) which is necessary to produce the observed external field.

The bar-magnet already considered in § 405, provides an obvious illustra-

tion of these results.

416. Uniformly magnetised sphere, A second and interesting example

of a uniformly magnetised body is a sphere, magnetised with uniform

intensity /. This acquires its interest from the fact that the earth may, to

a very rough approximation, be regarded as a uniformly magnetised sphere.

If we follow the method of § 313, we obtain for the value of Fg, defined

by equation (344),

where a is the radius of the sphere. If we suppose the magnetisation to be

in the direction of the axis of x, we have

Xlg = -7

Thus the potential at any external point is the same as that of a magnetic

particle of moment at the centre of the sphere.

To treat the problem by the method of § 414, we have to calculate the

potential of a surface density I cos 6 spread over the surface of the sphere.

Regarding cos^ as the first zonal harmonic Pi(cos^), the result follows at

once from § 257.

Poi''son*8 imaginary Magnetic Matter,

416. If the magnetisation of the body is not uniform, the value of fig

given in equation (342) cannot be transformed into a surface integral, so

that the potential of the magnet cannot be represented as being due to a

surface chf-rge of magnetic matter. If we apply Green’s Theorem to the

integral .»nich occurs in equation (342), we obtain

where I, m, n are the direction-cosines of the outward-drawn normal to the

element dS of surface.
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Thug ng= [jl^dxdi/dz + Jj-dS (348),

where p, o- are given by

/dA dB dC\
(349),^ =

a = lA + mB -f- w(7 (350).

Thus the potential of the magnet at any external point Q is the same as

if there were a distribution of magnetic charges throughout the interior, of

volume-density p given by equation (349), together with a distribution over

the surface, of surface-density a given by equation (350).

Potential of a Magnetic Shell.

417. A magnetised body which is so thin that its thickness at every point

may be treated as infinitesimal, is called a " magnetic shell." Throughout

the small thickness of a shell we shall suppose the magnetisation to remain

constant in magnitude and direction, so that to specify the magnetisation of

a shell we require to know the thickness of the shell and the intensity ami

direction of the magnetisation at e\ery point.

Shells in which the magnetisation is in the direction of the normal to the

surface of the shell are spoken of as ‘‘normally-magnetised shells.** These

form the only class of magnetic shells of any importance, so that we shall deal

only with normally-magnetised shells, and it will be unnecessary to repeat in

every case the statement that norniJil magnetisation is intended.

If I is the intensity of magnetisation at any point inside a shell of this

kind, and if t is its thickness at this point, the product It is spoken of as

the “strength ” of the shell at this point. Any element dS of the shell will

behave as a magnetic particle of moment IrdS, so that the strength of a

.shell is the magnetic moment per unit area, just as the intcn.sity of ni.igneti-

sation of a body is the magnetic moment per unit volume.

Any element cJS of a shell of strength
<f>

hrhaves like a magnetic 'particle if

strength ipdS oj which the axis is normal to dS.

The magneti.sation of a magnetic shell may often be conveniently pictured

as being due to the presence of layers of po.sitive and negative poles on ils

two faces. Clearly if
(f)

is the strength and t the thickness of a slu‘ll at

any point, the surface-density of these poles must be taken to be +-.

418. To obtain the potential of a shell at an external point, we regard

any element dS of the shell as a magnetic particle of moment if>dS and axis

in the direction of the normal to the shell at this point, it being agreed that

this normal must be drawn in the direction of magnetisation of the shell.
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The potentiftl of the element of the shell at a point Q distant t fiiom

is then

“I.©’
so that the potential of the whole shell at Q is given by

where 0 is the angle between the normal at dS and the line joining dS to P.

Clearly dS cos ^ is the projection of the element dS on a plane perpendicular

to the line joining dS to Q, so that
^

is the solid angle subtended by

dS at Q. Denoting this by dta, we have the potential in the form

4>du> (351).

419. Uniform shell. If the shell is of uniform strength, ^ may be taken

outside the sign of integration in equation (351), so that we obtain

= = (352),

where D is the total solid angle subtended by the shell at Q.

Potential Energy of a Magnet in a Field of Force.

420. The potential energy of a magnet in an external field of force is

equal to the work done in bringing up the magnet from infinity, the field of

force being supposed to remain unaltered during the process.

Consider first the potential energy of a single particle, consisting of a pole

of strength — at 0 and a pole of strength + w, at P. Let

the potential of the field of force at 0 be D , and at P be Dp. P

Then the amounts of work done on the two poles in bringing

up this p..rbicle from infinity are respectively —7niflo and

miDp, so that the potential energy of the particle when in Fio. 107.

the position OP

= (Dp - Do)

0D
= . OP , in the notation already used,

an /.an
,

an
.

anN= = +
(353).
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The potential energy of any magnetised body can be found by integration

of expression (353), the body being regarded as an aggregation of magnetic

particles.

421. Equation (353) assumes a special form if the mjxgnetic field is due

solely to the presence of a second magnetic particle. Let this be of moment
/a', its axis having direction cosines m', a', and its centre having coordinates

X y z\ Then we have as the value of ft, from § 410,

Substituting these values for ft in the formulae just obtained, we have as

the mutual potential energy of the two magnets,

- 5 +”I
+
" Ji) ('

C- +
“'sV 87)© •

This is symmetrical with respect to the two magnets, as of course it ought to be—it is

immaterial whether we briug the first magnet into the field of the second, op the second

into the field of the first.

If we now put
1

^ K® - ®7 + - yj + (« - «'/l^

’

we obtain on differentiation,

X— X

r*
IV- — / I V.7 .7 / • V" -^ / J

Til /^\ 1 Q /'/». _ nnf\’i

SO that

X— x'

dx’'
K® - + ( .’/ - y'f +

0= n \ 1 3 (a: — x'f

dxcx \7\

8^ /I \ 3{x-x’)<y-y')

dydx' \r ) r»

Hence we obtain as the value of W,

W= ^ (ll' + mm' + nil)

-^ - ®') +m (y - y') + n(z- z)\ [V (x - ®') +m'(y-y')+n'(«-;')).

Let us now denote the angle between the axes of the two magnets by e,

and the angles between the line joining the two magnets and the axes of the

first and second magnets respectively by 6 and O'. Then

cos € =11' mm' + nn,

cos 0 = i {Z (a; — a;') + m (y — y') + n (« - /)},

cos 0' = - [I {x - x') + ni (y - y) + n' (^ - /)}
T
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80 that W can be expressed in the form

W =^ (cos e — 3 cos ^ cos (354).

If we take the line drawn from the first magnet to the second as pole in

spherical polar coordinates, and denote the azimuths of the axes of the two

magnets by yfr', then the polar coordinates of the directions of the axes of

the two magnets will be 0, yjr and 6\ respectively, and we shall have

cos € = cos ^ cos 6' + sin 0 sin 6' cos (^ — i/r').

On substituting this value for cos e in equation (354), we obtain

W=^ (sin 6 sin ff cos (^ — '^') - 2 cos ^ cos (355).

422. Knowing the mutual potential energy TT, we can derive a know-

ledge of all the mechanical forces by differentiation. For instance the

repulsion between the two magnets, t.e. the force tending to increase r, is

T*
(sin 0 sin 0' cos (-^/r — yft') - 2 cos ^ cos ff].

Thus, whatever the position of the magnets, the force between them

varies as the inverse fourth power of the distance.

If the magnets are parallel to one another, 0=0' and yfr = so that the

repulsion

= (sin* 0 — 2 cos* 0).

Thus when ^ = 0, i.e. when the magnets lie along the line joining them,
p /

the force is an attractive force . When ^ ,
so that the magnets are

o f

at right angles to the line joining them, the force is a repulsive force .

In passing iiom the one position to the other the force changes from one of

attractiem to one of repulsion when sin* 0-2 cos* ^ = 0, i.e, when 0 = tan”^

The couples can be found in the same way

lending to increase the angle x is

If is any angle, the couple

-^ {sin 0 sin 0' cos (^|r -yfr')-

2

cos 0 cos

so that all the couples vary inversely as the cube of the distance.
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For instance, taking to be the same as we find that the couple

tending to rotate the first magnet about the line joining it to the second,

in the direction of yjr increasing

= — ^ sin ^ sin ^ sin (-v/r —

so that this couple vanishes if either of the magnets is along the line joining

them, or if they are in the same plane, results which are obvious enough

geometrically.

Potential Energy of a Shell in a Field of Force,

423 . Consider a shell of which the strength at any point is </>, placed

in a field of potential Vi. The element dS of the shell is a magnetic particle

of strength ffidS, so that its potential energy in the field of force will, by

formula (353), be

4>dS
an
dn *

3
where ^ denotes differentiation along the normal to the shell. Thus the

potential energy of the whole shell will be

(“»)•

If the shell is of uniform strength, this may be replaced by

{r=4,lp^ds (357).

Since the normal component of force at a point just outside the shell

and on its positive face is —
, it is dear that dS is equal to minus

the surface integral of normal force takmi over the positive face of the shell,

and this again is equal to minus the number of unit tubes of force which

emerge from the .shell on its po.sitive face. Denoting this number of unit

tubes by ?i, equation (357) may be expressed in tlie form

W=-<f)n (358).

Here it must be noticed that we are conc(.*rned only with the original

lield before the shell is suppo.sed placed in position. Or, in other terms, the

number n is the number of tube.s which would cross the space occupied by

the shell, if the shell were annihilated. Since the tubes are counted on the

positive face of the shell, we see tiiat ?i may be regarded as the number of

unit tubes of the external field which cross the shell in the direction of its

magnetisation.
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424. Consider a field consisting only of two shells, each of unit strength.

Let 7ii be the number of tubes from shell 1 which cross the area occupied

by 2, and let be the number of tubes from shell 2 which cross the area

occupied by 1. The potential energy of the field may be regarded as being

either the energy of shell 1 in the field set up by 2, or as the energy of

shell 2 in the field set up by 1. Regarded in the first manner, the energy

of the field is found to be — na ;
regarded in the second manner, the energy

is found to be — Wj. Hence we see that n, = 7*2 . This result, which is

of great importance, will be obtained again later (§ 446) by a purely

geometrical method.

Potential Energy of any Magnetised Body in a Magnetic Field of Force,

425. L(it I be the intensity of magnetisation and I, m, n the direction-

cosines of the direction of magnetisation at any point a?, y, of a magnetised

body, and let be tlie potential, at this point, of an external field of magnetic

force. The element dxdydz of the magnetised body is a magnetic particle

of strength Idxdydz, of which the axis is in the direction I, m, n. Thus its

potential energy in the field of force is, by formula (353),

and by integration the potential of the whole magnet is

Force inside a Magnetiskd Body.

426 So far the magnetic force has been defined and discussed only in

regions not occupied by magnetised matter : it is now necessary to consider

the more difficult question of the measurement of force at points inside a

magnetised body.

At the outset we are confronted with a difficulty of the same kind as

that encountered in discussing the measurement of electric force inside a

dielectric, ou the molecular hypothesis explained in § 143. We found that

the molecules of a dielectric could be regarded as each possessing two equal

and opposite charges of electricity on two opposite facea If we replace

“ electricity ” by “ magnetism ” the state is very similar to what we believe

to be the state of the ultimate magnetic particles. In the electric problem

a difficulty arose from the fact that the electric force inside matter varied

rapidly as we passed from one molecule to another, because the intensity of

the field set up by the charges on the molecules nearest to any point was
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comparable with the whole field. A similar difficulty arises in the magnetic

problem, but will be handled in a way slightly different from that previously

adopted. There are two roa.sons for this difference of treatment—in the fir.st

place, we are not willing to identify the ultimate magnetic particles with

the molecules of the matter, and in the second place, we are not willing to

assume that the magnetism of an ultimate particle may be localised in the

form of charges on the two opposite faces. Wo shall follow a metho«l which

rests on no assumptions as to the connection between molecular structure

and magnetic properties, beyond the well-established fact that on cutting

a magnet new magnetic poles appear on the surfaces created by cutting.

427. One way of measuring the force at a point Q inside a magnot will

be to imagine a cavity scooped out of the magnetic matter so :is to enclose

the point Q, and then to imagine the force measured on a pole of unit

strength placed at Q. This method of measurement wdll only determine

a definite force at Q if it can be shewn that the force is in<l(‘pcndcnt of

the position, shape and size of the cavity, and this, as will be obvious from

what follows, is not generally the case.

428. Let us suppose that, in order to form a cavity in whicli to place

the imaginary unit pole, we remove a small cylinder of magnetic matter, the

axis of this cylinder b^ing in the direction of magnetisation at the point.

Let this cylinder be of length I and cross-section >8, and let the intensity of

magnetisation at the point be /. Let the size of the cylinder be smiposed to

be very groat in coinpari.son with the scale of molecular striictiirc, although

very small in comparison with the scale of variation in the magnetisation

of the body.

In stcol or iron there are roughly 10-’ molcculc.s to the cubic ceuti metro, .so that a

length of 1 iiiillinietre may be regarded as large when mea.sured by the molociilar .scale,

although in most magnets the rnaguctisatiou may be treated a.s constant withiu a length

of a millimetre.

At a point near the centre of this cavity we are at a distance from the

nearest magnetic particles, which is, by hypothesis, great compared with

molecular dimensions. Hence, by § 41 (i, we may regard the potential at

points near the centre of the cavity Jis being that due to the following

distributions of imaginary magnetic matter.

—

I. A di.stribution of surface-density lA + mB + nG, spread over the

surface of every magnet.

II. A distribution of volume-density

\dx^ dy dz)

'

spread throughout the whole space which is occupied by magnetic matter

after the cavity has been scooped out.
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III. A distribution of surface-density I

A

-f- mB nC^ spread over the

walls of the cavity.

From the way in which the cavity has been chosen, it follows that

lA + mB -h nC vanishes over the side-walls, and is equal to + 7 on the

two ends.

The force acting on an imaginary unit pole placed at or near the

centre of the cavity may be regarded as the force arising from these

three distributions.

429. The force from distribution III can be made to vanish by taking

the length of the cavity to be very great in comparison with the linear

dimensions of its ends. For the ends of the cavity may then be treated as

points, and the force exerted by either end upon a unit pole placed at the

centre of the cavity will be

SI

wr
and this will vanish if S is small compared wdth The resultant force will

therefore arise solely from distributions I and II.

The force arising from distribution II may be regarded as the force

arising from a distribution of volume-density

_ /aA aa\

\ cx df/ dz

)

spread throughout the whole of the magnetised matter, regardless of the

existence of the cavity, together with a distribution of volume-density

+
/hA

+
dB dC\

dy dz

)

spread through the space occupied by the cavity. The force from this

latter distribution vanishes in the limit when the size of the cavity is

infinitesimal, so that the force from distribution II may be regaixied as

that from a volume-density

Vaa? dy dz

)

spread through all the original magnetised matter.

Wo have now arrived at a force which is independent of the shape, size

and position of the cavity, provided only that these satisfy the conditions

which have already been laid down. This force we define to be the magnetic

forcej at the point under discussion, inside the magnetised body.

430. In the notation of § 416, the force which has just been defined is

due to a distribution of surface-density a, and a distribution of volume-density
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p throughout the whole magnetised matter. The potential of these distribu-

tions is

ll^dS + jj'j^dcdydz.

or Dq if we regard this as defined by equation (348). Thus, with this

meaning sissigned to fig, the components of force at a point Q inside a

magnetic body will be

dflq
__
BHg

dx * dy
* '

At the same time it must be remembered that CIq has not been shewn to

be the true value of the potential except when the point Q is outside the

magnetic matter. ‘ The true potential inside magnetised matter will vary

rapidly as we pass from one magnetic particle to another.

431 . Let us next suppose that the length I of the cylindrical cavity is

very small compared with the linear dimensions of an

end. The force, as before, is that due to the distributions

I, II and III of § 428. The force from distribution III,
|

however, will no longer vanish, for this distribution con-

sists of distributions +

1

over the ends of the cavity,

and the force from these is not now negligible. From

analogy with the distribution of electricity on a parallel plate condenser, it

is clear that the force arising from distribution III is a force 47rf in the

direction of magnetisation. The forces from distributions I and II are

easily seen to be the same as in the former case. Thus the force on a unit

pole placed at a point Q inside a cavity of the kind we are now considering

is the resultant of

(i) the magnetic force at Q, as defined in § 429,

(ii) a force 47r/ in the direction of the intensity of magnetisation at Q.

The resultant of these forces is called the magnetic induction at Q.

432. The magnetic force will be denoted by and its components

hy a, 7.

The induction will be denoted by B, and its components by a, 6, c.

We have seen that the force B is the resultant of a force H and a force

47r/. The components of this latter force are 47rA, 47r-B, 47r(7. Hence we
have the equations

(359).

Fia. 108.

a = a + 47rA'

b = 0 + 4fTrB

c 5* y + 47rO



385430-434] Force inside a Magnetised Body

433. Let us next consider the force on a unit pole inside a cylindrical

cavity when the cavity is disc-shaped, as in § 431, but its

axis is not in the direction of magnetisation. The force can,

as in § 428, be regarded as arising from three distributions.

Distributions I and 11 are the same as before, but

distribution 111 will now consist of charges both on the

end and on the side- walls of the cylinder. By making the

length of the cylinder small in comparison with the linear

dimensions of its cross-section, the force from the distri-

bution in the side-walls can be made to vanish. And if Q is the angle

between the axis of the cavity and the direction of magnetisation, the

distribution on the ends is one of density + /cos^. Thus the force arising

from distribution III is a force 47r/ cos 0 in the direction of the axis of

the cavity.

Thus the force on a pole placed inside this cavity may be regarded as

compounded of the force if (arising from distributions I and II), and a force

47r/ cos Q in the direction of magnetisation, arising from distribution III.

Let € be the angle between the direction of the force H and the axis of

the cavity, then the component force in the direction of the axis of the cavity

= // cos€ + 47r/cos^.

If I, m, n are the direction-cosines of this last direction,

H cos € = -I- -f- ny,

47r/ cos ^ = 47r viB + nC),

so that, by equations (395),

H cos € + 477/ cos ^ = /fi -f m6 + nc.

Thus the component of the force in the direction of the axis of the cavity

is the same as the compoTient, in the same direction, of the magnetic induc-

tion, namely la + mb + nc,

434. We are now in a position to understand the importance of the

vector which has been called the induction. This arises entirely from the

property of the induction which is expressed in the following theorem

:

Theorem. The surface-integral of the normal component of induction,

taken over any surface whatever, vanishes,

or in other words (cf. § 177),

The induction is a solenoidal vector throughout the whole of the magnetic

Fio. 109.



386 Permanent Magnetism [cii. xi

To prove this let us take any closed surface S in the field, this surface

cutting any number of magnetised bodies. Along those parts of the surface

which are inside magnetic bodies, let us remove a layer of matter, so that the

surface no longer actually passes through any magnetic matter.

Then by Gauss* Theorem (§ 409),

IJjfrdS = 0 (360),

where A" is the component of force in the direction of the outward normal to

S, acting on a unit pole placed at any point of the surfiice & This force,

however, is exactly identical with that considered in § 433, and its normal

component has been seen to be identical with the normal component of the

induction. Thus A^, in equation (360), will be the normal component of

induction, so that this equation proves the theorem.

Analytically, the theorem may be stated in the form

JJ
(la + + nc) dS= 0.

and this, by Green’s Theorem (§ 179), is identical with

da db dc

da; ^dy^ dz
= 0

(361),

.(362).

435. Definition. By a line of induction is meant a curve in the

magnetic field such that the tangent at every 'point is in the direction of

the magnetic induction at that point.

Definition. A tube of induction is a tubular surface of smjall (yi'oss-

section^ which is hounded entirely by lines of induction.

By a proof exactly similar to that of § 409, it can be shewn that the

product of the induction and cross-section of a tube retains a constant value

along the tube. This constant value is called the strength of the tube.
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In free space the lines and tubes of induction become identical with the

lines and tubes of force, and the foregoing definition of the strength of a tube

of induction is such as to make the strengths of the tubes also become

identical.

436. At any point of a surface let B be the induction, and let € be the

angle between the direction of the induction and the normal to the surface.

The aggregate cross-section of all the tubes which pass through an element

dS of this surface is dS cos e, so that the aggregate strength of all these tubes

is B cos edS, Since i^cose = JV, where N is the normal induction, this may
be written in the form N dS. Thus the aggregate strength of the tubes of

induction which cross any area is equal to

jjNdS.

This, we may say, is the number of unit-tubes of induction which cross

this area.

The theorem that JJ^dS=0,

where the integration extends over a closed surface, may now be stated in

the form that the number of tubes which enter any closed siirfece is equal

to the number which leave it. This is true no matter where the surface

is situated, so that we see that tubes of induction can have no beginning

or ending.

437. Let us take any closed circuit s in space, and let n be the number

of tubes of induction which pass through this circuit in a specified direction.

Then n will also be the number of tubes which cut any area whatever

which is bounded by the circuit s. If B is any such area, this number is

known to be jjA^dS, where the integration is taken over the area 5, so that

N=jjNdS.

The number n, however, depends only on the position of the curve s by

which the area S is bounded, so that it must be possible to express n in a

form which depends only on the position of the curve 5, and not on the area S.

In other words, it must be possible to replace JJj/'dS by an expression which

depends only on the boundary of the area s. This we are enabled to do by

a theorem due to Stokes.
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Stokes’ Theorem.

438. Theorem. If X, F, Z are continuousfunctions ofposition in space,

then

whe7’e the line integral is taken round any closed curve in space, and the surface

integral is taken over any area (or shell) bounded by the contour.

Here I, m, n are the direction-cosines of the normal to the surface. A
rule is needed to fix the direction in which the normal is to be drawn. The

following is perhaps the simplest. Imagine the shell turned about in space

so that the tangent plane at any point F is parallel to the plane of a??/, and

so that the direction in which the line integral is taken round the contour

is the same as that of turning from the axis of a: to the axis of y. Then

the normal at F must be supposed drawn in the direction of the positive

axis of 2 .

439. To prove the theorem, let us select any two points A, B on the

contour, and let us introduce a quantity I defined by

rdx

ds ds
X^-r-+Y':^ + Z~]ds,

,dz\

'ds)'

the path from A to B being the same as that followed in the integral of

equation (3G3). Let us also introduce a quantity J equal to the same

integral taken from A to B, but along the opposite edge of the shell. Then

the whole integral on the left of equation (363) is equal to I- J.
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It will be possible to connect A and 5 by a series of non-intersecting

lines drawn in the shell in such a way as to divide the whole shell into

narrow strips. Let us denote these lines by the letters a, 6, ... n, the lines

being taken in order across the shell, starting with the line nearest to that

along which we integrate in calculating /. Let us denote the value of

nX^+Y^ + Zpids

taken along the line a by /a.

Then the left-hand member of equation (363)

= I-J
= (I -- la) +(Ta- h) + (4 - /c) + . . . + (4 - J).

Let us consider the value of any term of this series, say la — Ib^

Let us take each point on the line a and cause it to undergo a slight

displacement, so that the coordinates of any point a?, y, z are changed to

a? + 3a?, y + 3y, z-\- Sz. If 3a?, Sy, Sz are continuous functions of a?, y, z the

result will be to displace the line a into some adjacent position, and by a

suitable choice of the values of 3a?, 3y, 3^ this displaced position of line a can

be made to coincide with line b. If this is done, it is clear that the value of

4, after replacing a?, y, z by a? + 3a?, y + Sy, z + Sz, will be 4- Hence if we

denote this new value of 4 by 4 + bl, we shall have

/a+ SI = 4 »

SO that Ja — Ib = — SI

dx r^dz\ ,

and the value of this quantity can be obtained by the ordinary rules of the

calculus of variations.

We have

IS
and since 3a? vanishes both at A and B, the term ^ 3a?J^

may be omitted,

and the whole expression put equal to
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or again, on simplifying, to

This may be written in the form

J
(Si/da — Sady) —^ (Sands — (364).

Now in fig. 112, let P, Q, P' be the points x,y,z\ x-\-dx,y+ dijy s + dz]

and X’h Sxy y + Sy, z + Sz, Let dS denote the area of the parallelogram

PQQP, and let 1, m, n be the direction-cosines of the normal to its plane.

Then the projection of the parallelogram on the plane of xy will be of area

ndSy while the coordinates of three of its angular points will be a;, y ;
a; + dx,

y + dy; and x + Sx,y + Sy, Using the usual formula for the area, we obtain

ndS = (Sydx -- Sxdy)y

and using this relation in expression (364), we obtain

*/r B*"/(f s "•'®)

the integral denoting summation over all those elements of area of the shell

which lie between lines a and h. By summation of three equations of the

type of (365), we obtain

where the integration has the same meaning as before. If we add a system

of equations of this type, one for each strip, the left-hand, as already seen,

becomes / — P, which is equal to the left-hand member of equation (363),

while the right-hand member of the new equation is also the right-hand

member of equation (363). This proves the theorem.
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440. Stokes’ Theorem can be readily expressed in a vector notation. If

X, Y, Z are the components of any vector F, it is usual to denote by curl F
the vector of which the components are

dy dz ’ dz dx* dx dy ’

Hence Stokes* Theorem assumes the form

^(component of F along d8)d3

= ^(components of curl F along normal to dB) dS,

The theorem enables us to transform any line integral taken round a

closed circuit into a surface integral taken over any area by which the circuit

can be filled up. The converse operation of changing a surface integral into

a line integral may or may not be possible.

441. Theorem. It will he possible to transform the surface integral

//<'• + mv + nw) dS (366)

into a line integral taken round the contour of the area S if and only if

^ ^ _
dx dy dz

at every point of the area S.

(367)

It is easy to see that this condition is a necessary one. Let S' denote any

area having the same boundary as S, and being adjacent to it, but not

coinciding with it. Then if / is the line integral into which the surface

integral can be transformed, we must have

/ = JJ(lu f niv + 7iw) dS (368),

and also ~ ^ ^ (369).

On equating these two values for I we obtain an equation which may be

expressed in the form

jj(lu + mv + nw) dS = 0 (370).

where the integration is over a closed surface bounded by S and S', and

I, m, n are the direction-cosines of the outward normal to the surface at any

point. From equation (370), the necessity of condition (367) follows at once.

Condition (367) is most easily proved to be sufficient by exhibiting an

actual solution of the problem when this condition is satisfied. We have to
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shew that, subject to condition (367) being satisfied, there are functions

X, Y, Z such that

dZ dY

.(371),

dy

dX dZ_ .

dz dx ^ ^

0F dX
dx dy

^

for if this is so, the required line integral is ^{IX +mF+ nZ) dS,

By inspection a solution of equations (371) is seen to be

X= Jvdz, Y=—jtidz, Z = 0 (372),

for it is obvious that the first two equations are satisfied, and on substituting

in the third, we obtain

0F dX ff dll dv\ . 7

shewing that the proposed solution satisfies all the conditions.

442. The absence of symmetry from solution (372) suggests that this

solution is not the most general solution. The most general solution can,

however, be easily found. If we assume it to be

X=jvdg + X', Y=-ju(h + Y'. Z = Z' .(373),

then we find, on substitution in equations (371), that we must have

d^j^T_ d_r^dX'
dy dz * dz dx ' dx dy

and if we introduce a new variable % defined hy x = jx'dx, we find at once

that

so that the most general solution of equations (371) is

vdz +h
dx^

bc
dy*

zJ-^-.
dz

.(375).

Substituting these values, the line integral is found to bo

and the condition that this shall be equal to the surl'ace integral is that

ds

or th.at X be single-valued.
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Thus if X is any single-valued function, equations (375) represent a solu-

tion, and the most general solution, of equations (371).

Vector-Potential.

443. The discussion as to the transformation from surface to line inte-

grals arose in connection with the integral JJ^dS or JJ(la + mb + 'nc) dS, in

which a, b, c are the components of magnetic induction. Since the condition

da db _ A
0a;

^

is satisfied throughout all space, it must always be possible (cf. § 441) to

transform the surface integral into a line integral by a relation of the form

//(I, + + «o) ds./(rg+ 0g + if*) *.

The vector of which the components are F, G, II is known as the magnetic

vector-potentiaL

From what has been said in § 442, it is clear that the vector-potential is

not fully determined when the magnetic field is given. On the other hand,

if the vector-potential is given the magnetic field is fully determined, being

given by the equations

dH dG^

.(37G).

dy dz

,
^0F

dz da;

^
da; dy

We shall calculate some possible values of the components of vector-

potential in a few simple cases. It must be renieinbcred that the values

obtained, although solutions of equations (37C), will not be the most general

solutiona

Magnetic Particle.

444. Let us first suppose that the field is produced by a single magnetic

particle at the point x\ y\ z in free space, parallel to the axis of z. Then,

by equation (338), 11 = /x , so that at any point x, y, z.

dn 0» /i\ 0*

^ * dx ^dxdz'\rj ^ dxdz

and similarly
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The equations to be solved (equations (376)) are

dJI y /1\

dF

dz

dH

' dwdz

0>

dz dx ^ dydz ©-
do^dj;^ ^ /i\

da: dy ^ dz^ Vr/'

and the simplest solution, similar to that given by equations (372), is

The components of vector-potential for a magnet parallel to the axes of

X OT y can be written down from symmetry. In terms of the coordinates

y\ of the magnetic particle, this solution may be expressed as

®-4 ©’ «-»•

445. Let us superpose the fields of a magnetic particle of strength ly,

parallel to the axis of one of strength my, parallel to the axis of y, and

one of strength ny, parallel to the axis of z. Then we obtain the vector-

potential at (T, y, z due to a magnetic particle of strength y. and axis (1, 7n, 9i)

at X, y\ z' in the forms

®—'‘(4-‘8l);-'‘(”l-‘a4)*

The number of lines of induction which cross the circuit from a magnetic

particle is (§ 437)

which may be written in the form

.(377).

dx dy dz

di* ts* ds

1. m, n

d /n d /i\ 1(1]
dx\r)’ dy\r)’ dz\r)

y.d8.

the integral being taken round the circuit in the direction determined by the

rule given in § 438 (p. 388).
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Uniform Magnetic Shell.

446. Next let us suppose that the lines of force proceed from a uniform

magnetic shell, supposed for simplicity to be of unit strength. Let l\ m\ n'

be the direction-cosines of the normal to any element dS' of this shell.

Then the element dS' will be a magnetic particle of moment dS* and of

direction-cosines V, n\ The element accordingly contributes to a term

which, by equations (377), is seen to be

where of, y\ z' are the coordinates of the element dS\

of F is

Thus the whole value

This surface integral satisfies the condition of § 441, so that it must be

possible to transform it into a line integral of the form

F-/(/»• dB'.

The equations giving /, g, h are

dy' d/~^’

df_^_ d n\
a/ dx'~dP[r)’

daf df df \r)'

Clearly a solution is

/=!, g= 0, h = 0.

so that on substitution the value of F is

n dx'

Similarly

Thus the number of tubes of induction crossing the circuit s from a

magnetic shell of unit strength bounded by the circuit s\ is given by

__ [/pdx
, .

„dz\ ,
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If € is the angle between the two elements dsy ds\ the direction of these

elements being taken to be that in which the integration takes place, then

dx dx* dy dj/ dz dz* _
ds ds ^ ds ds' ^ ds ds'

so that dsds\

From the rule as to directions given on p. 388, it will be clear that if the

integration is taken in the same direction round both circuits, then the

direction in which the n lines cross the circuit will be that of the direction

of magnetisation of the shell.

Clearly n is symmetrical ao regards the two circuits s and s', so that we
have the important result

:

The number of tubes of induction crossing the circuit s from a shell of unit

strength hounded by the circuit s' is equal to the number of tubes of induction

crossing the circuit s' from a shell of unit strength hounded by the circuit s.

Here we have arrived at a purely geometrical proof of the theorem

already obtained from dynamical principles in § 424.

Energy of a Magnetic Field.

447. Let a, 6, c, ...?i be a system of magnetised bodies, the magnetisation

of each being permanent, and let us suppose that the total magnetic field

arises solely from these bodies. Let us suppose that the potential H at any

point is regarded as the sum of the potentials due to the separate magnets.

Denoting these by Ha, ... fl,», we shall have

D = *4“

Let us denote the potential energy of magnet a, when placed in the field

of force of potential fl, by ^{a) \
if placed in the field of force arising from

magnet b alone, by fit (a), etc.

Let us imagine that we construct the magnetic field by bringing up the

magnets a, 6, c, ... rz in this order, from infinity to their final positions.

We do no work in bringing magnet a into position, for there are no

forces against which work can be done. After the operation of placing a in

position, the potential of the field is ila- The operation of bringing magnet

a from infinity has of course been simply that of moving a field of force of

potential fla from infinity, where this same field of force had previously

e.xisted.

On bringing up magnet b, the work done is that of placing magnet 6 in

a field of iurce of potential 12^. The work done is accordingly (b).
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The work done in bringing up magnet c is that of placing magnet c in a

field of force of potential Ha + It is therefore Ho (c) + Hj, (c).

Continuing this process we find that the total work done, W, is given by

ilaih)

+ flo (c) + H5 (c)

+ Ho {d) -f Hft {d) + He {d) + etc.

If, however, the magnets had been brought up in the reverse order, we
should have had

TF=H6(a) + He(a)4-Hd (tt)-f ... + Hn(a)

+ He (6) + 11^6) + ...+ Ho (h)

+ H(j (c) -f . . . + H,» (c)

4“ etc.

so that by addition of these two values for W, we have

2W == H6(a)4-Hc(a) + Hd(ft)+ ••• +I^n(a)

+ Ho(^) + He (6) + H^ (6) + . .. + Ho (6)

+ Ho (c) + Hft (c) + H^ (c) 4- . . . + Ho (c)

4- Ho(cZ) 4“ Hft (fZ) 4- Hc(d) 4-...4-Hn(d)

4- etc.

The first line is equal to H (a) except for the absence of the term Ho (a),

and so on for the other lines. Thus we have

2W= H(a)-Ho(a)

4- H (6) — H^, (6) 4" etc.

= SH(a)-2Ho(a) (378).

The quantity Ho (a), the potential energy of the magnet a in its own
field of force, is purely a constant of the magnet a, being entirely independent

of the properties or positions of the other magnets 6, c, d, .... Thus in

equation (378), we may regard the term 2Ho(a) as a constant, and may
replace the equation by

W= ^SH (a) 4- constant (379).

448. If we take the magnets a, b, c, ... n to be the ultimate magnetic

particles, the values of Ho (a), Ha (6), ... etc. all vanish, and their sum also

vanishes. Thus equation (379) assumes the form

Tr=iSH(a) (380),

where the standard configuration from which W is measured is one in which

the ultimate particles are scattered at infinity. The value of H (a) for a

single particle is (cf. § 420)
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On replacing /i by Idxdydz, we find for the energy of a system of

magnetised bodies

the integration being taken throughout all magnetised matter.

449. An alternative proof can be given of equations (380) and (381),

following the method of § 106, in which we obtained the energy of a system

of electric charges.

Out of the magnetic materials scattered at infinity, it will be possible to

construct n systems, ealih exactly similar as regards arrangement in space to

the final system, but of only one-?ith the strength of the final system. If n

is made very great, it is easily seen that the work done in constructing a

single system vanishes to the order of ^ i so that, in the limit when n is very

great, the work done in constructing the series of n systems is infinitesimal.

Thus the energy of the final system may be regarded as the work done in

superposing this series of n systems.

Let us suppose so many of the component systems to have been super-

posed, that the system in position is k times its final strength, where k

is a positive quantity less than unity. The potential of the field at any

point will be icH. On bringing up a new system let us suppose that k is

increased to ic + d/c, so that the strength of the new system is dK times that

of the final system. In bringing up the new system, we place a magnet of

die times the strength of a in a field of force of potential /cH, and so on with

the other magneta Thus the work done is

dK . K^l (a) + dK . /cH (6) + . .
.

,

and on integration of the work performed, we obtain

W==rKdK {n(a) + n(6) + ...}
J 0

= isn(a),

agreeing with equation (380), and leading as before to equation (381).

450. If the magnetic matter consists solely of normally magnetised

shells, we may replace equation (381) by

where ds denotes thickness and dS an element of area of a shell. Replacing

Idahy so that ^ is the strength of a shell, we have
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For uniform shells, ^ may be taken outside the sign of integration, and

the equation becomes

(cf. § 423), where n is the number of lines of induction which cross the shell.

This calculation measures the energy from a standard configuration in

which the magnetic materials are all scattered at infinity. To calculate

the energy measured from a standard configuration in which the shells have

already been constructed and are scattered at infinity as complete shells, we
use equation (378), namely

W=iX{a(a)-na(a)},

from which we obtain TF= JS
JJ

(}> dS,

where -7;— denotes the values— at the surface of any shell if the shell itself
dn on ^

is supposed annihilated.

If all the shells are uniform, this may again be written

(382),

where n' is the number of tubes of force from the remaining shells, which

cross the shell of strength An example of this has already occurred in

§424.

Energy in the Medium.

461. We have seen that the energy of a magnetic field is given by

(cf. equation (381))

"'-‘///(^

the integration being taken over all magnetic matter. As a preliminary to

transforming this into an integral taken through all space, we shall prove

that

Jll(aa
+ + cy) dxdydz = 0 (384),

the integration being through all space.

The integral on the left can be written as

and this, by Green's Theorem, may be transformed into
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the latter integral being taken over a sphere at infinity. Now at infinity 12

is of the order of ^ (cf. § 67), while la-^mh + nc vanishes, and dS is of

the order of 7*^ so that the surface integral vanishes on passing to the limit

r=ao. Also the volume integral vanishes since

?? 4. - 0
dx dy dz '

and hence the theorem is proved.

Replacing a, 6, c by their values, as given by equations (359), we find that

equation (384) becomes

jjj'(a* + + 7*) dxdydz -h47rJJj(Aa + BB + C^) dxdydz = 0 . . .(385).

Both integrals are taken through all space, but since A=jB=(7=0
except in magnetic matter, we can regard the latter integral as being taken

only over the space occupied by magnetic matter. This integral is therefore

equal, by equation (383), to —2 W, so that equation (385) becomes

TF =^ JjJ(a2 + + 7*) dxdydz (386),

the integral being taken through all space.

This expression is exactly analogous to that which has been obtained for

the energy of an electrostatic system, namely,

Tr=ij’jj (Z»+ Y*^Z^)dxdydz.

And, as in the case of an electrostatic system, equation (386) may be

interpreted as meaning that the energy may be regarded as spread through

the medium at a rate {o? + + 7O per unit volume.
OTT

Terrestrial Magnetism.

452. The magnetism of the earth is very irregularly distributed and is

constantly changing. The simplest and roughest approximation of all to the

state of the earth’s magnetism is obtained by regarding it as a bar magnet,

possessing two poles near to its surface, the position of these in 1906 being

as follows

:

North Pole 70"30'N., 97"40'W.

South Pole* 73" 39' S., 146" 15' E.

Another approximation, which is better in many ways although still

very rough, is obtained by regarding the earth as a uniformly magnetised

sphere.

* Sir E. SbackletOD gives the position of the South Pole in 1909 as 72” 25' S., 166” 16' £.
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With the help of a compass-needle, it will be possible to find the

direction of the lines of force of the earth s field at any point. It will

also be possible to measure the intensity of this field, by comparing it with

known magnetic fields, or by measuring the force with which it acts on

a magnet of known strength.

453. At any point on the earth, let us suppose that the angle between

the line of magnetic force and the horizontal is this being reckoned

positive if the line of force points down into the earth, and let the horizontal

projection of the line of force make an angle 3 with the geographical

meridian through the point, this being reckoned positive if this line points

west of north. The angle 6 is called the di'p at the point, the angle B is

called the declination.

Let H be the horizontal component of force, then the total force may be

regarded as made up of three components

:

X —H cos 8, towards the north,

F =^ sin 8, towards the west,

Z —H tan 6, vertically downwards.

If n is the potential due to the earth’s field at a point of latitude 2,

longitude \, and at distance r from the centre, we have (cf. equations (331))

X=-
r

F= 1 an
r cos Z ' dr

,(387).

Analysis of Potential of Earth*s field.

454. Since H is the potential of a magnetic system, the value of H in

regions in which there is no magnetisation must (by § 408) be a solution of

Laplace’s equation, and must therefore (by § 233) be capable of expansion in

the form

«= (5 +
^’ + •••) +(-».' + «> + 'S.V + ...) (388),

in which Si, ... S^, ... are surface harmonics, of degrees indicated

by the subscripts.

At the earth’s surface, the first term is the part of the potential which

arises from magnetism inside the earth, while the second term arises from

magnetism outside.

The surface harmonic Sn can, as in § 275, be expanded in the form

Sn = "s" P? (sin 1) {An,m cos m\ H- Pn,w sin m\),
m=0

BO that n can be put in the form

n =*2
"
2" cos m\ + siu »»\)

s-0 m-0 I
»

+ r„P? (sin 1) cos + B'n,m sin »i\)[

.
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Hence from equations (387) we obtain the values of X, F, Z at any point

in terms of the longitude and latitude of the point and the constants such

-d n,fni ^ n,m*

By observing the values of X, F, X at a great number of points, we

obtain a system of equations between the constants An,m» etc., and on

solving these we obtain the actual values of the constants, and therefore

a knowledge of the potential as expressed by equation (388).

If the magnetic field arose entirely from magnetism inside the earth,

we should of course expect to find jSf/ = <8/ = . . . = 0, while if the magnetic

field arose from magnetism entirely outside the earth, we should find

455. The results actually obtained are of extreme interest. The mag-

netic field of the earth, as we have said, is constantly changing. In addition

to a slow, irregular, and so-called “secular** change, it is found that there

are periodic changes of which the periods are, in general, recognisable as

the periods of astronomical phenomena. For instance there is a daily

period, a yearly period, a period equal to the lunar month, a period of

about 26J days (the period of rotation of the inner core of the sun*),

a period of about 11 years (the period of sun-spot variations), a period of

19 years (the period of the motion of the lunar nodes), and so on. Thus

the potential can be divided up into a number of periodic parts and a

residual constant, or slowly and irregularly changing, part. All the periodic

parts are extremely small in comparison with the latter. It is found, on

analysing the potentials of these different parts of the field, that the constant

field arises from magnetisation inside the earth, while the daily variation

arises mainly from magnetisation outside the earth. The former result

might have been anticipated, but the latter could not have been predicted

with any confidence. For the variation might have represented nothing

more than a change in the permanent magnetism of the earth due to the

cooling and heating of the earth's mass, or to the tides in the solid matter of

the earth produced by the sun’s attraction.

This daily variation is not such as could be explained by the magnetism

of the sun itself; Chreef has found that it cannot be explained by the

cooling and heating either of the earth’s mass, or of the atmosphere as

suggested by Faraday. Balfour StewartJ put forward the hypothesis that the

daily variation was due mainly to electric currents circulating in the upper

atmosphere as a result of the electromotive forces induced by the convective

* The outer surface of the sun is not rigid, and rotates at dififerent rates in different latitudes.

Thus it is impossible to discover the actual rate of rotation of the inner core except by such

indirect methods as that of observing periods of magnetic variation.

t Roy. Soc. Phil. Trans, ^ 202, p. .33.5.

X Art. Terrestrial Magnetism,” in the 9th Edn. of the Encyc. Brit. (1882).
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motion of the atmosphere across the earth’s magnetic field. This hypothesis

was examined and developed by Schuster*, who examined the daily varia-

tions by the method of harmonic analysis, already explained. Schuster found

the origin of the magnetic field to^be mainly external; he suggested also that

the convection currents indicated by the diurnal barometric changes were ulti-

mately responsible for the phenomenon, and further found that a small part

of the field must be attributed to origins inside the earth: these it was
suggested might be a system of currents induced in the earth by the atmo-

spheric currents above.

Chapmanf has recently reexamined the question, and obtains results in

substantial agreement with Schuster s theory. He finds that the contribution

from inside the earth is about 2S per cent, of the total diurnal variation. It

is supposed that the conducting layer in the upper atmosphere in which the

induced currents flow is that of which we already have evidence in the pheno-

menon of the bending of electromagnetic waves round the earth; this layer is

also the seat of the aurora borealis. Chapman finds that the internal magnetic

field of induced currents would be explained by assuming that, beneath an

upper non-conductive layer of 150 or 200 miles depth, the earth has a specific

resistance of about 4 x 10"“ C.G.s. units.

Besides the variation just considered, there is found to be a lunar diurnal

variation, of period equal to the apparent period of motion of the moon. This

appears to bo the result of a semi-diurnal tidal oscillation of the atmosphere

the mechanism being otherwise similar to that already explained.

456. The non-periodic part of the earth’s field is found to arise entirely

from magnetism inside the earth, having a potential of the form

?•* ?

' »= 00 m=n ( pm 1) 1

! + ...= ^ J {An,m COS m\ 4- sin mX)l

,

^ n=l »n=0 I r*‘-*-* J

This method of analysing the earth’s field is due to Gauss, who calculated

the coefficients, with such accuracy as w.as then possible, for the year 1830.

The most complete analysis of the field which now exists has been calculated

by Neumayer for the year 1885, using observations of the field at 1800

points on the earth’s surface.

The first few coefficients obtained by Neumayer are as follows:

A --3157A,,„ 3157
^
^ _ .0003,

.^s.0 —

^0,0 = -0079

- -0244

(•^ 2,1 —
k,. =

K, = '

= 0390,

0074,

- 0344
— ‘OSOO, .44,2=

IB,.’, =-0119, 2^4.2 =

0498, 4,., = - 0057,

0130, B,., = - 0126,

.4,.,=— 0279, ^,.,= -0033,
B,.2 = - OOO i, B,., = - 0056,
- 0198, .44.2

= -0068, .44.4 = -
0071, B4,, = -0051, B4,4 =

0008,

0010.

• Phil. Tram. A, 180 (1889), p. 467, and A, 203 (1907), p. 163.

t Phil Tram. A, 213 (1913), p. 279, and A, 218 (1919), p. 1.
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467. The simplest approximation is of course obtained by ignoring all

harmonics beyond the first. This gives as the magnetic potential

n = i (sin V) + Pi* (sin V) cos X + P,,i sin X)

•3157 sin Z + cos Z (*0248 cos X - *0603 sin X)\

The expression in brackets is necessarily a biaxial harmonic of order unity

(cf. § 276); it is easily found to be equal to *3224 cos ^ where 7 is the

angular distance of the point (Z, X) from the point

lat. 78“ 20' N., long. 67“ 17' W (389).

cos fv

The potential is now . H = *3224
,

which is the potential of a uniformly magnetised sphere, having as direction

of magnetisation the radius through the point (§ 415). Or again, it is the

potential of a single magnetic particle at the centre of the earth, pointing

in this same direction. It is naturally impossible to distinguish between

these two possibilities by a survey of the field outside the earth. Green's

theorem has already shewn that we cannot locate the sources of a field

inside a closed surface by a study of the field outside the surface.

EXAMPLES.

1. Two small magnets float horizontally on the surface of water, one along the

direction of the straight line joining their centres, and the other at right angles to it.

Prove that the action of each magnet on the other reduces to a single force at right angles

to the straight line joining the centres, and meeting that line at one-third of its length

from the longitudinal magnet.

2. A small magnet A CB^ free to turn about its centre is acted on by a small fixed

magnet PQ. Prove that in equilibrium the axis ACB lies in the plane PQC^ and that

taD^= -^tan^, where ff are the angles which the two magnets make with the line

joining them.

3. Three small magnets having their centres at the angular points of an equilateral

triangle ABC^ and being free to move about their centres, can rest in equilibrium with

the magnet at A parallel to BC, and those at B and C' respectively at right angles AB
and AC, Prove that the magnetic moments are in the ratios

V3 : 4 : 4.

4. The axis of a small magnet makes an angle ^ with the normal to a plane. Prove

that the line from the magnet to the point in the plane where the number of lines of

force crossing it per unit area is a maximum makes an angle B with the axis of the

magnet, such that

2 tan ^=3 tan 2 (0
-
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Two small magnets lie in the same plane, and make angles ff with the line

joining their centres. Shew that the line of action of the resultant force between them
divides the line of centres in the ratio

tan ^^+ 2 tan d : taDd+2tand'

6.

Two small magnets have their centres at distance r apart, make angles d, ff with
the line joining them, and an angle « with each other. Shew that the force on the first

magnet in its own direction is

3wiwi'

^

(6 cos* d cos ff— cos d^ — 2 cos € cos 6\

Show that the couple about the line joining them which the magnets exert on one

another is

mvfC . .—
^ - a sin €,

where d is the shortest distance between their axes produced.

7.

Two magnetic needles of momenta if, M' are soldered together so that their

directions include an angle a. Shew that when they are suspended so as to swing freely

in a uniform horizontal magnetic field, their directions will make angles d, d' with the

lines of force, given by

sin ^ _ sin d'
__

sin a

M' ~ M “(jf2+j/'^+2J/J/'cosa)i"

8.

Prove that if there are two magnetic molecules, of moments M and M\ with their

centres fixed at A and /?, where AB— r^ and one of the molecules swings freely, while the

other is acted on by a given couple, so that when the system is in equilibrium this

molecule makes an angle 6 with AB^ then the moment of the couple is

\UU' sin 3fl/r3 (3 cos= + 1)*,

where there is no external field.

9. Two small equal magnets havo their centres fixed, and can turn about them in a

magnetic field of uniform intensity who.se direction is perpendicular to the line r

joining the centres. Shew that the position in which the magnets both point in the

direction of the lines of force of the uniform field is stable only if

n > 3JZ/r*.

10. Two magnetic particles of equal moment are fixed with their axes parallel to the

axis of 2
,
and in the same direction, and with their centres at the points ± a, 0, 0. Shewr

that if another magnetic molecule is free to turn about its centre, which is fixed at the

point (0, z), its axis will rest in the plane a*— 0, and will make with the axis of z the

angle

tau-‘ —r,.

Examine which of the two positions of equilibrium is stable.

11. Prove that there are four positions in which a given bar magnet may be placed

so as to destroy the earth’s control of a compass-needle, so that the needle can point

indifierently in all directions. If the bar is short compared wdth its distance from the

needle, shew that one pair of these positions are about times more distant than the

other pair.
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Three small magnets, each of magnetic moment /i, are fixed at the angular points

of an equilateral triangle ABC^ so that their north poles lie in the directions AC, AB, BC
respectively. Another small magnet, moment /i', is placed at the centre of the triangle,

and is free to move about its centre. Prove that the period of a small oscillation is the

same as that of a pendulum of length where h is the length of a side of the

triangle, and / the moment of inertia of the movable magnet about its centre.

13.

Three magnetic particles of equal moments are placed at the comers of an

equilateral triangle, and can turn about those points so as to point in any direction in the

plane of the triangle. Prove that there are four and only four positions of equilibrium

such that the angles, measured in the same sense of rotation, between the axes of the

magnets and the bisectors of the corresponding angles of the triangle are equal. Also

prove that the two symmetrical positions are unstable.

14.

Four small equal magnets are placed at the corners of a square, and oscillate

under the actions they exert on each other. Prove that the times of vibration of the

principal oscillations ara

f 1

4

‘Wa (2+ 1/2^2)/
’

2ir

2rr

27r

l»i»3 (2+l

r Mk^(P

W(3-l/2^2);

fA^itW2s/2)4

1 3m» I
’

where m is the magnetic moment, and the moment of inertia, of a magnet, and (f is a

side of the square.

15.

A system of magnets lies entirely in one plane and it is found that when the

axis of a small needle travels round a contour in the plane that contains no magnetic

poles, the needle turns completely round. Prove that the contour contains at least one

equilibrium point.

16.

Prove that the potential of a body uniformly magnetised with intensity I is, at

any external point, the same as that due to a complex magnetic shell coinciding with the

surface of the body and of strength Ix, where is a coordinate measured parallel to the

direction of magnetisation.

17. A sphere of hard steel is magnetised uniformly in a constant direction and a
magnetic particle is held at an external point with the axis of the particle parallel to the

direction of magnetisation of the sphere. Find the couples acting on the sphere and on
the particle.

18. A spherical magnetic shell of radius a is normally magnetised so that its strength

at any point is Si^ where Si is a spherical surface harmonic of positive order i. Shew
that the potential at a distance r from the centre is

i /aV+*

^"27+I‘^‘VrJ
"ben

19.

If a small spherical cavity be made within a magnetised body, prove that the
components of magnetio force within the cavity are

a+ M, + y+ jC:
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20. If the earth were a uniformly magnetised sphere, shew that the tangent of the

dip at any point would be equal to twice the tangent at the magnetic latitude.

21. Provo that if the horizontal component, in the direction of the meridian, of the

earth’s magnetic force were known all over its surface, all the other elements of its

magnetic force might be theoretically deduced.

22. From the principle that the line integral of the magnetic force round any circuit

ordinarily vanishes, shew that tlio two horizontal components of the magnetic force at any
stiition may bo deduced approximately from the known values for three other stations

which lie around it. Shew that these six known elements are not independent, but must
satisfy one equation of condition.

23. If the earth were a sphere, and its magnetism due to two small straight bar

magnets of the same strength situated at the poles, with their axes in the same direction

along the earth’s axis, prove that the dip d in latitude X would be given by

8cot^8 + ^^
=cot|-6tan^-3tan®^.

24.

Assuming that the earth is a sphere of radius a, and that the magnetic potential

Q is represented by

shew that 12 is completely determined by observations of horizontal intensity, declination

and dip at four stations, and of dip at four more.

25. Assuming that in the expansion of the earth’s magnetic potential the fifth and

higher harmonics may be neglected, shew that observations of the resultant magnetic

force at eight points are sufficient to determine the potential everywhere.

26. Assuming that the earth’s magnetism is entirely due to internal causes, and that

in latitude X the northerly component of the horizontal force is A cosX+^cos^X, prove

that in this latitude the vertical component reckoned downwards is

2 (A + 5^) sin X - J sin^ X.



CHAPTER XII

INDUCED MAGNETISM

Physical Phenomena.

468. Reference has already been made to the well-known fact that

a magnet will attract small pieces of iron or steel which are not themselves

magnets. Here we have a phenomenon which at first sight docs not seem
to be explained by the law of the attractions and repulsions of magnetic

poles. It is found, however, that the phenomenon is due to a magnetic

“induction** of a kind almost exactly similar to the electrostatic induction

already discussed. It can be shewn that a piece of iron or steel, placed in

the presence of a magnet, will itself become magnetised. Temporarily, this

piece of iron or steel will be possessed of magnetic poles of its own, and the

system of attractions and repulsions between these and the poles of the

original permanent magnet will account for the forces which are observed

to act on the metal.

It has, however, been seen that pairs of corresponding positive and

negative poles cannot be separated by more than molecular distances, so

that we are led to suppose that each particle of the body in which magnetism

is induced must become magnetised, the adjacent poles neutralising one

another as in a permanent magnet.

Taking this view, it will be seen that the attraction of a magnet for an

unmagnetised body is analogous to the attraction of an electrified body for

a piece of dielectric (§ 197), rather than to its attraction for an uncharged

conductor. The attraction of a charged body for a fragment of a dielectric

has been seen to depend upon a molecular phenomenon taking place in the

dielectric. Each molecule becomes itself electrified on its opposite faces, with

charges of opposite sign, these charges being equal and opposite so that the

total charge on any molecule is nil. In the same way, when magnetism is

induced in any substance, each molecule of the substance must be supposed to

become a magnetic particle, the total charge of magnetism on each particle

being nil. It follows that the attraction of a magnet for a non-magnetic

body is merely the aggregate of the attractive forces acting on the different

individual particles of the body.

459. Confirmation of this view is found in the fact that the intensity

of the attraction exerted by a magnet on a non-magnetised body depends on
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the material of the latter. The significance of this fact will, perhaps, best be

realised by comparing it with the corresponding fact of electrostatics. When
an uncharged conductor is attracted by a charged body, the phenomena in

the former body which lead to this attraction are mass-phenomena : currents

of electricity flow through the mass of the body until its surface becomes

an equipotential. Thus the attraction depends solely upon the shape of

the body and not upon its structure. On the other hand, the phenomena

which lead to the attraction of a fragment of dielectric are, as we have seen,

molecular phenomena. They are conditioned by the shape and arrangement

of the molecules, with the result that the total force depends on the nature

of the dielectric material.

All magnetic- phenomena occurring in material bodies must be molecular,

as a consequence of the fact that corresponding positive and negative poles

cannot be separated by more than molecular distances. Hence we should

naturally expect to find, as we do find, that all magnetic phenomena in

material bodies, and in particular the attraction of unmagnetised matter

by a magnet, would depend on the nature of the matter. There would be

a real difficulty if the attraction were found to depend only on the shape

of the bodies.

460. The amount of the action due to magnetic induction varies

enormously more with the nature of the matter than is the case with the

corresponding electric action. Among common substances the phenomenon

of magnetic induction is not at all well-marked except in iron and steel.

These substances shew the phenomenon to a degree which appears very

surprising when compared with the corresponding electrostatic phenomenon.

After these substances, the next best for shewing the phenomena of induction

are nickel and cobalt, although these are very inferior to iron and steel. It

is worth noticing that the atomic weights of iron, nickel and cobalt are very

close together*, and that the three elements hold corresponding positions in

the table of elements arranged according to the periodic law.

It has recently been found that certain rare metals shew magnetic

induction to an extent comparable with iron, and that alloys can be formed

to shew great powers of induction although the elements of which these

alloys are formed are almost entirely non-magnetief.

It appears probable that all substances possess some power of magnetic

induction, although this is generally extremely feeble in comparison with

that of the substances already mentioned. In some substances, the effect

is of the opposite sign from that in iron, so that a fragment of such matter

is repelled from a magnetic pole. Substances in which the effect is of the

* Iron= 55-8, niokel = 58*7, cobalt *58-9.

t For an account of the composition and properties of Heusler’s alloys, see a paper by

J. C. McLennan, P/tyc. Review

^

Yol. 24, p. 419.
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same kind as in iron are called paramagnetic, while substances in which the

effect is of the opposite kind are called diamagnetic.

The phenomenon of magnetic induction is much more marked in para-

magnetic, than in diamagnetic, substances. The most diamagnetic substance

known is bismuth, and its coefficient of susceptibility (§ 4G1, below) is only

about of that of the most paramagnetic samples of iron.

Coefficients of Susceptibility and Permeability.

461. When a body which possesses no permanent magnetism of its own

is placed in a magnetic field, each element of its volume will, for the time it

remains under the influence of the magnetic field, be a magnetic particle.

If the body is nbn-ciystalline the direction of the induced magnetisation at

any point will be that of the magnetic force at the point. Thus if U denote

the magnetic force at any point, we can suppose that the induced magnetism,

of an intensity /, has its direction the same as that of H.

Thus if a, 7 are the components of magnetic force, and A, B, G the

components of induced magnetisation, we shall have equations of the form

A = xa \

(390),

C=^xy]

the quantity x being the same in each equation because the directions of 1

and H are the same.

The quantity x is called the magnetic susceptibility.

If the body has no permanent magnetisation, the whole components of

magnetisation arc the quantities A, B, C given by equations (390), and the

components of induction are given (cf. equations (359)) by

« = a + 47ril = a (1 + 47r/c),

6 = /3 + ^irB = (1 + 47r/c),

C = 7 + 47r6' = ly (1 + ^TTX).

If we put /i, = l + 47r/c (391),

we have a = fiot
'\

b=pB\ (392),

c = fiy )

and fi is called the magnetic j^ermeability.

462. The quantities x and p are by no means constant for a given

substance. Their value depends largely upon the physical conditions,

particularly the temperature, of the substance, upon the strength of th(!

magnetic field in which the substance is placed, and upon the previous

magnetic experiences of the substance in question.
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We pass to the consideration of the way in which the magnetic coefficients

vary with some of these circumstances. As k and /x, are connected by a simple

relation (equation (391)), it will be sufficient to discuss the variations of one

of these quantities only, and the quantity will be the most convenient for

this purpose. Moreover, as the phenomenon of induced magnetisation is

almost insignificant in all substances except iron and steel, it will be sufficient

to consider the magnetic phenomena of these substances only.

463. Dependence of p on H, The way in which the value of p depends

on H is, in its main features, the same for all kinds of iron. For small forces,

ft is a constant, for larger forces p increases, finally it reaches a maximum,

and after this decreases in such a way that ultimately pH approximates to

a constant value, known as the “saturation” value. This is represented

graphically in a typical case in fig. 113, which represents the results obtained

by Ewing from experiments on a piece of iron wire.

H

Fio. 113.

The abscissae represent values of //, the ordinate of the thick curve the

value of pH, and the ordinate of the thin curve the value of p. The corre-

sponding numerical values ai'e as follows

:

H fiH /* fjiH

0-32 40 120 5*17 126vS0 2450
0-84 170 200 6-20 13C40 2200
1-37 420 310 7-94 14510 1830
2-14 1170 550 9-79 14980 1530
2-67 .3710 1390 11-57 15230 1320
3-24 7.300 2250 15 06 15570 1030
3-89 9070 25(>0 19-7G 16780 800
4-60 liG40 2590 21-70 15870 730
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464. Retentiveness and Hysteresis. It is found that after the magnetising

force is removed from a sample of iron, the iron still retains some of its mag-

netism. Here we have a phenomenon similar to the electrostatic phenomenon

of residual charge already described in § 397.

Fig. 114 is taken from a paper by Prof. Ewing {Phil. Trans. Roy. Soc.

1885). The abscissae represent values of H, and ordinates values of B,

the induction. The magnetic field was increased from H=0 to ^= 22,

and as H increased the value of B increased in the manner shewn by the

curve OP of the graph. On again diminishing H from H==22 to ir=0, the

graph for B was found to be that given by the curve PE. Thus during this

operation there was always more magnetisation than at’ the corresponding

stage of the original operation, and finally when the inducing field was

entirely removed, there was magnetisation left, of intensity represented by

OE. The field was then further decreased from if = 0 to if = — 20, and

then increased again from if = — 20 to if = 22. The changes in B are

shewn in the graph.

466. Dependence of p on temperature. As has already been said, th(j

value of p depends to a large extent on the temperature of the metal. In

general, the value of p continually increases as the temperature is raised, this

increase being slow at first but afterwards more rapid, until a temperature

known as the “ temperature of recalescence ’*
is reached. This temperature

has values ranging from 600® to 700® for steel and from 700® to 800® for iron.

This temperature takes its name from the circumstance that a piece of metal

cooling through this temperature will sink to a dull glow before reaching it,

and will then become brighter again on passing through it.

After passing the temperature of recalescence, the value of p falls with

extreme rapidity, and at a temperature only a few degrees above this

temperature, iron appears to be almost completely non-magnetic.
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For paramagnetic substances, it appears to be a general law that the

susceptibility k varies inversely as the absolute temperature (Curie’s Law).

Mathematical Theory.

466. If fl is the magnetic potential, supposed to be defined at points

inside magnetic matter by equation (348), we have, as in equations (341)

(cf. § 430), a= —^ etc., so that

a= — -

dil
b fi

an an
aJ-

The quantities a, 6, c, as we have seen (§ 434), satisfy

at every point, and
dx dy ^ dz

.(393)

JJ(la + mb + nc) dS = 0 (394),

where the integration is taken over any closed surface. In terms of the

potential, equation (393) becomes

a_ ( .
3

,( 1

^

dx
+ ^ 1

dy ^ dz V dz)

while equation (394) becomes

If fi is constant throughout any volume, equation (395) becomes

v^n = o.

Thus inside a mass of homogeneous non-magnetised matter, the magnetic

potential satisfies Laplace’s Equation.

467. At a surface at which the value of fi changes abruptly we may
take a closed surface formed of two areas fitting closely about an element dS
of the boundary, these two areas being on opposite sides of the boundary.

On applying equation (396), we obtain

9 9
where fii, fi-i are the permeabilities on the two sides, and 5—, r— denote

^
oPq

difierentiations with respect to normals to the surface drawn into the two

media respectively.

Equations (397) and (395) (or (396)), combined with the condition that

fl must be continuous, suffice to determine O uniquely. The equations
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satisfied by H, the magnetic potential, are exactly the same as those which

would be satisfied by V, the electrostatic potential, if were the Inductive

Capacity of a dielectric. Thus the law of refraction of lines of magnetic

induction is ex.actly identical with the law of refraction of lines of electric

force investigated in § 138, and figures (43) and (78) may equally well be

taken to represent lines of magnetic induction passing from one medium to

a second medium of different permeability.

468. At any external point Q, the magnetic potential of the magnetisation

induced in a body in wliich /a and tc have constant values is, by equation (342),

dxdydz

+ ...(398).

Transforming by Green’s Theorem,

— ”//(“)^« <“)•

shewing that the potential is the same if there were a layer of magnetic

dfl
matter of surface density — k spread over the surface of the body. This

is Poisson s expression for the potential due to induced magnetism.

AVe can also transform equation (398) into

n, - «///n V. (i) _
,JJn

ji^
(i) |(i) + »

i
(i)} ds

—'//'* 27,(7)
'« <«»)

shewing that the potential at any external point Q of the induced magnetism

is the same as if there were a magnetic shell of strength — icfl coinciding

Avith the surface of the body.

Body in which ^permanent and induced magnetism coeodst

469. If a permanent magnet has a permeability different from unity, we

shall have a magnetisation arising partly from permanent and partly from

induced magnetism. If k is the susceptibility and I the intensity of the

permanent magnetisation at any point, the components of the total magnet-

isation at any ijoint will be

A = ica, etc. (401),
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and the components of induction are

a = a -h ^ttA = ^ttII + /xa, etc (402).

For such a substance, it is clear that equations (395) and (396) will not

in general be satisfied.

Energy of a Magnetic Field.

470. To obtain the energy of a magnetic field in which both permanent

and induced magnetism may be present, we return to the general equation

obtained in § 451,

jjj
(aa-{~b^ + cy)dxdi/dz = 0 (403).

On substituting for a, 5, c from equations (402), this becomes

47r
jJJ/

(la + WjS + 717) dxdydz + JjJ
(a* -f 7®) dxdydz = 0 . . .(404\

Whether or not induced magnetism is present, it is proved, in § 448, that the

energy of the field is

where the integral is taken through all space. This is equal to —^ times the
OTT

first term in equation (404). Thus

IT= ///
^ + 7^) (i^dydz (405).

This could have been foreseen from analogy with the formula

”'=
8̂ ///

which gives the eucrgy of an electrostatic field.

From formula (405) we see that the energy of a magnetic field may be
»//2

supposed spread throughout the medium, at a rate — per unit volume.

Mechanical Forces in the Field.

471 . The mechanical forces acting on a piece of matter in a magnetic

field can be regarded as the superposition of two systems—first, the forces acting

on the matter in virtue of its permanent magnetism (if any), and, secondly,

the forces acting on the matter in virtue of its induced magnetism (if any).

The problem of finding expressions for the mechanical forces in a magnetic

field is mathematicallyidentical with that of finding the forces in an electro-

static field. This is the problem of which the solution has already been
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given in § 196. The result of the analysis there given may at once be

applied to the magnetic problem.

In equation (117), p. 175, we found the value of B, the ^-component of

the mechanical force per unit volume, in the form

^ ^ dx Sir dx dx vStt ^ 0t /
*

To translate this result to the magnetic problem, we must regard p os

specifying the density of magnetic poles, R must be replaced by H, the

magnetic intensity, and K by p, the magnetic permeability. Also the

electrostatic potential V must be replaced by the magnetic potential 11. We
tlien have, as the value of B in a magnetic field.

^ dx Stt dx dx VStt
***

dr)
(406).

Clearly the first term in the value of S is that arising from the per-

manent magnetism of the body, while the second and third terms arise from

the induced magnetism. The first term can be transformed in the manner

already explained in the last chapter. It is with the remaining terms that

we are at present concerned. These will represent the forces when no per-

manent magnetism is present. Denoting the components of this force by

H', H', Z\ we have

0 ///* 0)a\

Stt dx dx VStt ^ dr)
,(407).

472. This general formula assumes a special form in a case which is of

great importance, namely when the magnetic medium is a fluid.

All liquid magnetic media in which the susceptibility is at all marked

consist of solutions of salts of iron, and the magnetic properties of the liquid

arise from the presence of the salts in solution. According to Quincke, the

solution having the greatest susceptibility is a solution of chloride of iron in

methyl alcohol, and for this the value of p -I is about In such a

liquid, the field arising from the induced magnetism will be small compared

with that arising from the original field, so that the magnetisation of any

single particle of the salt in the solution may be regarded as produced

entirely by the original field. Hence we have conditions similar to those

which obtain electrostatically in a gas. The induced field may be regarded

simply as the aggregate of the fields arising from the different particles of

the magnetic medium, and is therefore jointly proportional to the density of

these particles and to the strength of the inducing field. The latter fact

shews that, for a given density of the medium, p ought to be independent of

a result to which we shall return later. The former fact shews that, as

Cf. G. T. Walker, “ Aberration** (Cambridge Univ. Presa, 1900), p. 70.
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the density t changes, ft - 1 ought to be proportional to t

—

a result analogous

to the result that jfiT — 1 is proportional to the density in a gas. It has been

found experimentally by Quincke* that /t—

1

is approximately proportional

to T.

In gases we have conditions precisely similar to those which obtain when
a gas is placed in an electrostatic field. Hence ft — 1 must, for a gas, be

proportional to t, for exactly the same reason for which K—\ is proportional

to T. This result also has been verified by Quinckef.

Thus we may say that for fluid media, whether liquid or gaseous, ft — 1

is, in general, proportional to t, where t is the density of the magnetic liquid,

in the case of a liquid in solution, or of the gas itself, in the case of a gas.

473. If we assume the relation

ft — 1 = CT (408),

where c is a constant, we find that expression (407) may be put in the

simpler form

shewing that the whole mechanical force is the same as would be set up by a

hydrostatic pressure at every point of the medium of amount H\

IfH varies from point to point of the field, the effect of this pressure will

clearly be to urge the medium to congregate in the more intense parts of the

field. This has been observed by MatteucciJ for a medium consisting of

drops of chloride of iron dissolved in alcohol placed in a medium of olive oil.

The drops of solution were observed to move towards the strongest parts of

the field.

Magnetostriction.

474. If a liquid is placed in a magnetic field, it yields under the

influence of the mechanical forces acting upon it, so that we have a

phenomenon of magnetostriction, analogous to the phenomenon of electro-

striction already explained (§ 203). Clearly the liquid will expand until the

pressure is decreased by an amount at each point, the new pressure

and the mechanical forces resulting from the magnetic field now producing

equilibrium in the fluid. By measuring the expansion of a liquid placeil in

a magnetic field Quincke has been able to verity the agreement between

theory and experiment.

• Wied, Ann. 24, p. 347.

t Comptea JtenduSt 36, p. 917.

t Wied. Ann. 34, p. 401.
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Molecular Theories.

Poisson's Molecular Theory of Induced Magnetism.

476. In Chapter v it was found possible to account for all the electro-

static properties of a dielectric by supposing it to consist of a number of

perfectly conducting molecules. Poisson attempted to apply a similar

explanation to the phenomenon of magnetic induction.

Poisson's theory can, however, be disproved at once, by a consideration of

the numerical values obtained for the permeability fi. This quantity is

analogous to the quantity K of Chapter v, so that its value may be estimated

in terms of the molecular structure of the magnetic matter. The fact with

respect to which Poisson’s theory breaks down is the existence of substances

(namely, different kinds of soft iron) for which the value of /* is very large.

To understand the significance of the existence of such substances, let us

consider the field produced when a uniform infinite slab of such a substance

is placed in a uniform field of magnetic force, so that the face of the slab is

at right angles to the lines of force. If the value of fi is very large, the fall

of potential in crossing the slab is very small. Throughout the supposed

perfectly-conducting magnetic molecules the potential would, on Poisson's

theory, be constant, so that the fall of potential could occur only in the

interstices between the molecules. In these interstices (cf. fig. 46), the fall of

potential per unit length would be comparable with that outside the slab.

Hence a very large value of /x could be accounted for only by supposing the

molecules to be packed together so closely as to leave hardly any interstices.

Samples of iron can be obtained for which /x is as large as 4000
;

it is known,

from other evidence, that the molecules of iron are not so close together that

such a value of /x could be accounted for in the manner proposed by Poisson.

It is worth noticing, too, that Poisson's theory docs not seem able, without

modification, to give any reasonable account of the phenomena of saturation,

hysteresis, etc.

Webers Molecular Theory of Induced Magnetism,

476. A theory put forward by Weber shews much more ability than

the theory of Poisson to explain the facts of induced magnetism.

Weber supposes that, even in a substance which shews no magnetisation,

every molecule is a permanent magnet, but that the effects of these different

magnets counteract one another, owing to their axes being scattered at

random in all directions. When the matter is placed in a magnetic field

each molecule tends, under the influence of the field, to set itself so that

its axis is along the lines of force, just as a compass-needle tends to set

itself along the lines of force of the earth's magnetic field. The axes of the
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molecules no longer point in all directions indifferently, so that the magnetic

fields of the different molecules no longer destroy one another, and the body

as a whole shews magnetisation. This, on Weber's theory, is the magnetisa-

tion induced by the external field of force.

Weber supposes that each molecule, in its normal state, is in a position

of equilibrium under the influence of the forces from all the neighbouring

molecules, and that when it is moved out of this position by the action of

an external magnetic field, the forces from the other molecules tend to

restore it to its old position. It is, therefore, clear that so long as the

external field is small, the angle through which each axis is turned by the

action of the field will be exactly proportional to the intensity of the field,

so that the magnetisation induced in the body will be just proportional to

the strength of the inducing field. In other words, for small values of //,

fjL must be independent of H.

There is, however, a natural limit imposed upon the intensity of the

induced magnetisation. Under the influence of a very intense field all the

molecules will set themselves so that their axes are along the lines of force.

The magnetisation induced in the body is now of a quite definite intensity,

and no increase of the inducing field can increase the intensity of the

induced magnetisation beyond this limit. Thus Weber's theory accounts

quite satisfactorily for the phenomenon of saturation, a phenomenon which

Poisson's theory was unable to explain.

477 . In connection with this aspect of Weber's theory, some experi-

ments of Beetz are of great importance. A narrow lino was scratched in

a coat of varnish covering a silver wire. The wire was placed in a solution

of a salt of iron, arranged so that iron could be deposited clcctrolytically

on the wire at the points at which the varnish had been scratched away.

The effect was of course to deposit a long thin filament of iron along the

scratch. If, however, the experiment was performed in a magnetic field

whose lines of force were in the direction of the scratch, it was found not

only that the filamerib of iron deposited on the wire was magnetised, but

that its magnetisation was very intense. Moreover, on causing a powerful

magnetising force to act in the same direction as the original field, it was

found that the increase in the intensity of the induced magnetisation was

very small, shewing that the magnetisation had previously been nearly at

the point of saturation.

Now if, as Weber supposed, the molecules of iron were already magnets

before being deposited on the silver wire, then any magnetic force suflScient

to arrange them in order on the wire ought to have produced a filament in

a state of magnetic saturation, while if, as Poisson supposed, the magnetism

in the molecules was merely induced by the external magnetic field, then

the magnetisation of the filament ought to have been proportional to the
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original field, and ought to have disappeared when the field was destroyed.

Thus, as between these two hypotheses, the experiments decide conclusively

for the former.

478. Weber’s theory is illustrated by the following analysis.

Consider a molecule which, in the normal state of the matter, has

its axis in the direction OP, and let

the field of force from the neigh-

bouring molecules be a field of in-

tensity P, the direction of the lines

of force being of course parallel to

OP. Now let an external field of

intensity H be applied, its direction

being a direction OA making an

angle a with OP. The total field

acting on the molecule is now com-

pounded of D along OP and 11

along OA.

In fig. 115, let SO, OP represent H and D in magnitude and direction,

then SP will represent the resultant field, so that the new direction of the

axis of the molecule will be 8P. Suppose that there are n molecules per

unit volume, each of moment m. Originally, when the axes of the molecules

were scattered indifferently in all directions, the number for which the

angle a had a value between a and a + da was Jnsinada. These molecules

now have tlieir axes pointing in the direction SPy and therefore making an

angle PSA (= 6, say) with the direction of the external magnetic field. The

aggregate moment of all these molecules resolved in the direction of OA is

accordingly

I mn sin a cos 6da,

and on integration the aggregate moment of all the molecules per unit

volume, which is the same as the intensity of the induced magnetisation /,

is given by
ra=n

1= I ^Twn sinacos ^da (409).

If R is the value of SP, measured on the same scale on which SO and OP
represent H and D respectively, then

P“ = + P'* — 2//P cos a.

so that, on changing the variable from a to R, we must have the relation,

obtained by differentiation of the above equation,

RdR = HD sin ada.
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We also have cosd =
2ItH

so that equation (409) becomes

2H»D
dR

In fig. 116 the limits of integration for iJ are JJ = D + ff and R=‘D — II.

If, however, H > D, then the point 8 falls outside the circle APB and the

limits for R are R = D + H and R =H — D.

On integrating, we find as the values of I,

when X < D,

X^D,

X>D,

Z = oo,

I = \nin^,

I = §7n»,

I = m«(l-3?i),

I = mil.

In fig. 116, the abscissae represent values of H, the ordinates of the

thick curve the values of /, and the ordinates of the dotted curve the

values of B or /t/f, drawn on one-tenth of the vertical scale of the graph

for /.

MdxweWs Molecular Theory of Induced Magneiisn\.

479. It will be seen that Webers theory fails to account for the

increase in the value of im before I reaches its maximum, and also that

it gives no account of the phenomenon of retentiveness. JMaxwell has

shewn how the theory may be modified so as to take account of these

two phenomena. He supposes that, so long as the forces acting on the

molecules are small, the molecules experience small deflexions as imagined

by Weber, but that as soon as these deflexions exceed a certain amount,

the molecules are wrenched away entirely from their original positions

of equilibrium, and take up positions relative to some new position of
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equilibrium. It might be, for instance, that originally the molecule had two

possible positions of equilibrium, OP and OQ in fig. 117. Suppose the

molecule to be in position OP and to be

acted upon by a gradually increasing force

in some direction OA, At first the molecule

will turn fix)m the position OP towards OA,

But it may be that, as soon as the molecule

passes some position OP, it suddenly swings

round and takes up a position in which it

must be regarded as being deflected from the position of equilibrium OQ and

not from OP. Let its new position be OS, then the deflexion produced is

the angle SOP instead of the angle POP which would be given by Weber’s
theory.

In Maxwell’s original discussion, no distinction was made between the

position OP, at which the magnet broke away from its old posibion of equi-

librium, and OS, the new position of equilibrium. Maxwell accordingly had to

assume that in some unknown w’ay, the force of restitution broke down as

soon as the magnet reached the position OP.

The improvement of distinguishing between the position OP, the limit of

stability under the old position of equilibrium, and OS, the new position of

equilibrium, was introduced by Ewing. In Ewing’s form of the theory, no

forces are needed beyond those provided by the mutual action of the magnets

upon one another.

On either form of the theory, it is clear that the ratio oi I to H will

remain approximately constant until the molecules begin to break away from

their original positions of equilibrium. As soon as this happens, the induced

magnetism will increase more rapidly than the inducing force

—

i.e. fi will

increase with H, in agreement with observation.

If the magnetising force is now removed, the molecule in the position

OS will not return to its original position OP, but to the position OQ. It

will therefore still have a deflexion QOP, called by Maxwell its “ permanent

set,” and this will account for the “ retentiveness ” of the substance.

No molecular theory of this kind can, however, be regarded as at all

complete. We shall return to the discussion of molecular theories of magne-

tism in Chapter xvi.

EXAMPLES.

1. A small magnet is placed at the centre of a spherical shell of radii a and A
Determine the magnetic force at any point outside the shell.

2. A system of permanent magnets is such that the distribution in all planes {larallcl

to a certain plane is the same. Prove that if a riglit circular solid cylinder be placeil in

the field with its axis perpendicular to the.se planes, the strength of the field at any point

inside the cylinder is thereby altered in a constant ratio.
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3. A magnetic particle of moment m lies at a distance a in front of an infinite block

of soft iron bounded by a plane face, to which the axis of the particle is perpendicular.

Find the force acting on the magnet, and shew that the potential energy of the system is

-m*(/i-l)/8a3 (p+l).

4. The whole of the space on the negative side of the yz plane is filled with soft iron,

and a magnetic particle of moment m at the point (a, 0, 0) points in the direction

(cos a, 0, sin a). Prove that the magnetic potential at the point j?, y, z inside the iron is

2m z sin a - (a - j?) cos a

1+/1

5. A small magnet of moment M is held in the presence of a very large fixed mass of

soft iron of permeability fi with a very large plane face : the magnet is at a distance a
from the plane face and makes an angle 6 with the shortest distance from it to the plane.

Shew tliac a certain force, and a couple

(/i - 1 ) sin 6 cos d/8 (/*+ 1) a®,

are required to keep the magnet in position.

6. A small sphere of radius b is placed near a circuit which, when carrying unit

current, would produce a field of strength ff at the point where the centre of the sphere is

placed. Shew that if k is the coefficient of magnetic induction for the sphere, the presence

of the sphere increases the self-induction of the wire by, approximately,

S7rb\ (3-f27r0//2

(3-f47ric)2

7. If the magnetic field within a body of permeability /i be uniform, shew that any

spherical portion can bo removed and the Ciivity filled up with a concentric spherical

nucleus of permeability /xj and a concentric shell of permeability /12 without affecting the

external held, provided fi lies between /xj and ^^nd the ratio of the volume of the nucleus

to that of the shell is jiropcrly chosen. Pro\c also that the field inside the nucleus is

uniform, aiul that its intensity is greater or less than that outside according as p is greater

or less than p^.

8 A sphere of radius a has at any point (jr, y, z) components of permanent magneti-

sation {/% Qt/t 0), the origin of coonlinates being at its centre. It is surrounded by a

spliorical shell of uniform perineal »ility p, the bounding radii being a and b. Determine

the \cctor iiotcntial at an out^ule point.

9. A sphere soft iron of railius a is placed in a field of uniform magnetic force

piir.illcl to the axis of z. Sh-nv that the linos of force external to the sphere lie on surfaces

of revolution, the equation of which is of the form

r heiiig the distance from the centre of the sidicre.

10. A sphere of soft iron of permeability p is introduced into a field of force in which

the potential is a homogeneous polynomial of degree n in y, z. Shew that the potential

inside the sphere is reduced to its original value multiplied by

2n-H
np-f

11. If a shell of radii a, b is introduced in place of the sphere in the last question,

show that the force inside the cavity is altered in the ratio

(2/1 + 1)'V + 1) + « +p) - H (?i+ 1 ) (p - 1)*
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12. An infinitelj long hollow iron cylinder of permeability fi, the cross-section being

concentric circles of radii 6, is placed in a uniform field of magnetic force the direction

of which is perpendicular to the generators of the cylinder. Shew that the number of

lines of induction through the space occupied by the cylinder is changed by inserting the

cylinder in the field, in the ratio

6* (/i-b 1)* - a2 (,i - 1)* : 2p {fc* (m+ 1) - (m - !)}•

13. A cylinder of iron of permeability fi has for cross-section the curve

r=a(l+€Cos2^),

where may be neglected. Find the distribution of potential when the cylinder is placed

in a field of force of which the potential before the introduction of the cylinder was

14. An infinite elliptic cylinder of soft iron is placed in a uniform field of potential

— (Xx+Yy\ the equation of the cylinder being = Shew that the potential of

the induced magnetism at any internal point is

15> A solid elliptic cylinder whose equation is ^= a given by

X -b ty~ c cosh (f -b irj)

is placed in a field of magnetic force whose potential is A Shew that in the

space external to the cylinder the potential of the induced magnetism is

- JA c* cosech 2 (a -b i3) sin 4a 3^ ^ ^ cos 2?;,

where coth 23 is the permeability.

16. A solid ellipsoid of soft iron, semi-axo^ a, &, c and permeability p, is placed in a

uniform field of force X parallel to the axis of jf, which is the major axis. Verify that the

internal and external potentials of the induced magnetisation are

Qi =PA i-r, Qq=

where A=/' Ao=J(ft’-bV')^

P=0x- 1) AT/Km - 1) A, -b2 (a6c)-»},

and X is the parameter of the confocal through the point considered.

dyjr

(6*-b (c**-b
*

17. A unit magnetic polo is i)laccd on the axis of x at a distiince f from the centre of

a sphere of soft iron of radius a. Shew that the potential of the induced magnetism at

any external point is

TTU-bl/M / . ^
Joio + yj

where r, or are the cylindrical coordinates of the j)oint. Find also the potential at an

internal point.

18. A magnetic pole of strength m is placed in front of an iron plate of permeability

/i and thickness c. If this pole lie the origin of rectangidar coordinates x:, y, and if x bo

|)criiendicular and y parallel to the plate, shew that the potential behind the plate is

given by

tL —m where P = f^zl



CHAPTER XIII

THE MAGNETIC FIELD PRODCCED BY ELECTRIC CURRENTS

Experimental Basis.

480. So far the subjects of electricity and magnetism have been developed

as entirely separate groups of physical phenomena. Although the mathe-

matical treatment in the two cases has been on parallel lines, we have not

had occasion to deal with any physical links connecting the two series of

phenomena.

The first definite link of the kind was discovered by Oersted in 1820.

Oersted’s discovery was the fact that a current of electricity produced a

magnetic field in its neighbourhood.

The nature of this field can be investigated in a simple manner. We
first double back on itself a wire in which

a current is flowing (fig. 118, 1). It is

found that no magnetic field is produced.

Next we open the end into a small

plane loop PQRS (fig. 118, 2). It is found

that at distances from the loop which are

great compared with its linear dimensions,

such a loop exercises the same magnetic

forces as a magnetic particle of which the

axis is perpendicular to the plane PQRS,

and the moment is jointly proportional to the strength of the current and

to the area PQRS, The single current flowing in the circuit OPQRST is

obviously equivalent to two currents of equal strength, the one flowing in

the circuit OPST obtained by joining the points P and S, and the other

flowing in the closed circuit PQRSP. The former current is shewn, by

the preliminary experiment, to have no magnetic effects, so that the whole

magnetic field may be ascribed to the small closed circuit PQRS.

a)

(2 )

Fia. 118.
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481. Instead of regarding this field as due to a particle of moment jointly

proportional to the area PQR8 and to the current-strength, we may regard

it as due to a small magnetic shell, coinciding with the area FQRS, and of

strength simply proportional to the current flowing in FQRS.

482. Next, let us consider the current flowing in a closed circuit of any

shape we please, and not necessarily in

one plane. Let us cover in the closed

circuit by an area of any kind having the

circuit for its boundary, and let us cut

up this area into infinitely small meshes

by two systems of lines. A current of

strength i flowing round the boundary

circuit, is exactly equivalent to a current

of strength i flowing round each mesh in

the same direction as the current in the

boundary. For, if we imagine this latter

system of currents in existence, any line

such as A in the interior will have two currents flowing through it, one

from each of the two meshes which it separates, and these currents will

he equal but in opposite directions. Thus all the currents in the lines

which have been introduced in the interior of the circuit annihilate one

another as regards total effect, while the currents in those parts of the

meshes which coincide with the original circuit just combine to reproduce

the original current flowing in this circuit.

Thus the original circuit is equivalent, as regards magnetic effect, to a

system of currents, one in each mesh. By taking the meshes sufficiently

small, we may regard each mesh as plane, so that the magnetic effect of a

current circulating in it is known : the magnetic effect of the current in a

single mesh is that of a mjignetic shell of strength proportional to the current

and coinciding in position with the mesh. Thus, by addition, we find that

the whole system of currents produces the same magnetic effects as a single

magnetic shell coinciding with the surface of which the original current-

circuit is the boundary, and of strength proportional to the current. This

shell, then, produces the same magnetic effect as the original single current.

The magnetic shell is spoken of as the “ equivalent magnetic shell.”

Thus we have obtained the following result

;

“ A current flowing in any closed circuit produces the same magnetic fleld

as a certain magnetic shell, known as the 'equivalent magnetic shell* This

shell may he taken to he any shell having the circuit for its boundary, its

strength being uniform and proportional to that of the current**
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Law of Signs. If an observer is imagined to stand on that side of the

equivalent magnetic shell ” which contains the negative poles, the current

flows round him in the same direction as that in which the sun moves round

an observer standing on the earth’s surface in the northern hemisphere.

We can also state the law by saying that to drive an ordinary right-

handed screw {e.g. a cork-screw) in the direction

of magnetisation of the shell, the screw would

have to be turned in the direction of the

current.

The law of signs expresses a fact of nature, not a

mathematical convention. At the same time, it must be

noticed that the law docs not express that nature shews

any preference in this respect for right-handed over left-

handed screws. Two conventions have already been made
in deciding which are to be called the positive directions

of current and of magnetisation, and if either of these

conventions had been different, the word “right-handed” in the law of signs would have

had to be replaced by “left-handed.**

483. Since, by § 346, any system of currents can be regarded as the

superposition of a number of simple closed currents, it follows that the

magnetic field produced by any system of currents can always be regarded as

that produced by a number of magnetic shells, each of uniform strength.

Electromagnetic Unit of Current

484. If i is the strength of the current flowing in a circuit, and ^ the

strength of the equivalent magnetic shell, then

(ji ~~ kiff

where A; is a constant, which is positive if the law of signs just stated has

been obeyed in determining the signs of
<f>
and i.

In the system of units known as Electromagnetic, we take A; = 1, and

define a unit current as one such that the equivalent magnetic shell is of

unit strength. The strength of a current, in these units, is therefore

measured by its magnetic effects. Obviously the strength measured in this

way will be entirely different from the strength measured by the number of

electrostatic units of electricity which pass a given point. This latter method

of measurement is the electrostatic method. A full discussion of systems of

units will be given later (§ 58.5); at present it may be stated that a current

which is of unit strength when measured electromagnetically in c.O.s. units is

of strength 3 x 10*® (very approximately) when measured electrostatically. The

practical unit of current, the ampere, is, as already stated, equal to 3 x 10*

electrostatic units of current, so that the electromagnetic unit of current is

equal to 10 amperes.
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A unit charge of electricity in electromagnetic units will be the amount

of electricity that passes a fixed point per unit time in a circuit in which an

electromagnetic unit of current is flowing. It is therefore equal to 3 x 10*®

electrostatic units.

Work done in threading a Circuit.

485. In fig. 121 let the thick line represent a circuit in which a current

is flowing, and let the thin line through

the point P represent the outline of

any equivalent magnetic shell, P
being any point in the shell. Let us

imagine that we thread the circuit by

any closed path beginning and ending

at P, this path being represented by

the dotted line in the figure. At every

point of this path except P, we have a

full knowledge of the magnetic forces.

It will be convenient to regard the shell as having a definite, although

infinitesimal, thickness at P. Let /+, P. denote the points in

which the path intersects the positive and negative faces of the

shell. Then we may say that the forces are known at all points of

the path, except over the small range /+P.

The original current can, however, be represented by any

number of equivalent magnetic shells, for any shell is capable of

representing the current, provided only it has as boundary the

circuit in which the current is flowing.

Let any other equivalent shell cut the path in the points Q+Q-. From

our knowledge of the forces exerted by this shell, we can determine the

forces exerted by the current at all points of the path except those within

the range of Q+Q_. In particular we can determine the forces over the range

75.P., and it is at once obvious that on passing to the limit and making the

range infinitesimal, the forces at the points 7+, P., and at all points on the

infinitesimal range P./L must be equal. Obviou.sly the forces are also finite.

The work done on a unit pole in taking it round the complete circuit

from P- back to P., is accordingly the same as that done in taking it from P.

round the path to This can be calculated by supposing the forc«'s to be

exerted by the first equivalent shell, for the path is entirely outside this

shell. If the potential due to the shell is at and is H/. at P, the

work done is — Hy* .

Now n, the potential of the shell at any point, is, as we know (§ 419),

equal to ia, where a> is the solid angle subtended by the shell and i is the

\

Fio. 122.



484-486] Magnetic Potential of Field 429

current, measured in electromagnetic units. The change in the solid angle

as we pass from £. to is, as a matter of geometry, equal to 47r. Thus

= 47ri (410).

The work done in taking. a unit pole round the path described is accord-

ingly 47ri.

Magnetic Potential of a Field due to Currents.

486. Let us fix upon a definite equivalent shell to represent a current of

strength i. Let us bring a unit pole from in-

finity to any point by a path which cuts

the equivalent shell in points P,Q, ... Z. For

simplicity, let us at first suppose that at each

of these points the path passes from the

positive to the negative side of the shell, and

let the points on the two sides of the shell be

denoted, as before, by i+, Q+, Q_; and

so on.

Then, if H denotes the magnetic potential due to the equivalent shell,

the work done in bringing the unit pole from infinity to will be Hp^. In

the limit and are coincident, so that the work in taking the unit pole

on from to is infinitesimal. In taking it from R. to 0+ work is done of

amount — Hp ,
from to the work is infinitesimal, and so on, until

ultimately we arrive at A. Thus the total work done in bringing the unit

pole to A is

“ ^p_) + '^Q_) + • • • +

or, rearranging, is

— ^p_) !“ (^0^
” "!••••

Now each of the terms f — 12^ , etc. is equal by equation

(410) to 47n', so that if il is the number of these terms, the whole expression

is equal to

+ 47rai.

Replacing by i©, where cd is the solid angle subtended by the shell at

A, we find for the potential at A due to the electric current

(ct)4-47r?i)i (411).

If the path cuts the equivalent shell n times in the direction from + to —

,

and m times in the opposite direction, the quantity n must be replaced by

n — in.

Expression (411) shews that the potential at a point is not a single-valued

function of the coordinates of the point. The forces, which are obtained by

differentiation of this potential, are, however, single-valued
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Current in infinite straight wire.

487. As an illustration of the results obtained, let us consider the

magnetic field produced by a current flowing in a straight wire which is of

such great length that it may be regarded as infinite, the return current

being entirely at infinity.

Let us take the line itself for axis of z. Any semi-infinite plane termi-

nated by this line may be regarded as an equivalent magnetic shell. Let us

fix on any plane and take it as the plane of xz.

Consider any point P such that OP, the shortest distance from P to

the axis of z, makes an angle 6 with Ox. The cone
^

through P which is subtended by the semi-infinite

plane Ox^ is bounded by two planes—one a plane

through P and the axis of z ;
the other a plane through q

P parallel to the plane zOx. These contain an angle

ir — O, so that the solid angle subtended by the plane

zOx at P is 2(7r — 0). Giving this value to to in

formula (411), we obtain as the magnetic potential at P
n = {2 (tt — ^) + 4)i7r} i.

dfi
Since ^ = ^ if* is clear that there is no radial magnetic force, and the

force at any point in the direction of 0 increasing

an _ 2i

rdO r *

This result is otherwise obvious. If the work done in taking a unit pole

round a circle of circumference 27rr is to be 47ri, the tangential force at

every point must be

Fio. 124.

488. This result admits of a simple experimental confirmation.

Let PQR be a disc suspended in such a way that the only motion of

which it is capable is one of pure rotation about a

long straight wire in which a current is flowing.

On this disc let us suppose that an imaginaiy unit

pole is placed at a distance r from the wire. There

will be a couple tending to turn the disc, the

2i
moment of this couple being — x r or 2i. Similarly

if we place a unit negative pole on the disc there is

a couple — 2i.

On placing a magnetised body on the disc, there

will be a system of couples consisting of one of

moment 2i for eveiy positive pole and one of moment Fxa. 125.

— 2i for every negative pole. Since the total charge
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in any magnet is m7, it appears that the resultant couple must vanish, so

that the disc will shew no tendency to rotate. This can easily be verified.

Circular Current

489. Let us find the potential due to a current of strength i flowing in a

circle of radius a. The equivalent magnetic shell may be supposed to be a

hemisphere of radius a bounded by this circle.

The potential at any point on the axis of the circle can readily be found.

For at a point on the axis distant r fi:om the centre

of the circle, the solid angle o) subtended by the 1

circle is given by yA

SO that the potential at this point is \ /

fl = 27ri f 1 — , N. y
\ V a® + r*/

This expression can be expanded in powers of r

by the binomial theorem. We obtain the following

expansions

:

if r < a.

if r>a,

(5)"+ ...} <«3X

From this it is possible to deduce the potential at any point in space.

Let us take spherical polar coordinates, taking the centre of the circle as

origin, and the axis of the circle as the initial line ^ = 0. Inside the sphere

r = a, the potential is a solution of V*n = 0 which is symmetrical about the

axis ^ = 0, and remains finite at the origin. It is therefore capable of

expansion in the form

n = (cos B\
0

Along the axis we have ^ = 0, so that this assumed value of H becomes

0

and the coefficients may be determined by comparison with equation (412).
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Thus we obtain for the potentials,

n = 2w» |l - ^
i? (cos 6) (cos

+<-*>“ g)"'e„.c».«)+-} -(iw).

when r<a, and

n -W
jg

"S(e«s*>-
1 p ...

+ (- !)•« iff «,<»»«) + ...}
...(M5),

when r > a.

At points so near to the origin that — may be neglected, the potential is
0/

n = 2-7n‘ ^1 - ^
cos = 27ri (l "

.

where ^=rcos^, and the magnetic force is a uniform force

parallel to the axis.

Solenoids,

490 A cylinder, wound uniformly with wire through which a current

can be sent, is called a “solenoid.”

Consider first a circular cylinder of radius a and

height h, having a wire coiled round it at the uniform

rate of n turns per unit length, the wire carrying a

current i. Let ^ be a coordinate measuring the

distance of any cross-section from the base of the

solenoid. Then the small layer between s and z + dz,

being of thickness dz, will contain ndz turns of wire.

The currents flowing in all these turns may be re-

garded as a single current nidz flowing in a circle, this circle being of radius

a and at distance z from the base of the solenoid. The magnetic potential

of this current may be written down from the formula of the last section, and

the potential of the whole solenoid follows by integration.

491. Endless Solenoid. In the limiting case in which the solenoid is of

infinite length (or in which the ends are so far away that the solenoid may
be treated as though it were of infinite length), the field can be determined

in a simpler manner.

Consider first the field outside the solenoid. In taking a unit pole round

any path outside the solenoid which completely surrounds the solenoid, the

work done is, by § 485, 47ri. The cuiTent flowing per unit length of the

Fia. 127.
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solenoid is ni. In general we are concerned with cases in which this is finite

n being very large and t being very small. The quantity 47ri may accordingly

be neglected, and we can suppose that the work done in taking unit pole

round the solenoid is zero.

It follows that the force outside the solenoid can have no component at

right angles to planes through the axis, and clearly, by a similar argument,
the same must be true inside the solenoid. Hence the lines of induction

must lie entirely in the planes through the axis of the

solenoid. From symmetry, there is no reason why
the lines of induction at any point should converge

towards, rather than diverge from, the axis, or vice
^

versa. Hence the lines of induction will be parallel

to the axis, and the force at every point will be entirely p
parallel to the axis.

I

Let the lines PQR, P'QfR' in fig. 128 be radii

meeting the axis, the lines FP', QQf, RR' being

parallel to the axis and each of length e. Let the

magnetic forces along these lines be F^, and

respectively.

In taking unit pole round the closed path PP'Q'QP the work done is

and since this must vanish, we must have Hence the force at all

points outside the solenoid must be the same; it must be the same as the

force at infinity and must consequently vanish. Thus there is no force at all

outside the solenoid.

In taking unit pole round the closed path PP'R'RP, the work done is

and this must be equal to 47r7ii€, so that we must have ije = 47rni. Thus

the force at any point inside the solenoid is a force 4nmi parallel to the axis.

Thus the field of force arising from an infinite soleiioid consists of a

uniform field of strength 47r?u inside the solenoid, there being no field at all

outside. The construction of a solenoid accordingly supplies a simple way of

obtaining a uniform magnetic field of any required strength.

Galvanometers.

492. A galvanometer is an instrument for measuring the strength of an

electric current, the method of measurement usually being to observe the

strength of the magnetic field produced by the current by noting its action

on a small movable magnet.

There are naturally various classes and types of galvanometers designed

to fulfil various special purposes.
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The Tangent Oalvanometer.

493. In the tangent galvanometer the current flows in a vertical

circular coil, at the centre of which a small magnetic needle is pivoted

so as to be free to turn in a horizontal plane.

Before use, the instrument is placed so that the plane of the coil contains

the lines of magnetic force of the earth’s field. The needle accordingly rests

in the plane of the coil. When the current is allowed to flow in the coil

a new field is originated, the lines of force being at right angles to the

plane of the coil and the needle will now place itself so as to be in equi-

librium under the field produced by the superposition of the two fields—the

earth’s field and the field produced by the current.

As the needle can only move in a horizontal plane, we need consider

only the horizontal components of the two fields. Let as usual, denote

the horizontal component of the earth’s field. Let i be the current flowing

in the coil, measured in electromagnetic units, let a be the radius and let n

be the number of turns of wire. Near the centre of the coil the field

produced by the current is, by § 489, a uniform field at right angles to

the plane of the coil, of intensity The total

horizontal field is therefore compounded of a field of

strength H in the plane of the coil, and a field of

strength at right angles to it.

The resultant will make an angle 6 with the plane

of the coil, where

tan 0= (416),

and the needle will set itself along the lines of force of the field. Thus the

needle will, when in equilibrium, make an angle 6 with the plane of the

coil, where d is given by equation (416). If we observe 6 we can determine

i from equation (416). We have

i=^tan^ (4j1V;,

where G is a constant, known as the galvanometer constant, its value

, . 2wn
bemg

The instrument is called the tangent galvanometer from the circum-

stance that the current is proportional to the tangent of the angle 0.
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The tangent galvanometer has the advantage that all currents, no matter

how small or how great, can be measured without altering the adjustment

of the instrument. A disadvantage is that the readings are not very sensi-

tive when the currents to be measured are large—only a very small change

in the reading is produced by a considerable change in the current. Let

the current be increased by an amount di, and let the corresponding change

in 6 be dO^ then from equation (417),

do
so that if i is large, is small. Thus, although the instrument may be

used for the measurement of large currents, the measurements cannot be

effected with much accuracy.

A second defect of the instrument is caused by the circumstance that

the field produced by the current is not absolutely uniform near the centre

of the coil. If a is the radius of the coil, and b the distance of either pole

of the magnet from its centre, the poles will be in a part of the field in

which the intensity differs from that at the centre of the coil by terms of

the order of For instance, if the magnet is one inch long, while the
a*

coil has a diameter of 10 inches, the intensity of the field will be different

from that assumed, by terms of the order of so that the reading will be

subject to an error of about one part in a thousand.

By replacing the single coil of the tangent galvanometer by two or more

parallel coils, it is possible to make the field in the region in which the

magnet moves, as uniform as we please. It is therefore possible, although

at the expense of great complication, to make a tangent galvanometer which

shall read to any required degree of accuracy

7'ke Sine Galvanometer,

494. The sine galvanometer differs from the tangent galvanometer in

having its coil adjusted so that it can be turned about a vertical axis.

Before the current is sent through the coil, the instrument is turned until

the needle is at rest in the plane of the coil. The coil is then in the direc-

tion of the earth s field at the point.

As soon as a current is sent through the coil, the needle is deflected, as

in the tangent galvanometer. The coil is now slowly turned in the direction

in which the needle has moved, until it overtakes the needle, and as soon

as the needle is again at rest in the plane of the coil, a reading is taken,

giving the angle through which the coil has been turned. Let 6 be this

angle, then the earth’s field may be resolved into components, HcoaO in
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the plane of the coil and ^sin^ at right angles to this plane. Since the

needle rests in the plane of the coil, the latter component must be just

neutralized by the field set up by the current, this being, os we have seen,

entirely at right angles to the plane of the coil. We accordingly have

27rm

so that we must have

fl’sin^= -

i ^sin 6 .(418),

where (?, the galvanometer constant, has the same meaning as before.

This instrument has the disadvantage that it cannot be used to measure

currents greater than jj

,

It is, however, sensitive over the whole range

through which it can be used : if dd is the increase in 0 caused by a change

di in 1, we have

dd =^ sec 0 di,

so that the greater the current the more sensitive the instrument.

The great advantage of this form of galvanometer, however, is that when
the reading is taken the magnet is always in the same position relative

to the field set up by the current in the coil. Thus the deviations from

uniformity of intensity at the centre of the field do not produce any error

in the readings obtained: they result only in the galvanometer constant

having a value different from that which it has so far been supposed to

have. But when once the right value has been assigned to the constant Gy

equation (418) will be true absolutely, no matter how large the movable

needle may be in comparison with the coil.

Other galvanometers,

495. There are various other types of galvanometers in use to serve

various purposes other than the exact measurement of a current. For full

descriptions of these the reader may be referred to books treating the

theory of electricity and magnetism from the more experimental side. The

following may be briefly mentioned here.

I. The DArsonval Galvanometer, This instrument is typical of a class

of galvanometer in which there is no moving needle, the moving part being

the coil itself, which is free to turn in a strong magnetic field. The coil

is suspended by a torsion fibre between the poles of a powerful horseshoe

magnet. When a current is sent through the coil, the coil itself produces

the same field as a magnetic shell, and so tends to set itself across the
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lines of force of the permanent magnet, this motion being resisted by no

forces except the torsion of the fibre.

IL The Mirror Galvanometer. This is a galvanometer originally designed

by Lord Kelvin for the measurement of the small currents used in the trans-

mission of signals by submarine cables. The design is, in its main outlines,

identical with that of the tangent galvanometer, but, to make the instrument

as sensitive as possible, the coil is made of a great number of turns of fine

wire, wound as closely as possible round the space in which the needle

moves, and the needle is suspended as delicately as possible by a fine

torsion-thread. To make the instrument still more sensitive, permanent

magnets can be arranged so as to neutralize part of the intensity of the

earth's field. The instrument is read by observing the motion of a ray of

light reflected from a small mirror which moves with the needle : it is from

this that the instrument takes its name. In the most sensitive form of this

instrument a visible motion of the spot of light can be produced by a current

of amperes.

III. The Ballistic Galvanometer. This instrument does not measure

the current passing at a given instant, but the total flow of electricity

which passes during an infinitesimal interval. If the needle is at rest in

the plane of the coil, a current sent through the coil will establish a

magnetic field tending to turn the needle out of this plane. So long as

the needle is approximately in the plane of the coil, the couple acting on

the needle will be proportional to the current in the coil : let it be denoted

by Cl, where i is the current.

Then if g> is the angular velocity of the needle at any instant, we shall

have an equation of the form

where is the moment of inertia of the needle. Integrating through the

small interval of time during which the current may be supposed to flow,

we obtain

=c ^idt.

Here H is the angular velocity with which the needle starts into motion,

and
J
idt is the total current which passes through the coil. Thus the total

flow j idt can be obtained by measuring H, and this again can be obtained by

observing the angle through which the needle swings before coming to rest

at the end of its oscillation.
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Vector-potential op a Field due to Currents.

496. From the formulae obtained in § 446 for the vector-potential of a

uniform magnetic shell, we can at once write down expressions for the vector-

potential of a field due to currents.

For, by § 483, the field due to any system of currents may be regarded as

the field due to a number of shells of uniform strength, so that the vector-

potential at any point will be the sum of the vector-potentials due to these

different shells. Hence if
<f), <f/, ... are the strengths of the various shells,

the vector-potential at any point P has components (cf. § 446)

where the summation is over all the shells, and dx\ ds' refer to an element of

the edge of a shell of strength tf), this element being at a distance r from the

point P.

The equations just found may clearly be replaced by

(i dx , ^

//=J

where ds is now an element of any wire or linear conductor in which a

current of strength i is flowing, and the integration is now along all the

conductors in the field.

By the use of equations (376), we may at once obtain the components of

magnetic force or induction at any point x, y, z' in the forms

= /
^ {h (r) (?)

Mechanical Action in the Field.

Amplrds rule for the force from a circuit

497. Let 0 {x, y, z) be the position of any element ds of a circuit, and

let P be any point (x\ y', z') in free space.

From equations (420) it follows that the magnetic force at P may be

regarded as made up of contributions from each element of the circuit such

that the contribution from the clement ds at 0 has components
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On putting r*= (» — »')*+ (y — y')’ + (« — «')», and differentiating, these

components become

ids
1
y-y dz z-:fdy) ids {z — si dx X ^ X dz'\

r> \ r da r oi*)’ 1^
\ T ds r ds)

, etc. ...(421).

Let us denote ^ by mj, rii, these being the direction-

cosines of the line OP, and let ^as as as

be denoted by ij, wij, n^, these being the

direction-cosines of ds. Then the com-

ponents of force (421) become

(7?li Wa - maW,), ^ (Wj ^a
- Ihli),

^ (/iWla — ...(422). Fio- 129 a.

Clearly the resultant is a force at right angles both to OP and to ds, and

of amount
it^^sin 0

(423).

where 0 is the angle between OP and ds.

Thus the total force at P may be regarded as made up of contributions

such as (423) from each element of the circuit. This is known as Ampere's

law.

Mechanical action on a circuit.

498. We are at present assuming the currents to be steady, so that

action and reaction may be supposed to be equal and opposite. It follows

that the force exerted at a unit pole at P upon the circuit of which the

element ds is part, may be regarded as made up of forces of amount

zsin 0

per unit length, acting at right angles to OP and to ds. If we have poles of

strength in at P, m* at P', etc., the resultant force on the circuit may be

regarded as made up of contributions

imsin^ 7 7?t'sin^'

per unit length. The resultant of these forces may be put in the form

ill sin;^

where II is the resultant magnetic intensity at 0 of all the poles m, m

,

etc.,

and is the angle between the direction of this intensity and ds. This

resultant force acts at right angles to the directions of H and of ds.
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499. We have found that the force from a whole circuit is the same as if

each element ids contributed a force ids sin ^/r*, and the force on a whole

circuit is the same as if each element were acted on by a force ilTsin But

so long as we are dealing only with complete closed currents, it is impossible

to discover what the actual force from or on a single element of the current

will be. In a later chapter we shall regard a current as a stream of electrons

in motion. The element ids will then be treated as a small number of moving

electrons, and we shall be able to shew that the actual forces associated with

the single element ids are exactly identical with those just found.

Energy of a System of Circuits carrying Currents.

600. The energy of a magnetic field, as we have seen (§ 470), is

^jJJ/A
(a* +^ + 7*) dxdydz (424).

If the energy resides in the medium, this expression may be regarded as

the energy of the field, no matter how this field is produced. If the field is

produced wholly by currents, expression (424) may be regarded as the energy

of the system of cun'cnts. As we shall now sec, it can be transformed in a

simple way, so as to express the energy of the field in terms of the currents

by which the field is produced.

The integral through all space, as given by expression (424), may be

regarded as the sum of the integrals taken over all the tubes of induction by

which space is filled. The lines of induction, as we have seen, will be closed

curves, so that the tubes are closed tubular spaces.

If ds is an element of length, and dS the cross-section at any point, of a

tube of unit strength, we may replace dxdydz by d^ds, and instead of inte-

grating with respect to dS we may sum over all tubes. Thus expression (424)

becomes

i-2j‘(^(a‘ + /3» + 7*)d-Sr)(f5,

where the summation is over all unit tubes of induction. If IT* = ^ -i- 7
*

we have, by the definition of a unit tube, fiHdS = 1 , so that

ft (a® +

+

7*) dS= fiH^dS = //,

and the integral becomes

Now
J
Hds is the work performed on a unit pole in taking it once round

the tube of induction, and this we know is equal to 47r2'

2
,
where 1/i is the

sum of all the currents threaded by the tube, taken each with its proper

sign. Thus the energy becomes J2(2'i).
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This indicates that for every time that a unit tube threads a current i,

a contribution is added to the energy. Thus the whole energy is

(425),

where the summation is over all the currents in the field, and N is the

number of unit tubes which thread the current i.

601. We have seen that a shell of strength is equivalent, as regards

the field produced at all external points, to a current i, if </> = i. The energy

of a system of currents has however been found to be whereas the

energy of a system of shells was found (§ 450) to be

(426).

The difference of sign can readily be accounted for. Let us consider a

single shell of strength
<f>,

and let dS be an element of area, and dn an element

of length inside the shell measured normally to the shell. At any point just

outside the shell, let the three components of magnetic force be a, y, the

first being a component normal to the shell, and the others being components

in directions which lie in the shell. On passing to the inside of the shell, the

normal induction is discontinuous owing to the permanent magnetism which

must be supposed to reside on the surface of the shell. Thus inside the shell,

we may suppose the components of force to be ^ , /
0

, 7, where fi is the

permeability of the matter of which the shell is composed, and S is the

force originating from the permanent magnetism of the shell.

The contribution to the energy of the field which is made by the space

inside the shell is

where the integral is taken throughout the interior of the shell
;
or

This can be regarded as the sum of three integrals,

(iii) -—jfjSadndS /

(427 ).
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On reducing the thickness of the shell indefinitely, S becomes infinite, for

at any point of the shell,

J
56?/^ = — (difference of potential between the two forces of shell)

= — 47r</),

so that S becomes infinite when the thickness vanishes.

Thus on passing to the limit, the first integral

becomes infinite. This quantity is, however, a constant, for it represents the

energy required to separate the shell into infinitesimal poles scattered at

infinity.

The second integral vanishes on passing to the limit, and so need not be

further considered.

The third integral can be simplified. We have

Now
j

*Sdn — — 47r0, while
jfadS is the integral of normal induction over

the shell, and may therefore be replaced by the number of unit tubes of

induction from the external field, which pass through the shell. Thus the

third integral is seen to be equal to

In calculating expression (424) when the energy is that of a system of

currents, the contribution from the space occupied by the equivalent mag-

netic shells is infinitesimal. Thus all the terms which we have discussed

represent differences between the energies of shells and of circuits.

Terms such as the first integrals of scheme (427) represent merely that

the energies arc measured from different standard positions. In the case of

the shells, we suppo.se the shells to have a permanent existence, and merely

to be brought into position. The currents, on the other hand, have to be

created, as well as placed in position. Beyond this difference, there is an

outstanding difference of amount for each circuit, and this exactly

accounts for the difference between expressions (425) and (426).

602. Let us suppose that we have a system of circuits, which we shall

denote by the numbers 1, 2, .... Let us suppose that when a unit current

flows through 1, all the othfer circuits being devoid of currents, a magnetic

field is produced such that the numbers of tubes of induction which cross

circuits 1, 2, 3, ... are

Li2, Lj8, ....
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Similarly, when a unit current flows through 2, let the numbers of tubes

of induction be

^2i> ••••

The theorem of § 446 shews at once that

L^ = L^=-jj^dsds'. etc (428).

If currents ... flow through the circuits simultaneously, and if the

numbers of tubes of induction which cut the circuits are Ni, Nz, ..., we

have

Ni^ Liiii + "1“ + • • • ]
]- (429).N

I

= "h *1“ -^23^3 "!"•••» etc,

J

The energy of the system of currents is

E=\tiN,

= iSi*! + InH + •••)>

“ + (430).

Coefficients of Induction.

603. The coefficient is commonly called the coefficient of self-induc-

tion (or, more briefly, the self-inductance) of circuit 1, while is called

the coefficient of mutual induction of the two circuits 1 and 2. The value

of Zia for any pair of circuits can be calculated from formula (428).

As an example, consider the important case of two circular wires, radii

a, a' in parallel planes, the line joining their centres being perpendicular to

the planes and of length d, b. Formula (428) gives

r2»r QQg ^^ (Iff

0 [tt* + a'* 4- 6* — 2aa' cos {9 — 9')]^

aa' cos ^dyfr

[a® -I- + 6® — 2aa cos

and we readily find

Zia = 47r (aa)^ c
^

d<f>
Jo (1 — c® sin®

= 47r (aa')i -cjK(c)-^ E (c)j

,

where K{c\ E{c) are the complete elliptic functions to modulus c.

When the circles nearly coincide, h is small and a and a* are nearly equal.

Thus c is nearly equal to unity, and E{c) approximates to unity. Put

c' = (l-c*)*,
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so that c' is small, then

^

^

,Jo (1-c’sin*^)^ Jo (cos* 0 + c* sin-^

’

of which the approximate value is found to be log(4/c').

If r is the nearest distance apart of the two circles, we have, when r is

small, c = rj2a, so that

^(c) = log(8a/?*),

Li2 = 47rrt ^log^-2^ (430a).

604. It might be expected that Ave could obtain the value of in any
problem by making the two circuits 1 and 2 coincide, but this proves not to

be the case; the value of the integral in equation (428), where the integral is

taken twice round the same circuit, is always infinite. As an instance, we
may notice that on putting r = 0 in the formula just obtained, we find X12 = oo .

We can readily see wh}^ this must be. When there is only one current

floAving, Ave have

\Lxxi^ = [fj

+

/3^ + y-) dxdydz,

each side of this equation representing the energy of the current. Near to

the Avire, at a small distance r from it, the magnetic force is ^ijr so that

a* + /3* + 7* = 4i7r*. Thus the energy contained Avithin a thin ring formed of

coaxal cylinders of radii 7'j, 7
^

2 , bent so as to follow the Avire conveying the

current, Avill be

r*
rdrdOds,

where the integration Avith respect to r is from to r.^, that with respect to

6 is from 0 to 27r, and that Avith respect to s is along the Avire. Integrating,

we find energy

/XI* log {r^lr,)

per unit length, and on taking 7*1 = 0, the energy is seen to be infinite.

Suppose that the Avire has a circular cross-section of radius a, and that

the current is uniformly distributed over this cross-section. A circle of radius

r inside the wire will enclose a current iV*/tt*, so that the magnetic force at

distance r from the centre will be 2ir/a*, and

a* + /0* + 7* = 4i*7’*

“a*"*

On integrating this from r = 0 to r = a we find that there is magnetic

energy inside the Avire of amount per unit length, where fi is the

magnetic permeability of the material of the wire. Hence the total energy

per unit length inside a cylinder of radius r* enclosing the wire is

J/xV + /XI* log (rja) .(4306).
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Even when a is finite this still becomes infinite when r, is made infinite

—

i.e. w’hen the magnetic field extends to infinity. Thus the self-induction per

unit length of a straight wire in free space is infinite except when the

magnetic field is limited by the presence of other conductors.

Suppose that the return current is carried by a concentric cylinder of

radius h surrounding the wire. The total flow of current through a circle of

radius greater than h is zero, so that there will be no magnetic force outside

the cylindrical conductor, and the magnetic field will be limited by the cylinder

r — h. The energy per unit length is now given by formula (4306) with r* put

equal to 6, so that the coefficient of self-induction per unit length is

Z=i/i.' + 2/tlog(6/a) (430c),

and this is finite for all finite values of 6 and a.

605. The energy of the magnetic field produced by a current i in a wire

will always be the siin^ of the energies of the magnetic field in the wire and

of the magnetic field outside the wire. If the current is uniformly distributed

in the wire, the former energy will always be \fii^ as in § 504. Thus i, the

self-induction of a wire of length I, will always be of the form

+ L (430d),

where the term arises from the field inside the wire, and Z' arises from

the field outside the wire.

When the circuit lies entirely in one plane and the radius of cross-section

of the wire is small a simple value can be obtained for L\ Let S denote the

curve formed by the centres of the cross-sections of the wire, and let S' denote

the curve formed by the inner edge of the wire in the plane in which

the circuit lies. Then it will be easily verified that the magnetic force at any

point inside S' is the same as if the whole current % flowed along the curve &
Hence the number of tubes of induction which flow through S* when the

current flows in the wire is the same as if a current i flowed in S, and so is

equal to i times Z',, where Z',2 is the coefficient of mutual induction between

S and S', Thus in formula (430 d), L' will be the coefficient of mutual induc-

tion between the circuits S and S',

As an example, let us find the coefficient of self-induction in a wire of

length 27ra whose cross-section is a circle of radius r, bent into 'a circle of

radius a. The curve is a circle of radius a, the curve S' is a concentric

circle of radius a — r. By formula (430a),

Z'-47ra^logy-2),

Z = irafi -I- 47ra ^log^ •so that
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As a second example, let us find the coefficient of self-induction of a rect-

angular circuit of sides a, h made of wire of circular cross-section of radius ?\

In this case the circuit S will be a rectangle of sides a, 6, while the circuit S*

is a coplanar concentric rectjingle of sides a — ?•, h — r. We evaluate L' the

coefficient of mutual induction of S and S' from formula (428). There is no

contribution from pairs of elements on sides perpendicular to one another,

since for these cos € = 0 ;
the whole value of L' is contributed by parallel pairs

of elements.

For two parallel lines of lengths I, V at distance h apart, we find

(ilsds
__

dxdx

J r J -xj -jr _ a;)- -f A"]

^

fJ-ii sinh~^

'

dx
ly=-u'

= (l + V) sink-^ - (i - I') si'ih"' - [4/1* + (l + f)’]'

+ [4A* + (Z-Z7]i

On making small, and replacing sinh“* by its logarithmic value, this

becomes

21 log - 2 (i» + + 2h.

By repeated use of this formula we find

2/' = — 8 (a + A) -f 8 (a* -f- 6-)^ — 4a log [a -I- (a® -f A=)-]

— 46 log [6 + (a® + 6=)^] + 4 (a -f 6) log

and the coefficient of self-induction is now given by

Ld = (a + 6) + L'

,

605 a. Formula (430c), expressing the self-induction per unit length of a

circular wire with a concentric return, can be put in the form A = J/a' -f L\

where
U = 2/a log (6/a).

IfK is the electrostatic capacity per unit length of the condenser formed

by the wire and its surrounding cylinder, we have, fioin § 82,

y- ^

2 log (6/a)*

where k is the inductive capacity of the insulating material surrounding the

wire. Thus

(430c).

It is not a mere accident that this simple relation holds. Suppose we
solve the electrostatic problem by the method of conjugate functions (§ 312).
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The appropriate transformation is readily found to be (cf.
§ 318)

U+iV^ Cons. + 2 log r + 2i6,

where a? = r cos y = r sin 0, In this transformation U may be taken to be the

electrostatic potential due to unit charge per unit length, and V will clearly be

the magnetic potential due to unit current. It follows at once that the value of

Z* + y* at any point when there is unit charge per unit length is the same
as the value of + at the same point when there is unit current flowing,

and relation (430 e) is at once seen to be true.

The argument can be applied equally well to any conjugate-function trans-

formation w^hatever. Thus relation (430 o) is seen to be universally true for

any straight conductor accompanied by a parallel return.

EXAMPLES.

1.

A current i flows in a very long straight wire. Find the forces and couples it

exerts upon a small magnet.

Shew that if the centre of the small magnet is fixed at a distance c from the wire, it

has two free small oscillations about its position of equilibrium, of equal period

where Mk^ is the moment of inertia, and the magnetic moment, of the magnet.

2. Two parallel straight infinite wires convey equal currents of strength % in opposite

directions, their distance apart being 2a. A magnetic particle of strength /a and moment
of inertia is free to turn about a pivot at its centre, distant c from each of the wires.

Show that the time of a small oscillation is that of a pendulum of length I given by

Aialfi—myk^cK

3. Two equal magnetic poles are observed to repel each other with a force of 40 dynes

when at a decimetre apart. A current is then sent through 100 metres of thin wire

wound into a circular ring eight decimetres in diameter and the force on one of the poles

placed at the centre is 26 dynes. Find the strength of the current in amperes.

4. Regarding the earth as a uniformly and rigidly magnetised sphere of radius a,

and denoting the intensity of the magnetic field on the equator by H, shew that a wire

surrounding the earth along the parallel of south latitude X, and carrying a current i

from west to east, would experience a resultant force towards the south pole of the

heavens of amount
fiiraiiTsin X cos* X.

5. Shew that at any point along a line of force, the vector potential due to a current

in a circle is inversely proportional to the distance between the centre of the circle and

the foot of the perpendicular from the point on to the plane of the circle. Hence trace

the lines of constant vector potential

6. A current % flows in a circuit in the shape of an ellipse of area A and length 1.

Shew that the force at the centre is willA,
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7. A current » flows round a circle of radius a, and a current i' flows in a very long

Ktraight wire in the same plane. Shew that the mutual attraction is (sec a - 1), where

2a is the angle subtended by the circle at the nearest point of the straight wiro.

8. If, in the last question, the circle is placed perpendicular to the straight wire with

its centre at distance e from it, shew that there is a couple tending to set the two wires in

the same plane, of moment ^nii'a^lc or 2fru'c, accoi*ding os c> or <a.

9.

A long straight current intersects at right angles a diameter of a circular current,

and the plane of the circle makes an acute angle a with the plane through this diameter

and the straight current. Shew that the coefficient of mutual induction is

47r {c sec a - (c* sec* a - a2)i} or 47rc tan

according as the straight current passes within or without the circle, a being the radius of

the circle, and c the distance of the straight current from its centre.

10.

Prove that the coefficient of mutual induction between a pair of infinitely long

straight wires and a circular one of radius a in the same plane and with its centre at a

distance b(>a) from e^ich of the straight wires, is

Stt (6 — V — a-).

11.

A circuit contains a straight wire of length 2a conveying a current. A second

straight wire, infinite in both directions, makes an angle a with the first, and their

common perpendicular is of length c and meets the first wire in its middle point. Prove

that the additional electromagnetic forces on the first straight wire, due to the presence

of a current in the second wire, constitute a wrench of pitch

o/ . . _,asina\ / . -
. ,

a sin a
21 asm a- c tan ‘ —-

—

J

/ sin 2a tan *—-—

.

12.

Two circular wires of radii a, 6 have a common centre, and are free to turn on an

insulating axis which is a diameter of both. Shew that when the wires carry currents

i, a couple of magnitude
27r262/ 52X

.

is required to hold them with their planes at right angles, it being assumed that hja is so

small that its fifth power may be neglected.

13.

Two circular circuits are in planes at right angles to the line joining their centres.

Shew that the coefficient of induction

= 27r
2 cos 2Bd0

0 V sin* 0+ c* cos* $ ’

where a, c are the longest and shortest lines which can be drawn from one circuit to the

other. Find the force between the circuits.

14.

Two cuiTcnts i, i' flow round two squares each of side a, placed with their edges

parallel to one another and at right angles to the distance c between their centres. Shew
that they attract with a force

+ 1 -
a*+2c*

)

15.

A current i flows in a rectangular circuit whose sides are of lengths 2a, 25, and

the circuit is free to rotate about an axis through its centre parallel to the sides of length

2a. Another current i' flows in a long straight wire parallel to the axis and at a distance
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d from it. Prove that the couple required to keep the plane of the rectangle inclined at

an angle ^ to the plane through its centre and the straight current is

8»^aM(6^+cP) sin 0
— cos 2(^

'

16. Two circular wires lie with their planes parallel on the same sphere, and carry
opposite currents inversely proportional to the areas of the circuits. A small magnet has
its centre fixed at the centre of the sphere, and moves freely about it. Shew that it will

be in equilibrium when its axis either is at right angles to the planes of the circuits, or
makes an angle tan'^^ with them.

17. An infinitely long straight wire conveys a current and lies in front of and parallel

to an infinite block of soft iron bounded by a plane face. Find the magnetic potential at
all points, and the force which tends to displace the wire.

18. A small sphere of radius h is placed in the neighbourhood of a circuit, which
when carrying a current of unit strength would produce magnetic force H at the point
whci-o the centre of the sphere is placed. Shew that, if k is the coefficient of induced
magnetization for the sphere, the presence of the sphere increases the coefficient of self-

induction of the wire by an amount approximately equal to

^rrl^K (3+ 27rK)m
(3+47rK)a

•

19. A circular wire of radius a is concentric with a spherical shell of soft iron of radii

5 and c If a steady unit current flow round the wire, shew that the presence of the iron

increases the number of lines of induction through the wire by

2,r2a*(c3-63)(#i-l)(,i+ 2)

63 {(2^+ 1) (^+2) cr*-2 (m- i)n^}

approximately, where a is small compared with 6 and c.

20.

A right circular cylindrical cavity is made in an infinite mass of iron of perme-
ability /i. In this cavity a wire runs parallel to the axis of the cylinder carrying a steady
current of strength I. Prove that the wire is attracted towards the nearest part of the
surface of the cavity with a force per unit length equal to

20*- l)/2

(f.+ l)d
*

where a is the distance of tho wire from its electrostatic image in the cylinder.

21.

A steady current C flows along one wire and back along another one, inside a
long cylindrical tube of soft iron of permeability /i, whose internal and external radii are

Oi and 02

j

the wires being parallel to the axis of the cylinder and at equal distance a on
opposite sides of it. Shew that the magnetic potential outside the tube will be

V=y sinB+y sin 30+ y sin 5^+ ...,

«Uero {(^+1)3- 1)3|

.

Hence shew that a tube of soft iron, of 150 cm. radius and 5 cm. thickness, for which the

effective value of /i is 1200 C.Q.8., will reduce the magnetic field at a distance, due to tho

current, to less than one-twentieth of its natural strength.
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22. A wire is wound in a spiral of angle a on the surface of an insulating cylinder of

radius a, so that it makes n complete turns on the cylinder. A current i flows through

the wire. Prove that the resultant magnetic force at the centre of the cylinder is

a (1 + 7r‘n*tan®a)if

along the axis.

23. A current of strength i flows along an infinitely long straight wire, and returns in

a parallel wire. These wires are insulated and touch along generators the surface of an
infinite uniform circular cylinder of material whose coefficient of induction is k. Prove that

the cylinder becomes magnetized as a lamellar magnet whose strength is +

24. A fine wire covered with insulating material is wound in the form of a circular

disc, the ends being at the centre and the circumference. A curi*ent is sent through the

wire such that I is the quantity of electricity that flows per unit time across unit length

of any radius of the disc. Shew that the magnetic force at any point on the axis of the

disc is

2jr/{cosh (sec a) — sin a},

where a is the angle subtended at the point by any radius of the disc.

25. Coils of wire in the form of circles of latitude are wound upon a sphere and

produce a magnetic potential Ar^P^ at internal points when a current is sent through

them. Find the mode of winding and the potential at external points.

26. A tangent galvanometer is to have five turns of copper wire, and is to be made so

that the tangent of the angle of deflection is to be equal to the number of amperes flowing

in the coil. If the earth’s horizontal force is T8 dynes, shew that the radius of the coil

must be about 17‘45 cms.

27. A given current sent through a tangent galvanometer deflects the magnet through

an angle 6. The plane of the coil is slowly rotated round the vertical axis through the

centre of the magnet. Prove that if d > Jrr, the magnet will describe complete revolu-

tions, but if d<iir, the magnul will oscillate through an angle sin (tan 6) on each side of

the meridian.

28. Prove that, if a slight error is made in reading the angle of deflection of a tangent

galvanometer, the percentage error in the deduced value of the current is a minimum if the

angle of deflection is

29. The circumference of a sine galvanometer is 1 metre : the earth’s horizontal

magnetic force is '18 C.O.S. units. Shew that the greatest cuiTeiit which can be measured

by the galvanometer is 4'56 amperes approximately.

30. The poles of a battery (of electromotive force 2*9 volts and internal resistance

4 ohms) are joined to those of a tangent galvanometer whose coil has 20 turns of wire and

is of mean radius 10 cms. : shew that the deflection of the galvanometer is approximately

45*. The horizontal intensity of the earth’s magnetic force is 1'8 and the resistance of

the galvanometer is 16 ohms.

31. A tangent galvanometer is incorrectly fixed, so that equal and opposite currents

give angular readings a and ft measured in the same sense. Show that the plane of the

coil, supposed vei'tical, makes an angle t with its proper position such that

2 tan f« tan a+ tan /3.

32. If there be an error a in the determination of the magnetic meridian, find the

true strength of a current which is % as ascertained by means of a sine galvanometer.
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33. In a tangent galvanometer, the sensibility is measured by the ratio of the incre-

ment of dedection to the increment of current, estimated per unit current. Shew that

the galvanometer will be most sensitive^ when the deflection is ^ ,
and that in measuring

the current given by a generator whose electromotive force is and internal resistance

Ry the galvanometer will be most sensitive if there be placed across the terminals a shunt

of resistance

TTRr

^«yy(/e+r)’

where r is the resistance of the galvanometer, and H is the constant of the instrument.

What is the meaning of the result if the denominator vanishes or is negative ?

34. A tangent galvanometer consists of two equal circles of radius 3 cms. placed on a

common axis 8 cms. apart. A steady current sent in opposite directions through the two

circles deflects a small needle placed on the axis midway between the two circles through

an angle a. Shew that if the earth’s horizontal magnetic force be II in e.G.s. units, then

the strength of the current in c.o.s. units will be 125Zftann/369r.

35. A galvanometer coil of n turns is in the form of an anchor-ring described by the

revolution of a circle of radius h about an axis in its plane distant a from its centre.

Shew that the constant of the galvanometer

CTi^udn^udu {Je^hja)
« y 0

-.(87i;3>fc2a)[(l+ifc2)i?-(l-y:2) K],



CHAPTER XIV

INDUCTION OF CURRENTS IN LINEAR CIRCUITS

Physical Principles.

606. It has been seen that, on moving a magnetic pole about in the

presence of electric currents, there is a certain amount of work done on the

pole by the forces of the field. If the conservation of energy is to be true of

a field of this kind, the work done on the magnetic pole must be represented

by the disappearance of an equal amount of energy in some other part of the

field. If all the currents in the field remain steady, there is only one store

of energy from which this amount of work can be drawn, namely the energy

of the batteries which maintain the currents, so that these batteries must,

during the motion of the magnetic poles, give up more than sufficient energy

to maintain the currents, the excess amount of energy representing work

performed on the poles. Or again, if the batteries supply energy at a

uniform rate, part of this energy must be used in performing work on the

moving poles, so that the currents maintained in the circuits will be less

than they would be if the moving poles were at rest.

Let us suppose that wo have an imaginary arrangement by which addi-

tional electromotive forces can be inserted into, or removed from, each circuit

as required, and let us suppose that this arrangement is manipulated so as to

keep each cuiTent constant.

Consider first the case of a single movable pole of strength m and a single

circuit in which the current is maintained at a uniform strength ^. If w is

the solid angle subtended by the circuit at the position of the pole at any

instant, the potential energy of the pole in the field of the current is mio), so

that in an infinitesimal interval dt of the motion of the pole, the work per-

formed on the pole by the forces of the field is mi^ dt. The total charge which

has flowed in this time is idt, so that the extra work done by the additional

batteries is the same as that of an additional electromotive force m~

.

at
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Thus the motion of the pole must have set up an additional electromotive

force in the circuit of amount — m— , to counteract which the additional
at

electromotive forces are needed. The electromotive force — which
at

appears to be set up by the motion of the magnets is called the electromotive

force due to induction.

The number of tubes of induction which start from the pole of strength m
is 47rm, and of these a number mw pass through the circuit. Thus if n is the

number of tubes of induction which pass through the circuit at any instant,

the electromotive force may be expressed in the form — .

So also if we have any number of magnetic poles, or any magnetic system

of any kind, we find, by addition of effects such as that just considered, that

dN
there will be an electromotive force arising from the motion of the

whole system, where N is the total number of tubes of induction which cut

the circuit.

It will be noticed that the argument we have given supplies no reason for taking N to

be the number of tubes of induction rather than tubes of foive. But if the number of

tubes crossing the circuit is to depend only on the boundary of the circuit we must take

tubes of induction and not tubes of force, for the induction is a solcnoidal vector while

the force, in general, is not.

dN
607. The electromotive force of induction has been supposed to

be measured in the same dir«'ction as the current, and on comparing this

with the law of signs previously given in § 483, we obtain the relation

between the directions of the electromotive force round the circuit, and of

the lines of induction across the circuit. The magnitude and direction of

the electromotive for«;e are given in the two following laws:

Nkumann’s Law. Whenever the number of tubes of nmnnetic induction

which are enclosed by a circuit is changing, there is an electromotive force

acting round the circuit, in addition to the electromotive force of any batteries

which may be in the circuit, the amount of this additional electromotive force

being equal to the rate of diminution of the number of tubes of induction

enclosed by the circuit

Lenz’s Law. The 'positive direction of the electromotive force and

the direction in which a tube offorce mmt pass through the circuit in order to

he counted as positive, are related in the same way as the forward motion and

rotation of a right-handed screw.
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If there is no battery in the circuit, the total electromotive force will be

dN— and the current originated by this electromotive force is spoken of as

an “ induced ” current.

608. In order that the phenomena of induced currents may be consistent

with the conservation of energy, it must obviously be a matter of indifference

whether we cause the magnetic lines of induction to move across the circuit,

or cause the circuit to move across the lines of induction. Thus Neumann’s

Law must apply equally to a circuit at rest and a circuit in motion. So also

if the circuit is flexible, and is twisted about so as to change the number of

lines of induction which pass through it, there will be an induced current of

which the amount will be given by Neumann’s Law.

609. For instance if a metal ring is spun about a diameter, the number
of lines of induction from the earth’s field which pass through it will change

continuously, so that currents will flow in it. Furthermore, energy will be

consumed by these currents so that work must be expended to keep the ring

in rotation. Again the wheels and axles of two cars in motion on the same

line of rails, together with the rails themselves, may be regarded as forming

a closed circuit of continually changing dimensions in the earth’s magnetic

field. Thus there will be currents flowing in the circuit, and there will be

electromagnetic forces tending to retard or accelerate the motions of the cars.

610. If, as we have been led to believe, electromagnetic phenomena are

the effect of the action of the medium itself, and not of action at a distance,

it is clear that the induced current must depend on the motion of the lines of

force, and cannot depend on the manner in which these lines of force are pro-

duced. Thus induction must occur just the same whether the magnetic field

originates in actual magnets or in electric currents in other parts of the field.

This consequence of the hypothesis that the action is propagated through the

medium is confirmed by experiment—indeed in Faraday’s original investiga-

tions on induction, the field was produced by a second current.

611. Let us suppose that we have two circuits 1, 2, of which 1 contains

a battery and a key by which the circuit

can be closed and broken, while circuit 2

remains permanently closed, and contains a

galvanometer but no battery. On closing

the circuit 1, a current flows through circuit

1, setting up a magnetic field. Some of the

tubes of induction of this field pass through

circuit 2, so that the number of these tubes

changes as the current establishes itself in

circuit 1, and the galvanometer in 2 will

accordingly shew a current. When the current in 1 has reached its steady
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value, as given by Ohm's Law, the number of tubes through circuit 2 will no

longer vary with the time, so that there will be no electromotive force in

circuit 2, and the galvanometer will shew no current. If we break the

circuit 1, there is again a change in the number of tubes of induction passing

through the second circuit, so that the galvanometer will again shew a

momentary current.

General Equations of Induction in Linear Circuits.

612. Let us suppose that we have any number of circuits 1, 2, ....

Let their resistances be Ru Ru •••» let them contain batteries of electro-

motive forces El, ..., and let the currents flowing in them at any instant

be %i, Zj, ....

The numbers of tubes of induction Ni, ... which cross these circuits

are given by (cf. equations (429))

El — Lull -h Li^i^ + Lisi’a + ..., etc.

In circuit 1 there is an electromotive force Ei due to the batteries, and an

dN
electromotive force due to induction. Thus the total electromotive

at

dN
force at any instant is Ei — —j^, and this, by Ohm's Law, must be equal to

Riii, Thus we have the equation

El — (Liii'i + Li^i^ + Li^i-i -f- . . .)
= Riii (431).

Similarly for the second circuit,

E2 — (£'21 1'l + + • • •) “ R^'i^ (432),

and so on for the other circuits.

Equations (431), (432), ... may be regarded as differential equations from

which we can derive the currents i,, ... in terms of the time and the

initial conditions. We shall consider various special cases of this problem.

Induction in a Single Circuit.

613. If there is only a single circuit, of resistance R and self-induction L,

equation (431) becomes

= (433).

Let us use this equation first to find the effect of closing a circuit pre-

viously broken. Suppose that before the time i = 0 the circuit has been

open, but that at this instant it is suddenly closed with a key, so that the

current is free to flow under the action of the electromotive force E.
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The first step will be to determine the conditions immediately after the

d
circuit is closed. Since is, by equation (433), a finite quantity, it

follows that Lii must increase or decrease continuously, so that immediately

after closing the circuit the value of Li^ must be zero.

To find the way in which increases, we have now to solve equation (433),

in which L and li are all constants, subject to the initial condition that

= 0 when ^ = 0. Writing the equation in the form

^ I
we see that the general solution is

E-Ri, = Ce ^ ,

where (7 is a constant, and in order that may vanish when < = 0, we must

have G = E, so that the solution is

E
.(434).

The graph of as a function of t is shewn in fig. 131. It will be seen

that the current rises gradually to its final

value Ejll given by Ohm’s Law, this rise

being rapid if L is small, but slow if L is

great. Thus we may say that the increase in

the current is retarded by its self-induction.

We can see why this sliould be. The energy

of the current I’l is and this is large when

L is large. This energy represents work per-

formed by the electric forces: when the current

is 1
*

1 ,
the rate at which these forces perform work is Ei^, a quantity which

does not depend on L. Thus when L is large, a great time is required for

the electric forces to establish the great amount of energy Lii\

A simple analogy may make the clTcct of tliis self-induction clearer. Let the flow of

the current be rei^rcscMitcd by the turning of a inill-whccl, the action of the electric forces

being represented by the falling of the water by which the mill-wheel is turned. A large

value of L means large energy for a finite current, and must therefore be represented by
suj)posing the mill-wheel to have a large moment of inertia. Clearly a wheel with a small

moment of inertia will increase its .speed up to its maximum speed with great rai)idity,

while for a wheel with a large moment of mertia the speed will only increase slowly.

Alternating Current,

614. Let us next suppose that the electromotive force in the circuit is

not produced by batteries, but by moving the circuit, or part of the circuit,

in a magnetic held. If N is the number of tubes of induction of the
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external magnetic field which are enclosed by the circuit at any instant,

the equation is

,(435).

The simplest case arises when JV" is a simple-harmonic function of the

time, proportional let us say to cos^^. We can simplify the problem by sup-

posing that N is of the form C(cos 2>t + isinp^). The real part of N will

give rise to a real value of i,, and the imaginary part of N’ to an imaginary

value of I’l. Thus if we take N= we shall obtain a value for ii of which

the real part will be the true value required for ij.

Assuming N=G(cospt tsin^^) = the equation becomes

and clearly the solution will be proportional to Thus the differenti.al

operator ^ will act only on a factor and will accordingly be equivalent to

multiplication by ip. We may accordingly write the equation as

— ip {Liy + = jBi’i,

a simple algebraic equation of which the solution is

• _ —

Let the modulus and argument of this expression be denoted by p and x»

so that the value of the whole expression is p (cos x + * sin The value of

p, the modulus, is equal (§ 311) to the product of the moduli of the factors, so

that

pC

while the argument %, being equal (§ 311) to the sum of the arguments of

the factors, is given by

The solution required for ii is the real term p cos x> so that

ii = pco3x

<*">•

The electromotive force produced by the change in the number of tubes

of the external field is

—^ ^ (C cospt) =p(7sin pt
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Thus, if self-induction were neglected, the cur]:ent, as given by Ohm's

Law, would be
pG .

and this of course would agree with that which would be given by equation

(436) if L were zero.

The modifications produced by the existence of self-induction are repre-

sented by the presence of L in expression (436), and are two in number. In

the first place the phase of the current lags behind that of the impressed

Tn
electromotive force by tan“^ , and in the second place the apparent resist-

ance is increased from E to Vii-* +

616. The conditions assumed in this problem are sufficiently close to

those which occur in the working of a dynamo to illustrate this working. A
coil which forms part of a complete circuit is caused to rotate rapidly in a

magnetic field in such a way as to cut a varying number of lines of induction.

The quantity ^ may be supposed to represent the number of alterna-

tions per second. In the simple case of a two-pole alternator this will be

equal to the number of revolutions of the engine by which the dynamo is

driven, so that the current sent through the circuit will be an “ alternating
’*

current of frequency equal to that of the engine. In the example given, the

rate at which heat is generated is (p cos xY average rate, averaged

over a large number of alternations, is ^p^R or

p^C^R

This, then, would be the rate at which the engine driving the dynamo

would have to perform the work.

Discharge of a Condenser,

616. A further example of the effect of induction in a single circuit which

is of extreme interest is supplied by the phenomenon of the discharge of a

condenser.

Let us suppose that the charges on the two plates at any instant arc Q
and — Q, the plates being connected by a wire of resistance R and of self-

induction Z. If C is the capacity of the condenser, the difference of potential

of the two plates will be and this will now play the same part as the

electromotive force of a battery. The equation is accordingly

(437 ).
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The quantities Q and i are not independent, for % measures the rate of

flow of electricity to or from either plate, and therefore the rate of diminution

of Q. We accordingly have “d on substituting this expression for

i, equation (437) becomes

^ de

The solution is known to be

Q = + (438),

where A, B are arbitrary constants, and Xj, X, are the roots of

Li?-Rx + ^
= 0 (439).

If the circuit is completed at time ^ = 0, the charge on each plate being

initially Qoi we must have, at time t = 0.

and these conditions determine the constants A and B. The equations

giving these quantities are

= ilXj + 5X, = 0.

If the roots of equation (439) are real, it is clear, since both their sum
and their product are positive, that they must themselves be positive quanti-

ties. Thus the value of Q given by equation (438) will gradually sink from

to zero. The current at any instant is

t= - ^^
=

and this starts by being zero, rises to a maximum and then falls again to

zero. The current is always in the same direction, so that Q is always of the

same sign.

It is, however, possible for equation (439) to have imaginary roots,

will be the case if

This

4Z
is negative. Denoting 22* —

, when negative, by — ic\ the roots will be

Xj —
B. + XK

’TT'*
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SO that the solution (438) becomes

Rt ut M

= e'^ZDcos(g-e).

where 2), e are new constants. In this case the discharge is oscillatory. The

27rL
charge Q changes sign at intervals —^ , so that the charges surge backwards

and forwards from one plate to the other. The presence of the exponential

e shews that each charge is less than the preceding one, so that the

charges ultimately die away. The graphs for Q and i in the two cases of

4L
(i) ^ (discharge continuous),

(ii) ^ (discharge oscillatory),

are given in figs. 132 and 133.

The existence of the oscillatory discharge is of interest, as the possibility

of a discharge of this type was predicted on purely theoretical grounds by

Lord Kelvin in 1853. Four years later the actual oscillations were observed

by Feddersen.
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617. It is of value to compare the physical processes in the two kinds of

discharge.

Let us consider first the continuous discharge of which the graphs are

shewn in fig. 132. The first part of the discharge is similar to the flow

already considered in § 513. At first we can imagine that the condenser is

exactly equivalent to a battery of electromotive force ^ ^ the act of

discharging is equivalent to completing a circuit containing this battery.

After a time the difference between the two cases comes into effect. The
battery would maintain a constant electromotive force, so that the current

E
would reach a constant final value ^ , whereas the condenser does not supply

a constant electromotive force. As the discharge occurs, the potential differ-

ence between the plates of the condenser diminishes, and so the electromotive

force, and consequently the current, also diminish. Thus the graph for i in

fig. 132, can be regarded as shewing a gradual increase towards the value

^ ^where E=^^\Ti the earlier stages, combined with a gradual falling off of

the current, consequent on the diminution of E, in the later stages.

For the oscillatoiy discharge to occur, the value of L must be greater than

for the continuous discharge. The energy of a current of given amount is

accordingly greater, while the rate at which this is dissipated by the genera-

tion of heat, namely lli^, remains unaltered by the greater value of L. Thus

for sufficiently great values of L the current may persist even after the con-

denser is fully discharged, a continuation of the current meaning that the

condenser again becomes charged, but with electricity of different signs from

the original charges. In this way we get the oscillatory discharge.

Induction in a Pair of Circuits.

518. If Ly My N are the coefficients of induction (Zn, Zia, L^) of a pair of

circuits of resistances ii, S, in which batteries of electromotive forces Ei, E^

are placed, the general equations become

Ei-^^{Lii-\-Mi,) = Rii (440),

= (441).

Sudden Completing of Circuit

619. Let us consider the conditions which must hold when one of the

circuits is suddenly completed, the process occupying the infinitesimal inter-

val from t= 0 to t = Let the changes which occur in ii and during this
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interval be denoted by At'i and At,. Equations (440) and (441) shew that

during the interval from i = 0 to t = T the values of + Mi^ and of

+ are finite, so that when t is infinitesimal, the changes in
cLt

Lii + Mi^ and Jl/ii + iVia must vanish. Thus we must have

LC^%i + Jt/At.^ = 0,

J/Ati + N£^u = 0.

Except in the special case in which ZiV'— ii/® = 0 (a case of importance,

which will be considered later), these equations can be satisfied only by

Ati = Ato = 0. Thus the currents remain unaltered by suddenly making a

circuit, and the change in the currents is gradual and not instantaneous.

520. Suppose, for instance, that before the instant ^ = 0 circuit 2 is

closed but contains no battery, while circuit 1, containing a battery, is broken.

Let circuit 1 be closed at the instant < = 0, then the initial conditions are

that at time t = 0, ti = i, = 0. The equations to bo solved are

+ + (M2),

(«3>-

The solution is known to be

i,= Ae-^‘ + A'e-’^’‘ + ^.

U = Be-» +

where A, A\ B, E are constants, and X, X' are the roots of

{R - L\) (S - NX) - = 0,

or of RS-{RN-h SL) X + (LN - i/*) X* = 0 (444).

The energy of the currents, namely

i (Zij* -f 2Mii%t + ^«?)»

being positive for all values of I’l and i,, it follows that LN— M* is necessarily

positive. Since RS and jRiV’-f 8L are also necessarily positive, we see that all

the coefficients in equation (444) are positive, so that the roots X, X' are both

positive.

When t= 0, we must have

(».)e.. = 4+^'+§ = 0 (445).

(t2),..=5 + 5'= 0 (446),
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and in order that equation (443) may be satisfied at every instant, we must
have

- + (5f - N\) + (S - N\') = 0,

for all values of t, and for this to be satisfied the coefficients of and
must vanish separately. Thus we must have

(5 - N\) B = MAX (447),

{S-N\')F^MA'\' (448),

and if these relations are satisfied, and X, X* are the roots of equation (444),

then equation (442) will be satisfied identically. From equations (445), (446),

(447) and (448), we obtain

B_-E AX
M M S-N\ B-NX' BSiX-'^-X'-^y

and the solution is found to be

ii

(8-N\)Er
(l_e-M) +

(8-N\')E,
ES\' (X'-* -

ME, ME,
iiS(X-‘-X'->)* 2i-S(x'-*-X-‘>®

‘

EWe notice that the current in 1 rises to its steady value the rise being

similar in nature to that when only a single circuit is concerned (§ 513). The
rise is quick if X and X' are large

—

i.e, if the coefficients of induction are

small, and conversely. The current in 2 is initially zero, rises to a maximum
and then sinks again to zero. The changes in this current are quick or slow

according as those of current 1 are quick or slow.

Sudden Breaking of Circuit,

621. The breaking of a circuit may be represented mathematically by

supposing the resistance to become infinite. Thus if circuit 1 is broken, the

process occurring in the interval from i = 0 to <= t, the value of R will

become infinite during this interval, while the value of iy becomes zero. The
changes in ii and are still determined by equations (440) and (441), but we
can no longer treat R as n constant, and we cannot assert that in the interval

from 0 to T the value of Rii is always finite.

It follows, however, from equation (441) that ^ (Mi^ + Ei^) remains finite

throughout the short interval, so that we have, with the same notation as

before,

il/Ai, + iVAij = 0.
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Suppose for instance that before the circuit 1 was broken we had a steady

E
current ^ in circuit 1, and no current in circuit 2. We shall then have

I that

El

NR*
and therefore immediately after the break, the initial current in circuit 2 is

ME^
NR *

This current simply decays under the influence of the resistance of the

circuit. Putting = 0 and I'l = 0 in equation (441) we obtain

di^ S .

ME^.
and the solution which gives I'a = initially is

. ME, -h
nr ^ •

The changes in the current i, during the infinitesimal interval t are of

interest. These are governed by equation (440), the value of R not being

constant.

The value of E, is finite, and may accordingly be neglected in comparison

with the other terms of equation (440), which are very great during the

interval of transition. Thus the equation becomes, approximately,

+ = (449).

The value of— {Mi, -f- Ni^) is, as we have already seen, finite, so that we

M . . ,

may subtract times this quantity from the left-hand member of equation

(449) and the equation remains true. By doing this we eliminate i,, and

obtain

The solution which gives to i, the initial value (ii)o is

giving the way in which the current falls to zero. We notice that if

LN— M* is very small, the current falls oft’ at once, while if LN— M^ is large,

the current will persist for a longer time. In the former case the breaking

of the circuit is accompanied only by a very slight spark, in the latter case

by a stronger spark.
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One Circuit containing a Periodic Electromotive Force.

522. Let us suppose next that the circuits contain no batteries, but that

circuit 1 is acted upon by a periodic electromotive force, say E cos pt, such as

might arise if this circuit contained a dynamo.

As in § 514, it is simplest to assume an electromotive force Ee'^*

:

the

solution actually required will be obtained by ultimately rejecting the

imaginary terms in the solution obtained.

The equations to be solved are now

Ee^‘ -j^iLir +MQ^Rn (450).

—^ (Mil + Ni,)= Sie (451).

As before both t'l and tj, as given by these equations, will involve the

time only through a factor so that we may replace ^ by ip, and the

equations become

Rii + Lipii + Mipiz = Ee^^^,

Sig + Mipii + Nipi2 = 0,

from which we obtain

8 + Eip ” - Mip “ (jK + Lip){S + Nip) + M^p^ ‘

The current ii in the primary is given, from these equations, by

E^P^

„ M*p*(S-Nip)

Ee^p^

where

'^R^-L'ip'

^ SM^p^ ^ NMY

The case of no secondary circuit being present is obtained at once by

putting 8= CO

,

and the solution for ^ is seen to be the same as if no

secondary circuit were present, except that R[, L are replaced by R and L.

Thus the current in the primary circuit is affected by the presence of the

secondary in just the same way as if its resistance were increased from

R to R\ and its coefficient of self-induction decreased from L' to L.
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The amplitudes of the two currents are |ti| and |4|, so that the ratio of

the amplitude of the current in the secondary to that in the primary is

|i^ _ —Mxp
jii

“ S-^Nip

Mp

The difference of phase of the two currents

= argia-argt\

= arg(iVti)

.(462).

(453).

523. The analysis is of practical importance in connection with the

theory of transformers. In such applications, the current usually is of very

high frequency, so that p is large, and we find that approximately the ratio

M
of the amplitudes (cf. expression (452)) is while the difference of phase

(cf. expression (453)) is w. These limiting results, for the case of p infinite,

can be obtained at a glance from equation (451). The right-hand member,

0
iSi’a, is finite, so that + Ni^ is finite in spite of the infinitely rapid

variations in i, and I'a separately. In other words, we must have approxi-

mately Mil + Nii constant, and clearly the value of this constant must be

zero, giving at once the two results just obtained.

624. Whatever the value of p, the result expressed in equation (452) can

be deduced at once from the principle of energy. The current in the primary

is the same as it would be if the secondary circuit were removed and i2, L
changed to R\ L\ Thus the rate at which the generator performs work is

Rix, or averaged over a great number of periods (since I’l is a simple-harmonic

function of the time) is ^22'
|
I'l I*.

Of this an amount
|
ii |* is consumed in

the primary, so that the rate at which work is performed in the secondary is

i(-R'-^)l»i|*» or

l
2S*+ iV*p*l

This rate of performing work is also known to be ^iSf|ij||*, and on

equating these two expressions we obtain at once the result expressed

by equation (452).
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Case in which LN — M^ is small.

625. The energy of currents i^, i^ in the two circuits is

i (Zi'i* 4- 2Mi^i^ + Ni^) (4i54),

and since this must always be positive, it follows that LN — must neces-

sarily be positive. The results obtained in the special case in which LN—
is so small as to be negligible in comparison with the other quantities

involved are of special interest, so that we shall now examine what special

features are introduced into the problems when LN — M^ is very small.

Expression (454) can be transformed into

i (ill 4" M%^ 4

so that when — A/® is neglected the energy becomes

i (Zti 4- A/i’a)®,

and this vanishes for the special case in which the currents are in the ratio

ij/ig = — MjL. This enables us to find the geometrical meaning of the relation

LN— Af® = 0. For 'since the energy of the currents, as in § 501, is

we see that this energy can only vanish if the magnetic force vanishes at

every point. This requires'that the equivalent magnetic shells must coincide

and be of strengths which are equal and opposite. Thus the two circuits

must coincide geometrically. The number of turns of wire in the circuits

may of course be different : if we have r turns in the primary and s in the

secondary, we must have

L_M_r
M'^ N~s*

and when the currents are such as to give a field of zero energy, each fraction

is equal to — I'a/i’i.

626. Let us next examine the modifications introduced into the analysis

by the neglect ofLN— in problems in which the value of this quantity is

small We have the general equations (§ 518),

(Zi.+ (455).

Et-^{MH+ Nit) = Si, (456).

If we multiply equation (455) by M and equation (456) by L and sub-

tract, we obtain

MEi — LE^ RMii — SLi^

an equation which contains no differentials.

(457 ),
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527. To illustrate, let us consider the sudden making of one circuit,

discussed in the general case in § 519. The general equations there obtained,

namely

ZAi, + ifAla= 0,

ifAli + i^Ala = 0,

now become identical. We no longer can deduce the relations Atj = At, = 0,

but have only the single initial conditions

All _ _ -A/

Ai^ ^ L ,(458).

But by supposing equations (455) and (456) replaced by equations (455)

and (457) we have only one differential coefficient and therefore only one

constant of integration in the solution, and this can be determined from

the one initial condition expressed by equation (458).

Let us, for instance, consider the definite problem discussed (for the

general case) in § 520. Circuit 2 contains no battery so that = 0, and at

time i = 0 circuit 1 is suddenly closed, so that the electromotive force Ei

comes into play in the first circuit. The initial currents are given by

(from equation (458)), Zii + Mi^ = 0 (459),

(from equation (457)), ME^ = RMi^ — SLi^ (460),

orx h MEi ^ MEi
so mac M'~-L SL^'L{RN ^SL)'

Thus finite currents come into existence at once, but the system of

currents is one of zero energy, since equation (459) is satisfied. To find the

subsequent changes, we multiply equation (455) by ^ and equation (456) by

^ (putting J?a = 0), and find on addition

of which the solution, subject to the initial condition Zii + ^fia= 0, is

LE, '

From this and equation (460) we obtain

h ~~ ^*3

Me KN+LS’

—I'
MTTS’

and these equations give the currents at any time.
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These results can of course be deduced also by examining the limiting

form assumed by the solution of § 520, when LN— vanishes.

The problem of the breaking of a circuit, discussed in § 521, can be

examined in a similar way in the special case in which LN — if* = 0. The
current ^ in the broken circuit is found to disappear instantaneously, its

energy immediately reappearing as that of a current Li,/if in circuit (2)

;

this latter current then decays under the resistance of the circuit.

EXAMPLES.

1. A coil is rotated with constant angular velocity a> about an axis in its plane in a

uniform field of force perpendicular to the axis of rotation. Find the current in the coil

at any time, and shew that it is greatest when the pLine of the coil makes an angle

tan”* the lines of magnetic force.

2. The resistance and self-induction of a coil are R and Z, and its ends A and B arc

connected with the electrodes of a condenser of capacity C by wires of negligible resistance.

There is a current I cos pt in a circuit connecting A and Z, and the charge of the con-

denser is in the same phase as this current. Shew that the charge at any time is

~ cos ptf and that C(R^+p^L^)—L. Obtain also the current in the coil.

3.

The ends Z, Z> of a wire (Z, Z) are connected with the plates of a condenser of

caimcity C, The wire rotates about BD which is vertical with angular velocity cu, the

area between the wire and BD being A. If ZT is the horizontal component of the earth’s

magnetism, shew that the average rate at which work must be done to maintain the

rotation is

JZ'M*C'*ZoiV[^W+(l - (7Za>*)*].

4.

A closed solenoid consists of a large number N of circular coils of wire, each of

radius a, wound uniformly upon a circular cylinder of height 2h. At the centre of the

cylinder is a small magnet whose axis coincides with that of the cylinder, and whose

moment is a periodic quantity /i sinp^ Shew that a current flows in the solenoid whose

intensity is approximately

27rfiNp • / . , \
r sin {pC+ a\

{(a*+A*)(Z*+Zy)}i

where Z, L are the resistance and self-induction of the solenoid, and tan a^RJLp,

5.

A circular coil of n turns, of radius a and resistance Z, spins with angular velocity

<0 round a vertical diameter in the earth’s horizontal magnetic field H\ shew that the

average electromagnetic damping couple which resists its motion is
^^2^-

Given

J7=:0*17, w= 50, Z = 1 ohm, a= 10 cm., and that the coil makes 20 turns per second,

express the couple in dyne-centimetres, and the mean square of the current in amperes.

6.

A condenser, capacity O', is discharged through a circuit, resistance Z, induction Z,

containing a periodic electromotive force Esiont. Shew tha' the “forced” current in the

circuit is

Zsin (n< - ff) j^Z* -b {nL- '
1

where tan d«(n*C'Z— l)/n(7Z.
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7. Two circuits, resistances and coefficients of induction Z, if, iT, lie near each

other, and an electromotive force E is switched into one of them. Shew that the total

quantity of electricity that traverses the other is EMjR^R^,

8. A current is induced in a coil Z by a current leimpt in a coil A. Shew that the

mean force tending to increase any coordinate of position 6 is

Pp^LM dJf

ad’

where Z, if, E are the coefficients of induction of the coils, and E is the resistance of Z.

9.

A plane circuit, area rotates with uniform velocity o> about the axis of x, which

lies in its plane at a distance A from the centre of gravity of the area. A magnetic

molecule of strength /& is fixed in the axis of ^ at a great distance a from the origin,

pointing in the direction Oar. Prove that the current at time t is approximately

COS (sai - f) +
9Soafih

a‘(7P+4X*ii)*)i
COS (2o>^ — tj)j

where 17, c are determinate constants.

10.

Two points A, B are joined by a wire of resistance R without self-induction;

B is joined to a third point C by two wires each of resistance /2, of which one is without

self-induction, and the other has a coefficient of induction Z. If the ends A, C arc kept

at a potential difference Ecoapt, prove that the difierenco of potentials at B and C will

be E' cos (jpt - y), where

E'=E f
IP+p^P li

[9ff*+ 4jt)2Z2j
’

pLR

11. A condenser, capacity (7, charge Q, is discharged through a circuit of resistance

R, there being another circuit of i*esistaiice S in the field. If LN=M\ shew that there

will be initial currents — EQIC {RE+SL) and MQIC{RE+SL)f and find the currents at

any time.

12. Two insulated wires A, B of the same resistance have the same coefficient of

self-induction Z, while that of mutual induction is slightly less than Z. The ends of B
are connected by a wire of small resistance, and those of A by a battery of small resistance,

and at the end of a time t a current i is passing through A. Prove that except when t is

very small,

approximately, whera is the permanent current in Ay and i' is the current in each after

a time t, when the ends of both are connected in multiple arc by the battery.

13.

The ends of a coil forming a long straight uniform solenoid of m turns per unit

length are connected with a short solenoidal coil of n turns and cross-section A, situated

inside the solenoid, so that the whole forms a single complete circuit. The latter coil can

rotate freely about an axis at right angles to the length of the solenoid. Shew that in free

motion without any external field, the current i and the angle 6 between the cross-sections

of the coils are determined by the equations

Ri^ - (Lit+ +8nmnA i COB $)t

I + AirmnAi^ sin 6= 0,

where Zi, Zj are the coefficients of self-induction of the two coils, I is the moment of

inertia of the rotating coil, R is the resistance of the whole circuit, and the effect of the

ends of the long solenoid is neglected.
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14. Two electrified conductors whose coefiScients of dectrostatic capacity are yi, 72 ,
r

are connected through a coil of resistance R and large inductance L, Verify that the

frequency of the electric oscillations thus established is

2ir \ yiyg— r* L 4Z*/

15. An electric circuit contains an impressed electromotive force which alternates

in an arbitrary manner and also an inductance. Is it possible, by connecting the

extremities of the inductance to the poles of a condenser, to arrange so that the current

in the circuit shall always be in step with the electromotive force and proportional to it ?

16. Two coils (resistances S

;

coefficients of induction L, M, IT) are arranged in

parallel in such positions that when a steady current is divided between the two, the

resultant magnetic force vanishes at a certain suspended galvanometer needle. Prove

that if the currents are suddenly started by completing a circuit including the coils, then

the initial magnetic force on the needle will not in general vanish, but that there will be

a “throw” of the needle, equal to that which would be produced by the steady (final)

current in the first wire flowing through that wire for a time interval

if-Z M--N
R ^ S

*

17.

A condenser of capacity C is discharged through two circuits, one of resistance R
and self-induction Z, and tho other of resistance lif and containing a condenser of capacity

C'. Prove that if Q is the charge on the condenser at any time.

18.

A condenser of capacity C is connected by leads of resistance r, so as to be in

parallel with a coil of self-induction Z, the resistance of the coil and its leads being R. If

this arrangement forms part of a circuit in which there is an electromotive force of period

27r—
,
shew that it can be replaced by a wire without self-induction if

and that tho resistance of this equivalent wire must be {Rr+LIC)l(R+r).

19.

Two coils, of which the coefficients of self- and mutual-induction are Zi, Z 2 ,
if,

and the resistances Ru R%^ carry steady currents Ci, produced by constant electro-

motive forces inserted in them. Shew how to calculate the total extra currents produced

in the coils by inserting a given resistance in one of them, and thus also increasing its

coefficients of induction by given amounts.

In the primary coil, supposed open, there is an electromotive force which would

produce a steady current C7, and in the secondary coil there is no electromotive force.

Prove that the current induced in the secondary by closing tho primary is the same, as

regards its I'fiects on a galvanometer and an electrodynamometer, and also wdth rqgard to

the heat produced by it, os a steady current of magnitude

A]Z2+A2Zi’

R\L^-\-R%Li
lasting for a time *

while tho current induced in the secondary by suddenly breaking the primary dreuit may

be represented in the same respects by a steady current of magnitude CMI2L% lasting for

a time 2L%IRi»
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20. Two conductors ABD^ ACD are aiTanged in multiple arc. Their resistances are

S and their coefficients of self- and mutual-induction are Z, N, and M, Prove that

when placed in seiies with leads convoying a current of frequency the two circuits

produce the same effect os a single circuit whose coefficient of self-induction is

NR^-\-LS^^-^MRS+p^{LN- M^) 2M)
{L+N- 2i0*p^+iR+ /Sy »

and whose resistance is

RS(S-{- R)+p^ iO*+iS'(Z - if)*}

iL+N-2M)^p^+{R-{-S)^

21. A condenser of capacity G containing a charge Q is discharged round a circuit in

the neighbourhood of a second circuit. The resistances of the circuits are R, S, and their

coefficients of induction are Z, i/, N.

Obtain equations to determine the currents at any moment.

If X is the current in the primary, and the disturbance be over in a time less than r,

shew that

(J^R
C

and that

^r3N^RS

Examine how
/;

^
Nl&+ irV<=

i

^ {CS^L+ CSSli+

x^dt varies with &,



CHAPTER XV

INDUCTION OF CURRENTS IN CONTINUOUS MEDIA

General Equations.

528. We have seen that when the number N, of tubes of induction,

dN^
which cross any circuit, is changing, there is an electromotive force

acting round the circuit. Thus a change in the magnetic field brings into

play certain electric forces which would otherwise be absent.

We have now abandoned the conception of action at a distance, so that

we must suppose that the electric force at any point depends solely on the

changes in the magnetic field at that point. Thus at a point at which the

magnetic field is changing, we see that there must be electric forces set up
by the changes in the magnetic field, and the amount of these forces must be

the same whether the point happens to coincide with an element of a closed

conducting circuit or not.

Let ds be an element of any closed circuit drawn in the field, either in a

conducting medium or not, and let AT, F, Z denote the components of electric

intensity at this point. Then the work done by the electric forces on a unit

electric charge in taking it round this circuit is

<«*>•

and this, by the principle just explained, must be equal to where N is

the number of tubes of induction which cross this circuit.

629. We have (cf. § 437)

^
=JJ

(la -h mb + nc) dS (462),

dl^
so that on equating expression (461) to — # we have
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The lefb-hand member is equal, by Stokes’ Theorem (§ 438), to

the integration being over the same area as that on the right hand of equa-

tion (463). Hence we have

This equation is true for every surface, so that not only must each inte-

grand vanish, but it must vanish for all possible values of Z, m, n. Hence each

coefficient of m, n must vanish separately. We must accordingly have

dt dy dz
(464),

dt dz dx
(465),

dt dx dy
.(466).

630. The components Fy G, H of the magnetic vector-potential are

given, as in equations (376), by

On comparing these equations with equations (464)—(466), it is clear

that the simplest solution for the vector-potential is given by the relations

If Fj 0, H is the most general vector-potential, we must have relations of

the form (cf. equations (375))

where ^ is an arbitrary function replacing the — % of equations (375).

631. Writing these relations in the form

y dF SN?

dt dx
(470),

11 1
ci>|

^
(471).

11 (472).

we have equations giving the electric forces explicitly.
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The function ^ has, so far, had no physical meaning assigned to it.

Equations (470), (471), (472) shew that the electric force (X, F, Z) can be

regarded as compounded of two forces

:

db

netic field

;

0^
0y’

there are no magnetic changes occurring.

We now see that the second force is the force arising from the ordinary

electrostatic field, so that we may identify ^ with the electrostatic potential

when no changes are occurring. The meaning to be assigned to ^ when

changes are in progress is discussed below (Chapter xx).

(ii) a force of components ^

,

which is present when

dt)
arising from the changes in the mag-(i) a force

V dt*

632. If the medium is a conducting medium, the presence of the electric

forces sets up currents, and the components m, v, w of the current at any

point are, as in § 374, connected with the currents by the equations

X = TU, Y= TV, Z— TW,

these equations being the expression of Ohm's Law, where t is the specific

resistance of the conductor at the point.

On substituting these values for X, F, Z in equations (464)—(466) or

(470)—(472), we obtain a system of equations connecting the currents in

the conductor with the changes in the magnetic field.

633. There is, however, a further system of equations expressing rela-

tions between the currents and the magnetic field. We have seen (§ 480)

that a current sets up a magnetic field of known intensity, and since the

whole magnetic field must arise either from currents or from permanent

magnets, this fact gives rise to a second system of equations.

In a field arising solely from permanent magnetism, we can take a unit

pole round any closed pat.h in the field, and the total work done will be nil.

Hence on taking a unit pole round a closed circuit in the most general

magnetic field, the work done will be the same as if there were no perma-

nent magnetism, and the whole field were due to the currents present. The

amount of this work, as we have seen, is 47r2i, where is the sum of all the

currents which flow through the circuit round which the pole is taken. If

u, v, w are the components of current at any point, we have

= jj
{Jm + mw + nw) dS,

the integration being over any area which has the closed path as boundary.

Hence our experimental fact leads to the equation

f(‘‘^
+ ff§ + 7^)<h-‘4,7rff(lu + mv+nw)dS.
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Transforming the line integral into a surface integral by Stokes’ Theorem

(§ 438), we obtain the equation in the form

As with the integral of § 529, each integrand must vanish for all values

of I, n, so that we must have

h
dy dz

(473).

da dy

dz die
(474).

dx dy
(475).

634. If we differentiate these three equations with respect to y, z

respectively and add, we obtain

<«')•

of which the meaning (cf. § 375, equation (311)) is that no electricity is

destroyed or created or allowed to accumulate in the conductor.

The interpretation of this result is not that it is a physical impossibility for electricity

to accumulate in a conductor, but that the assumptions upon which we are working are

not sufficiently general to cover coses in which there is such an accumulation of electricity.

It is easy to see directly how this has come about. The supposition underlying our

equations is that the work done in taking a unit pole round a circuit is equal to An times

the total current flow through the circuit. It is only when equation (476) is satisfied by

the current components that the expression ** total flow through a circuit ” has a definite

significance : the current flow across every area bounded by the circuit must be the same.

We shall see later (Chapter xvii) how the equations must bo modified to cover the case

of an electric flow in which the condition is not satisfied. For the present we proceed upon

the supposition that the condition is satisfied.

Currents in homogeneous media,

635. Let us now suppose that we are considering the currents in a

homogeneous non-magnetised medium. We write

a = fta, etc., X= tm, etc.,

in which fi and r are constant. The systems of equations of §§ 529 and 533

now become

da fdW 0V\ , /Atr>r\
<*”>•

A ^7 4.

,(478).
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Differentiating equation (478) with respect to the time, we obtain

. du d
'u.^ d^\
/* di,) dz V dt)

(
dv^ ^

(
'du 3w\|

dy) dg\jdz ^)]

\ 3 /du

I dx \dx
+ ~
dy

= tV®m,

in virtue of equation (476).

Similar equations are satisfied by the other current-components, so that

we have the system of differential equations

T dt

=4tirti dv

T dt

T dt i

.(479).

If we eliminate the current-components from the system of equations

(477) and (478), we obtain

(480),
T dt

and similar equations are satisfied by h and c.

636. The equation which has been found to be satisfied by u, v, w,

a, and 7 is the well-known equation of conduction of heat. Thus

we see that the currents induced in a mass of metal, as well as the com-

ponents of the magnetic field associated with these currents, will diffuse

through the metal in the same way as heat difluses through a uniform

conductor.

Rapidly alternating currents,

637. The equations assume a form of special interest when the currents

are alternating currents of high frequency. We may assume each component

of current to be proportional to (cf. § 514), and may then replace the

operator ~ by the multiplier ip. The equations now assume the form

, (481 ),

4rn‘pip
a = V*a, eta.

T
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and ifp is so large that it may be treated as infinite, these equations assume

the simple form

te = v = 0,

a = 6= c = 0.

Thus for currents of infinite frequency, there is neither current nor

magnetic field in the interior. The currents are confined to the surface,

and the only part of the conductor which comes into play at all is a thin

skin on the surface.

Equations (481) enable us to form an estimate of the thickness of this

skin when the frequency of the currents is very great without being actually

infinite.

At a point 0 on the surface of the conductor, let us take rectangular

axes so that the direction of the current is that of Ox while the normal to

the surface is Oz. If the thickness of the skin is very small, we need not

consider any region except that in the immediate neighbourhood of the

origin, so that the problem is practically identical with that of current

flowing parallel to Ox in an infinite slab of metal having the plane Oxy

for a boundary.

Equation (481) reduces in this case to

Anrjdp d?u

and if we put the solution is

u = + .Be**.

The value of ic is found to be

so that u = Ae ^ e
^ ^ ^

,

and the condition that the current is to be confined to a thin skin may now
be expressed by the condition that u = 0 when z = oo, and is accordingly

B = 0. The multiplier A is independent of z, but will of course involve

the time through the factor let us put A=Uoe*P^, and we then have
the solution

u^u^e
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Bejecting the imaginary part, we are left with the real solution

n = Woe V T cos z \

,

from which we see that as we pass inwards from the surface of the con-

ductor, the phase of the current changes at a uniform rate, while its amplitude

decreases exponentially.

We can best form an idea of the rate of decrease of the amplitude by considering a

concrete case. For copper we may take (in c.o.s. electromagnetic units) r=1600.
Thus for a current which alternates 1000 times per second, we have

ps=2fr X 1000, 6 approximately.

It follows that at a depth of 1 cm. the current will be only or *0067 times its value

at the surface. Thus the current is practically conhncd to a skin of thickness 1 cm.

The total current per unit width of the surface at a time t is I udz, of
Jg=‘0

which the value is found to be

Wo cos ^pt —

Thus, if we denote the amplitude of the aggregate current by C7, the

value of will be if^ ^

The heat generated per unit time in a strip of unit width and unit

length is

rt^\

'i I I v?dtdz
J t=»o J

/•«=«

= irih‘
J 1=0

(?
V T dz

Thus the resistance of the conductor is the same as would be the

resistance for steady currents of a skin of depth

The results we have obtained will suffice to explain why it is that the conductors used

to convey rapidly alternating currents are made hollow, as also why it is that lightning

conductors are made of strips, rather than cylinders, of metal
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Plane Current-sheets.

538. We next examine the phenomenon of the induction of currents

in a plane sheet of metal.

Let the plane of the current-sheet be taken to be x= 0. Let us introduce

a current-function 4>, which is to be defined for every point in the sheet by

the statement that the total strength of all the currents which flow between

the point and the boundary is <I>. Then the currents in the sheet are known
when the value of is known at every point of the sheet. If we assume

that no electricity is introduced into, or removed from, the current-sheet, or

allowed to accumulate at any point of it, then clearly <E> will be a single-

valued function of position on the sheet.

The equation of the current-lines will be ^ = constant, and the line

<I> = 0 will be the boundary of the current-sheet. Between the lines ^ and

^ -f d4> we have a current of strength d<I> flowing in a closed circuit. The

magnetic field produced by this current is the same as that produced by

a magnetic shell of strength d4> coinciding with that part of the current-

sheet which is enclosed by this circuit, so that the magnetic effect of the

whole system of currents in the sheet is that of a shell coinciding with

the sheet and of variable strength 4>. This again may be replaced by a

distribution of magnetic poles of surface density ^/e on the positive side of

the sheet, together with a distribution of surface density — 4>/e on the

negative side of the sheet, where e is the thickness of the sheet.

Let P denote the potential at any point of a distribution of poles of

strength <P, so that

P=jjjdafd^

where doc dy’ is any element of the sheet. The magnetic potential at any

point outside the current-sheet of the field produced by the currents is then

dP
“—S' <««)

If (T is the resistance of a unit square of the sheet at any point, and

u, V the components of current, we have, by Ohm's Law^

X — <TUt Y= av.

The components u, v are readily found to be given by
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so that we have the equations

y a4>X =<r-5—

,

9y dec
.(484)

<««)•

true at eveiy point of the sheet.

Hence, by equation (466),

dx_
dt dx dy

^
/

’

The total magnetic field consists of the part of potential fl due to the

currents and a part of potential (say) fl', due to the magnetic system by which

the currents are induced. Thus the total magnetic potential is H + ft', and

at a point just outside the current-sheet (taking /x = 1)

the equation (485) becomes

d d

The function P (equation (482)) is the potential of a distribution of poles

of surface density <^> on the sheet. Hence F satisfies Laplace’s equation at

all points outside the sheet, and at a point just outside the sheet and on its

dP
positive face ”^ = 27r4>.

Hence, at a point just outside the positive face of the sheet,

02<I) 02^ d^P\

da^
^

9y* 27r xdx^dz ^ dy-dz)

JL^
27r dz^

27r dz^
’

by equation (483), so that equation (486) becomes

.(48V),

and similarly, at the negative face of the sheet, we have the. equation

d d
^ 0/\ ^ /AQQ\+ = (488)-

Finite Current-sheets.

639. Suppose that in an infinitesimal interval any pole of strength m
moves from P to Q. This movement may be represented by the creation

of a pole of strength —m at P and of one of strength + at Q. Thus
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the most general motion of the inducing field may be replaced by the crea-

tion of a series of poles. The simplest problem arises when the inducing

field is produced by the sudden creation of a single pole, and the solution

of the most general problem can be obtained from the solution of this simple

problem by addition.

d 9
From equations (487) and (488) it is clear that ^^(n-f-H') remains

finite on both surfaces of the sheet during the sudden creation of a new

0
pole, so that ^(£1 + £1') remains unaltered in value over the whole surface

of the sheet. Let the increment in ^(£2 + £1') at any point in space be

denoted by A, then A is a potential of which the poles are known in the

space outside the sheet, and of which the value is known to be zero over

the surface of the sheet. The methods of Chapter viii are accordingly

available for the determination of A: the required value of A is the

electrostatic potential when the current-sheet is put to earth in the

d£l'
presence of the point charges which would give a potential if the sheet

ivere absent.

0
Physically, the fact that ^(£1 + £1') remains unaltered over the whole

surface of the sheet means that the field of force just outside the sheet

remains unaltered, and hence that currents are instantaneously induced in

the sheet such that the lines of force at the surfaces of the sheet remain

unaltered.

The induced currents can be found for any shape of current-sheet for

which the corresponding electrostatic problem can be solved*, but in general

the results are too complicated to be of physical interest.

Injimte Flane GurrenUslieet,

640. Let the current-sheet be of infinite extent, and occupy the whole

of the plane of xy, and let the moving magnetic system be in the region

in which z is negative. Then throughout the region for which z is positive

the potential n + has no poles, and hence the potential

<r yn
27r 9j*

* See a paper by the author, “ Finite Current-sheeta,” Proe. Land. Math, Soe. Vol. xxxx.

p. 151.
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has no poles. Moreover this potential is a solution of Laplace’s equation,

and vanishes over the boundary of the region, namely at infinity and over

the plane 2 = 0 (cf. equation (487)). Hence it vanishes throughout the

whole region (cf. § 186), so that equation (487) must be true at every point

in the region for which z is positive. We may accordingly integrate with

respect to z and obtain the equation in the form

(«9),

no arbitrary function of x, y being added because the equation must be

satisfied at infinity.

The motion of the system of magnets on the negative side of the sheet

may be replaced, as in § 539, by the instantaneous creation of a number of

poles. At the creation of a single pole currents are set up in the sheet such

that n + n' remains unaltered (cf. equation (489)) on the positive side of

the sheet. Thus these currents form a magnetic screen and shield the space

on the positive side of the sheet from the effects of the magnetic changes on

the negative side.

To examine the way in which these currents decay under the influence

of resistance and self-induction, we put XI' = 0 in equation (489), and find

that XI must be a solution of the equation

dfl ^ cr 9X1

dt 27r dz *

The general solution of this equation is

n=/(x.y, z +

and this corresponds to the initial value

z).

Thus the decay of the currents can be traced by taking the field of

potential XI at time ^ = 0 and moving it parallel to the axis of z with a

velocity
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EXAMPLES.

1. Prove tlrnt the currents induced in a solid with an inhnite plane face, owing to

magnetic changes near the face, circulate parallel to it, and may be regarded as due to

the didusion into the solid of current-sheets induced at each instant on the surface so as

to scrccu ofi* the magnetic changes from the interior.

Shew that for periodic changes, the current penetrates to a depth proportional to the

square root of the period. Give a solution for the case in which the strength of a fixed

inducing magnet varies as cos pt.

2. A magnetic system is moving towards an infinite plane conducting sheet with

velocity w. Shew that the magnetic potential on the other side of the sheet is the same

as it would be if the sheet were away, and the strengths of all the elements of the magnetic

system were changed in the ratio l{l{lt+ w\ where ^nR is the specific resistance of the

sheet per unit area. Shew that the result is unaltered if the system is moving away from

the sheet, and examine the case of w= —R,

If the system is a magnetic particle of mass M and moment 9a, with its axis perpen-

dicular to the sheet, prove that if the particle has been projected at right angles to the

sheet, then when it is at a distance z from the sheet, its velocity z is given by

3.

A small magnet horizontally magnetised is moving with a velocity u parallel to a

thin horizontal plate of metal. Shew that the retarding force on the magnet due to the

currents induced in the plate is

971^ uR
m*Q{(^+Ry

where m is the moment of the magnet, c its distance above the plate, 27rR the resistance

of a sq. cm. of the plate, and Q'^=u^-\-R^.

4.

A slowly alternating current I cos pt is traversing a small circular coil whose

magnetic moment for a unit current is M. A thin spherical shell, of radius a and specific

resistance o-, has its centre on the axis of the coil at a distance / from the centre of the

coil. Shew that the currents in the shell form circles round the axis of the coil, and thfit

the strength of the current in any circle whose radius subtends an angle cos~^/a at the

centre is

47r/2 a

//t\n 3/>
2(2n+l)^j -gjfcos««co8(i><-€,0.

where tan»,= (2n+l)<r

^npa

5.

An infinite iron plate is bounded by the parallel planes x—h, x——h\ wire is

wound uniformly round the plate, the layei's of wire being parallel to the axis of y. If an

alternating current is sent through the wire producing outside the plate a magnetic force

Hq cos pt parallel to z, prove that /f, the magnetic force in the plate at a distance x from

the centre, will be given by

17 rr /cosh 29n.r+ cos
. qv

where

. sinh m{h-^x) sin m(h-x)- sinh m(h — x) sin

cosh m (h-^x) cos m (A-j?)+ cosh m (Ji — x) cos m (h-^x)*

m^=27rppj(r.

Discuss the special cases of (i) mh small, (ii) mh large.



CHAPTEK XVI

DYNAMICAL THEORY OF CURRENTS

General Theory of Dynamical Systems.

641. We have so far developed the theory of electromagnetism by

starting from a number of simple data which are furnished or confirmed by

experiment, and examining the mathematical and physical consequences

which can be deduced from these data.

There are always two directions in which it is possible for a theoretical

science to proceed. It is possible to start from the simple experimental data

and from these to deduce the theory of more complex phenomena. And it

may also be possible to start from the experimental data and to analyse these

into something still more simple and fundamental. We may, in fact, either

advance from simple phenomena to complex, or we may pass backwards from

simple phenomena to phenomena which are still simpler, in the sense of

being more fundamental.

As an example of a theoretical science of which the development is almost

entirely of the second kind may be mentioned the Dynamical Theory of

Gases. The theory starts with certain simple experimental data, such as

the existence of pressure in a gas, and the relation of this pressure to the

temperature and density of a gas. And the theory is developed by shewing

that these phenomena may be regarded as consequences of still more funda-

mental phenomena, namely the motion of the molecules of the gas.

In our development of electromagnetic theory there has so far been but

little progress in this second direction. It is true that we have seen that the

phenomena from which we started—such as the attractions and repulsions

of electric charges, or the induction of electric currents—may be interpreted

as the consequences of other and more fundamental phenomena taking place

in the ether by which the material systems are suriounded. We have even

obtained formulae for the stresses and the energy in the ether. But it has

not been possible to proceed any further and to explain the existence of these

stresses and energy in terms of the ultimate mechanism of the ether.
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The reason why we have been brought to a halt in the development of

electromagnetic theory will become clear as soon as we contrast this theory

with the theory of gases. The ultimate mechanism with which the theory of

gases is concerned is that of molecules in motion, and we know (or at least

can provisionally assume that we know) the ultimate laws by which this

motion is governed. On the other hand the ultimate mechanism with which
electromagnetic theory is concerned is that of action in the ether, and we are

in utter ignorance of the ultimate laws which govern action in the ether.

We do not know how the ether behaves, and so can make no progress towards

explaining electromagnetic phenomena in terms of the behaviour of the ether.

642. There is a branch of dynamics which attempts to explain the

relation between the motions of certain known parts of a mechanism, even
when the nature of the remaining parts is completely unknown. We turn to

this branch of dynamics for assistance in the present problem. The whole
mechanism before us consists of a system of charged conductors, magnets,

currents, etc., and of the ether by which all these are connected. Of this

mechanism one part (the motion of the material bodies) is known to us, while

the remainder (the flow of electric currents, the transmission of action by the

ether, etc.) is unknown to us, except indirectly by its effect on the first part

of the mechanism.

643. An analogy, first suggested by Professor Clerk Maxwell, will ex-

plain the way in which we are now attacking the problem.

Imagine that we have a complicated machine in a closed room, the only

connection between this machine and the exterior of the room being by
means of a number of ropes which hang through holes in the floor into the

room beneath. A man who cannot get into the room which contains the

machine will have no opportunity of actually inspecting the mechanism, but
he can manipulate it to a certain extent by pulling the different ropes. If,

on pulling one rope, he finds that others are set into motion, he will under-
stand that the ropes must be connected by some kind of mechanism above,

although he may be unable to discover the exact nature of this mechanism.

In this analogy, the concealed mechanism is supposed to represent those parts of the
universe which do not directly affect our senses— the ether—while the ropes represent
those parts of which wo can observe the motion

—

e.g. material bodies. In nature, thcro
are certain acts which we can perform (analogous to the pulling of certain ropes), and these
are invariably followed by certain consequences (analogous to the motion of other ropes),

but the ultimate mechanism by which the cause produces the effect is unknown. For
instance we can close an electric circuit by pressing a key, and the needle of a distant

galvanometer may be set into motion. We infer that there must be some mechanism
connecting the two, but the nature of this mechanism is almost completely unknown.

Suppose now that an observer may handle the ropes, but may not pene-
trate into the room above to examine the mechanism to which they are



487541-545] Hamilton's Principle

attached. He will know that whatever this mechanism may be, certain laws

must govern the manipulation of the ropes, provided that the mechanism is

itself subject to the ordinary laws of mechanics.

To take the simplest illustration, suppose that there are two ropes only, A and and

that when rope A is pulled down a distance of one inch, it is found that rope B rises

through two inches. The mechanism connecting A and B may be a lever or an arrange-

ment of pulleys or of clockwork, or something different from any of these. But whatever

It is, provided that it is subject to the laws of dynamics, the experimenter will know,

from the mechanical principle of “virtual work,” that the downward motion of rope A
can bo restrained on applying to ^ a force equal to half of that applied to A.

644. The branch of dynamics of which we are now going to make use

enables us to predict what relation there ought to be between the motions of

the accessible parts of the mechanism. If these predictions are borne out by

experiment, then there will be a presumption that the concealed mechanism

is subject to the laws of dynamics. If the predictions are not confirmed by

experiment, we shall know that the concealed mechanism is not governed by

the laws of dynamics.

Hamilton*s Principle,

546. Suppose, first, that we have a dynamical system composed of dis-

cicte particles, each of which moves in accordance wdth Newton's Laws of

Motion. Let any typical particle of mass nii have at any instant t coordi-

nates a?!, 2/ii components of velocity Uj, Vj, Wi, and let it be acted on by

Inrces of which the resultant has components Fj, Zi, Then, since the

motion of the particle is assumed to be governed by Newton s Laws, we have

w.^’=X. (490),

= m).

Let us compare this motion with a slightly different motion, in which

Newton’s Laws are not obeyed. At the instant t let the coordinates of this

same particle be + 2/1 + and let its components of velocity

be Ui + Biii, y, + 8wi, + Let us multiply equations (490), (491) and

(49*2) by Bxi, 8//1, respectively, and add. We obtain

Now
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If we sum equation (493) for all the particles of the system, replacing the

terms on the left by their values as just obtained, we arrive at the equation

^ Imi (uiSxi + Vihyi + + ViSv^ + WiSw^)

= S (XiBxi + YiSi/i + Z^Bzi) (494).

Let T denote the kinetic energy of the actual motion, and T+BT that of

the slightly varied motion, then

T = (Mj® + + w^),

so that BT = Stwi (uiBui+Vi Bvi + Bw^),

and this is the value of the second term in equation (494).

If W and W + BW are the potential energies of the two configurations

(assuming the forces to form a conservative system), we have

F = - 2 + r,dij, + z,dz,).

and 8 = — 2 (Zj 4- + Zj Bz^^

and so the value of the right-hand member of equation (494) is — S

We may now rewrite equation (494) in the form

S (T - IT) =^ Smx {uiBx^ + ViSt/i + w^Bz^),

This equation is true at eveiy instant of the motion. Let us integrate it

throughout the whole of the motion, say from ^ = 0 to ^ = t. We obtain

3J
{T ~-W)dt = (v^Bx^ + ViBy^ + Wi3ei)J (495).

The displaced motion has been supposed to be any motion which

differs only slightly from the actual motion. Let us now limit it by the

restriction that the configurations at the beginning and end of the motion

are to coincide with those of the actual motion, so that the displaced motion

is now to be one in which the system starts fi^om the same configuration as in

the actual motion at time t = 0, and, after passing through a series of con-

figurations slightly different from those of the actual motion, finally ends in

the same configuration at time t^r as that of the actual motion. Mathe-

matically this new restriction is expressed by saying that at times ^= 0 and

we must have Bx=By = Bz = 0 for each particle. Equation (495) now
becomes

B [\T-'W)dt = 0 (496).
Jo

546. Speaking of the two parts of the mechanism under discussion

as the "accessible” and “concealed” parts, let us suppose that the kinetic

and potential energies T and W depend only on the configuration of the
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accessible parts of the mechanism. Then throughout any imaginary motion

of the accessible parts of the system we shall have a knowledge of T and W
at every instant, and hence shall be able to calculate the value of

f\T^ W)dt (497).
Jo

We can imagine an infinite number of motions which bring the system

from one configuration A at time t = 0 to a second configuration B at time t = T,

and we can calculate the value of the integral for each. Equation (496) shews

that those motions for which the value of the integral is stationary would be

the motions actually possible for the system. Having found which these

motions were, we should have a knowledge of the changes in the accessible

parts of the system, although the concealed parts remained unknown to us,

both as regards their nature and their motion.

547. Equation (496) has been proved to be true only for a system con-

sisting of discrete material particles. At the same time the equation itself

contains, in its form, no reference to the existence of discrete particles. It

is at least possible that the equation may be the expression of a general

dynamical principle which is true for all systems whether they consist of

discrete particles or not. We cannot of course know whether or not this

is so. What we have to do in the present chapter is to examine whether

the phenomena of electric currents are in accordance with this equation.

Wo shall find that they are, but we shall of course have no right to deduce

from this fact that the ultimate mechanism of electric currents is to be found

in the motion of discrete particles. Before setting to work on this problem,

however, we shall express equation (496) in a different form.

Lagrange's Equations for Conservative Systems of Forces,

548. Let ^1 ,
^2 ,

be a set of quantities associated with a mechanical

system such that when their value is known, the configuration of the system

is fully determined. Then ^i, ^2 ,
... are known as the generalised coordi-

nates of the system.

The velocity of any moving particle of the system will depend on the values

of denote these quantities by 61 , dt, etc. Let a? be a
dt (it

Cartesian coordinate of any moving particle. Then by hypothesis a; is a

function of ^1 , ^21 •••> say

x—f{6if $2, ...),

so that by differentiation,

da: a/ 9/
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Thus each component of velocity of each moving particle will be a linear

function of 6^, from which it follows that the kinetic energy of motion

of the system must be a quadratic function of the coefficients in this

function being of course functions of 0^, ....

Let us denote T~~Why L, so that L is a function of 6i, 6t, ... On*

and of 01 , ^9 , ... dn, say

Jj=
<f> (^01, 02, ... 0ny ^2f ••• ^n)*

If L + SL is the value of L in the displaced configuration 0i + B0i,

02 + B02 , ... 0n + B0n, we have

SL = 80. + ... + g. S0, +
II

8d. + ....

SO that equation (496)i which may be put in the form

rSLdt = 0,

Jo

now assumes the form

.(498).

We have B0i = (0i +

= _ (?4') S0, dt + 80.1'.

iodt\deJ 130, Jo

The last term vanishes since, by hypothesis, SOy vanishes at the beginning

and end of the motion, and equation (498) now assumes the form

rX 1 he^dt = 0.

Jo 7 100, d«W)
Let us denote the integrand, namely

1 10^1 dt \0tf/

J

by /, so that the equation becomes
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The varied motion ia entirely at our disposal, except that it must be

continuous and must be such that the configurations in the varied motion

coincide with those in the actual motion 'at the instants £ = 0 and t=^T,

Thus the values of ... at every instant may be any we please which

are permitted by the mechanism of the system, except that they must be

continuous functions of t and must vanish when ^ = 0 and when t — r. Whatever

series of values we assign to Sdi, we have seen that the equation

ridt=0
Jo

is true,

have

Hence the value of I must vanish at every instant, and we must

1 l0di dt J

B0, = O .(499).

649- At this stage there are two alternatives to be considered. It may
be that whatever values are assigned to B0i, ••• the new configura-

tion 0i + B0i, 0i + B02 t ... 0n+ B0n will be a possible configuration—that is to

say, \^ill be one in which the system can be placed without violating the

constraints imposed by the mechanism of the system. In this case equation

(499) must be true for all values of Bd^, B02, ... B0n, so that each term must

vanish separately, and we have the system of equations

(s = l, 2, ... n) (600).

There are n equations between the n variables 0^, ... 0n and the time.

Hence these equations enable us to trace the changes in 0^, 0^, ... 0n and to

express their values as functions of the time and of the initial values of

di, 09i 0nt •••

650. Next, suppose that certain constraints are imposed on the values of

0\y ••• by the meclianism of the system. Let these be m in number,

and let them be such that the small increments 8^i, 8^2* ••• are connected

by equations of the form

a,8^x + aa8^2+...+a„8(?n = 0 (601),

h^B0, + h^Bd^+ . .. + KB0^ = 0 (602),

etc.

Then equation (499) must be true for all values of 8^,, 8^3, ... which are

such as also to satisfy equations (601), (602), etc. Let us multiply equations

(601), (602), ... by X, /a, ... and add to equation (499).

"We obtain an equation of the form

(603).
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Let us assign arbitrary values to ... and then assign to

the m quantities ... hO^ the values given by the m equations (501),

(502), etc. In this way we obtain a system of values for Sdg, ...

which is permitted by the constraints of the system.

The m multipliers X, /a, ... are at our disposal: let these be supposed to

be chosen so that the m equations

^^-|(|J)
+ Xa.+ M6.+ ...=0. (s=l. 2. ... m) (504)

are satisfied. Then equation (503) reduces to

m+i 13^* dt \d0j
+ XOf + B0, = O (505),

and since arbitrary values have been assigned to ... ^^»i, it follows that

each coefficient in this equation must vanish separately. Combining the

system of equations so obtained with equations (504), we obtain the complete

system of equations

i.-
- ”> <“*>

Lagrange's Equations for General (including Non-conservative) Forces.

551. If the system of forces is not a conservative system, we cannot

replace the expression

i (Xj^a^x + 1^1
I +

in § 545 by — Sir where W is the potential energy. We may, however, still

denote this expression for brevity by — {5 11^), no interpretation being assigned

to this symbol, and equation (406) will assume the form

f\ST-{SW})dt = 0 (507).
Jo

By the transformation used in § 548, we may replace
J

hTdt by

Now — (511^} is, by definition, the work done in moving the system from

the configuration ^2 , . . . to the configuration + Sdi, 0^ + 3^2, ...

It is therefore a linear function of ... 5d,j, and we may write

- {8 W] = e,80^ + (%80, + . . . + i%80n,

where 0i, 0^. ... are functions of 0i, 0^, ... 0n.
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We now have equation (507) in the form

As before each integrand must vanish. We have therefore at every instant

If the coordinates 6^, 6^^ ... 6^ are all capable of independent variation,

this leads at once to the system of equations

d (dT\ dT ^ «

dtW de,~
“ 71). .(508),

while if the variations in ... are connected by the constraints implied

in equations (501), (502), ... we obtain, as before, the system of equations

= + +A + (5=1,2, ...n) ...(509).

The quantities @,, 0,, ... are called the “generalised forces” correspond-

ing to the coordinates ....

Lagrange's Equations for Impulsive Forces.

652. Let us now suppose that the system is acted on by a series of

impulsive forces, these lasting through the infinitesimal interval from £= 0

to t = T. If we multiply equations (508) by dt and integrate throughout this

interval we obtain

0,d^.

0T
The interval r is to be considered as infinitesimal, and ^ is finite.

OUt

Thus the second term may be neglected and the equation becomes

change in -^= 1 0,di (510).
ddg J 0

We call
I

0,di the generalised impulse corresponding to the generalised
Jo

force 0„ and then, from the analogy between equation (510) and the equation

change in momentum = impulse.

we call the generalised momentum corresponding to the generalised
dOg

coordinate Og.
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Application to Electromagnetic Phenomena.

663. We have already obtained expressions for the energy of an electro-

static system, a system of magnets, of currents, etc., and in every case this

energy can be expressed in terms of coordinates associated with “ accessible
”

parts of the mechanism. We can also find the work done in any small change

in the system, so that we can obtain the values of the quantities denoted in

the last section by ©i, 0^ All that remains to be done before we can

apply Lagrange’s equations provisionally (cf. § 547) to the interpretation of

electromagnetic phenomena is to determine whether the different kinds of

energy are to be regai-ded as kinetic energy or potential energy.

Kinetic and Potential Energy,

664. At first sight it might be thought obvious that the energy of

electric charges at rest and of magnets at rest ought to be treated as

potential energy, while that of electric charges or magnets in motion ought

to be treated as kinetic. On this view the energy of a steady electric

current, being the energy of a series of charges in motion, ought to be

regarded as kinetic energy. We have also seen that this energy is to be

regarded as being spread throughout the medium surrounding the circuit in

which the current flows, and not as concentrated in the circuit itself. Thus

we must regard the medium as possessing kinetic energy at every point, the

tiff*
amount of this energy being, as we have seen, per unit volume.

But we have also been led to suppose that the medium is in just the

same condition whether the magnetic force is produced by steady currents or

by magnetic shells at rest. Thus, on the simple view which we are now

considering, we are driven to treat the energy of magnets at rest as kinetic

—

a result which is inconsistent with the simple conceptions from which we

started. Having arrived at this contradictory result, there is no justification

left for treating electrostatic energy, any more than magnetostatic energy,

as potential rather than kinetic.

666. Abandoning this simple but unsatisfactory hypothesis, let us turn

our attention in the first place to the definite discussion of the nature of the

energy of a steady electric current.

Let us suppose that we have two currents i, i' flowing in small circuits at

a distance r apart. As a matter of experiment we know that these circuits

exert mechanical forces uj)on one another as if they were magnetic shells of

strengths i, i\ Let us suppose that a force R is required to keep them apart,

so that initially the circuits attracted one another with a force R, but are
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now in equilibrium under the action of their mutual attraction and this force

R acting in the direction of r increasing.

f f COS €
IfM is the quantity

JJ
—^dsds', we know that the value of R is

=
(511).

this value being found directly from the experimental fact that the circuits

attract like their equivalent magnetic shell (cf. § 499).

The energy of the two currents is known to be

F = i {Li^ + 2Mii + Ni'^) (512).

Let us suppose, for the sake of generality, that this consists of kinetic

energy T and potential energy W. Then, assuming for the moment that the

mechanism of these currents is dynamical, in the sense that Lagrange's

equations may be applied, we shall have a dynamical system of energy

T-f TT, and one of the coordinates may be taken to be r, the distance apart

of the circuits.

The Lagrangian equation corresponding to the coordinate r is found to

be (cf. equation (508)),

d fdT\ d(T-W) ^
dt\dr) dr

(613).

and since we know that, in the equilibrium configuration.

d(dT\^
dt \0r /

'

' 0. R = — li'
0r

'

we obtain on substitution in equation (513),

0(r-Tr) ..,dM

dr dr
’

From equation (512) we see that the right-hand member is the value of

I? , or of • Hence our equation shews that = 0, firom which we

deduce that W = 0. In other words, assuming that a system of steady

currents forms a dynamical system, the energy of this system must be

wholly kinetic.

This result compels us also to accept that the energy of a system of

magnets at rest must also be wholly kinetic. We shall discuss this result

later. For the present we confine our attention to the case of electric

phenomena only. We have found that if the mechanism of these pheno-

mena is dynamical (the hypothesis upon which we are going to work), then

the energy of electric currents must be kinetic.
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Induction of Currents,

656. Let us consider a number of currents flowing in closed circuits.

Let the strengths of the currents be ii, 12 # ••• and let the number of tubes of

induction which cross these circuits at any instant be Nx^ ...» so that if

the magnetic held arises entirely from the currents, we have (cf. § 502)

NI
= L\\ix + Lvki^ + . .

.

NI
— Ij^\%\ “1“ L29I9 , etc.

.(514).

The energy of the currents is wholly kinetic so that we may take

“ i (Lilli* + 2X12 iii2 + . . .)

as before (§ 503).

In the general dynamical problem, it will be remembered that T was a

quadratic function of the velocities. Thus ii, 1
*

2 ,
... must now be treated as

velocities and we must take as coordinates quantities ...» defined by

. dx^= etc.

Clearly x^ measures the quantity of electricity which has flowed past any

point in circuit 1 since a given instant, and so on. Thus in terms of the

coordinates a?i, a-g, ... we have

i (Xii4* + 2Xigi?ii3 + . . .) (515).

There is no potential energy in the present system, but the system is

acted on by external forces, namely the electromotive forces in the batteries

and the reaction between the currents and the material of the circuits which

shews itself in the resistance of the circuits. We have therefore to evaluate

the generalised forces 0i, ©g, ....

Consider a small change in the system in which x^ is increased by ^2^
1 ,

so

that the current I'l flows for a time dt given by ixdt = Sxi. The work per-

formed by the battery is E^Bx^, the work performed by the reaction with the

matter of the circuit, being equal and opposite to the heat generated in the

circuit, is — Rxi^dt, Thus if is the generalised force corresponding to the

coordinate x^, we have

Xx^Xi = ExBxi — Rxi^dty

so that Zj = X^i — i^ii’i.

The Lagrangian equation corresponding to the coordinate is

0tU*J dxx

or ^ (Xiit’i + Ligiz + .•.) — X^i “ Rii\

F

.(516),

or again
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The equations corresponding to the coordinates ... are

etc.

Thus the Lagrangian equations are found to be exactly identical with the

equations of current-induction already obtained, shewing not only that the

phenomenon of induction is consistent with the hypothesis that the whole

mechanism is a dynamical system, but also that this phenomenon follows as

a direct consequence of this hypothesis. In this system the accessible parts

of the mechanism are the currents flowing in the wires; the inaccessible

parts consist of the ether which transmits the action from one circuit to

another.

666 a. On the electron theory, the kinetic energy must be supposed made
up partly of magnetic energy, as before, and partly of the kinetic energy of

the motion of the electrons by which the current is produced.

Let the average forward velocity of the electrons at any point be Uo (cf.

§ 345 a), and let u+ Uq be the actual velocity of any single electron, so that

the average value of is nil. The kinetic energy of motion of the electrons^

say Tg, is then

The first term represents part of the heat-energy of the matter, and this

docs not depend on the values of the currents x^, .... To evaluate the

second term we use equation (6) of § 345 a,

NeUo = i = Xy

and obtain the kinetic energy of the electrons in the complete system of

currents in the form

Thus the total kinetic energy may still be expressed in the form (515) if

we take

Al = jEr'n +/^ ‘^*>

and in this the first term is the contribution from the magnetic energy

(cf. § 603), and the second term is the contribution from the kinetic energy of

the electrons.

Equation (516) assumes the form

+ Z..t. >...) = E, (517 aX
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If the induction terms on the lefb are omitted, we have as the equation of

a circuit in which induction is negligible

This, with the help of the formulae of § 345 a, may be expressed in the

form

which in turn is seen to be exactly identical with equ.ation (c) of § 345 a,

integrated round the circuit.

Thus we see that the analysis of § 556 applies perfectly to the electron

theory of matter, provided Zn, Z^, ... are supposed to have the values given

by equation (517), and equation (517 a) is then the general equation of

induction of currents, when the inertia of the electrons is taken into account.

Electrokinetic Momentum.

657. The generalised momentum corresponding to the coordinate is

dT^ OT Ni* Thus the generalised momenta corresponding to the currents
vX\

in the different circuits are Nx, iV,, ..., the numbers of tubes of induction

which cross the circuits. The quantity iV, is accordingly sometimes called the

electrokinetic momentum of circuit 1, and so on.

If we give to Z„ the value obtained in equation (517) of § 556 a, the

value of the electrokinetic momentum is (cf. equations (514))

(Z'liij + Zjaia +...) +

in which clearly the last term comes from the momentum of the electrons,

and the remaining terms from the momentum of the magnetic field.

Examples.

I. Discharge of a Condenser,

668. As a further illustration of the dynamical theory, let us consider

the discharge of a condenser. Let Q be the charge on the positive plate

at any instant, and let this be taken as a Lagrangian coordinate. The
dO

current i is given by i = = In the notation already employed

(§ 516) we have
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and Lagrange’s equation is

or

^ \d<^t 3Q ag

at» at c

=jii,

= 0,

which is the equation already obtained in § 516, and leads to the solution

already found.

II. Oscillations in a network of condiLctors

669. The equations governing the currents flowing in any network of

conductors when induction is taken into account can be obtained from the

general dynamical theory.

Let us suppose that the currents in the different conductors are

ht hi ••• ^n, and let the corresponding coordinates be a?,, ar,, ... these

being given by I'l =^ , etc. If any conductor, say 1, terminates on a

condenser plate, let Xi denote the actual charge on the plate, and let the

current be measured towards the plate, so that the relations ii = etc.

will still hold. Let conductor 1 contain an electromotive force Ei and be

of resistance Ri,

The quantities a^j, iCai ••• naay be taken as Lagrangian coordinates, but

they are not, in general, independent coordinates. If any number of the

conductors, say 2, 3, . . . 5 meet in a point, the condition for no accumulation

of electricity at the point is, by Kirchhoif’s first law,

h ±h± ••• ± = 0
,

from which we find that variations in x^, ... are connected by the

relations

8x2 i 8x2 + • . • i 8xg = 0.

Let us suppose that there are m junctions. The corresponding con-

straints on the values of 8x1 ,
8x2 , ... can be expressed by^m equations of

the form
Oi 8x1 + + . . . + afi8xft,= 0

| (518)

hi 8X1 + 828X2 + . . . + bn8Xn = 0 '

etc., in which each of the coefficients tti, a*, ... On, hi, ... has for its value

either 0, +1 or — 1.

The kinetic energy T will be a quadratic function of Xi,X2 ,
etc., while the

potential energy W (arising from the charges, if any, on the condensers) will
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be a quadratic function of Xi^ .... The dynamical equations are now n in

number, these being of the form (cf. equations (509))

These equations, together with the m equations obtained by applying

Kirchhoff s first law to the different junctions, form a system of m + a equa-

tions, from which we can eliminate the m multipliers \, fi, ..., and then

determine the n variables a?i, arg, ...

660. As an example of the use of these equations, let us imagine that a

current I arrives at A and divides into two parts I'l, ig, which flow along arms

D

Fio. 134.

ACBf ADB and reunite at B. Neglecting induction between these arms

and the leads to A and B, we may suppose that the part of the kinetic energy

which involves ii and is

+ Miiii +

There are no batteries and no condenser in the arms in which the

currents ii and ig flow. The currents are, however, connected by the

relation

h + = /

so that the corresponding coordinates ar, and X2 are connected by

Bxi + Sx2 = 0.

The dynamical equations are now found to be (cf. equations (519))

^ {Lii + Afia) = - liii 4-

^ (Mil + ^12)
= - Sii + X.

If we subtract and replace ^ by / — i,, wo eliminate X and obtain

(L + N-2M)~^ + (M-N)~=SI-(R + S)i,.

If I IS given as a function of the time, this equation enables us to deter-

mine ij, and thence ig.
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For instance, suppose that the current I is an alternating current of

frequency pjT^ir, If we put I= the solution of the equation is

. _ S ~{M— N)ip
j** “ (r+iV-2M)ip + (ii + S)

R — {M— L)ip
jwhile similarly .2 - —~ — -—

, ,

^ (L + N— 2M)tp + {R-\‘ S)

When p = 0, the solution of course reduces to that for steady currents.

As p increases, we notice that the three currents ti, ^ and I become, in

general, in different phases, and that their amplitudes assume values

which depend upon the coefficients of induction as well as on the resistances.

Finally, for very great values of p, the values of i, and I'a are given by

h _ 4 _ I
L-M L +

showing that the currents are now in the same phase and are divided in a

ratio which depends only on their coefficients of induction. For instance,

if the arms ACB, ABB are arranged so as to have very little mutual

induction {M very small), the current will distribute itself between the two

arms in the inverse ratio of the coefficients of self-induction.

It is possible to arrange for values for Z, M and N such that the two

currents tj and I'a shall be of opposite sign. In such a case the current in one

at least of the branches is greater than that in the main circuit. Let us, for

instance, suppose that the branches consist of two coils having r and s turns

respectively, arranged so as to have very little magnetic leakage. Then
LN — is negligible (cf. § 525) and we have approximately

rs 6-
*

The equations become

il = ^

s —r s — r'

so that the currents will flow in opposite directions, and either may be greater

than the current in the main circuit. By making s nearly equal to r and

keeping the magnetic leakage as small as possible, we can make both

currents large compared with the original current.

III. Rapidly alternating currents.

661 . This last problem illustrates an important point in the general

theory of rapidly alternating currents. In the general equations (519),

d fdT\ dTdW ^ ^ ,

let us suppose that the whole system is oscillating with frequency pl^ir, which

is so great that it may be treated as infinite. We may assume that every
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variable is proportional to and may accordingly replace ^ by the multi-

plier \p. The equations now become

dxg dxg
Eg Rgtg — Xurj “f- yLf)6f *4* • • *1

and all the terms on the left hand may be neglected in comparison with the

first, which contains the factor ip. The terms on the right cannot legitimately

be neglected because X, /a,... are entirely undetermined, and may be of the

same large order of magnitude as the terms retained. If we replace X, /i, ...

by ipX\ ipfi\ ..., the equations become

dT
0^

+ \*<ig pbg-^ =0, etc.

in which are now undetermined multipliers. These, however, are

exactly the equations which express that T is a maximum or a minimufi^-

for values of Xi, i^, ... which are consistent with the relations (cf. § 559)

necessary to satisfy Kirchhofi’s first law. Since T can be made as large as

We please, the solution must clearly make T a minimum. Thus we see that

As the frequency of a system of alternating currents becomes very great,

the currents tend to distribute themselves in such a way as to make the kinetic

energy of the currents a minimum subject only to the relations imposed by

Kirchhoff*s first law.

This result may be compared with that previously obtained (§ 357) for

steady currents. We see that while the distribution of steady currents is

determined entirely by the resistance of the conductors, that of rapidly

alternating currents is, in the limit in which the frequency is infinite,

determined entirely by the coefficients of induction.

It follows that, in a continuous medium of any kind, the distribution of

rapidly alternating currents will depend only on the geometrical relations of

the medium, and not on its conducting properties. In point of fixct, we have

already seen that the current tends to flow entirely in the surface of the

conductor (§ 537). We now obtain the further result that it will, in the

limit, distribute itself in the same way o^er the surface of this conductor,

no matter in what way the specific resistance varies from point to point of

the surface.

IV. Transmission of Signals along a wire,

662. Imagine a signal being sent along a wire, initially free from all

electrical disturbance. At any instant let i denote the current at a point

distant x from the end of the wire, and let q denote the total quantity of

electricity which has flowed past this point. Then i and q are functions of

X and t.
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Let q be measured in electrostatic units, but let i be measured in electro-

magnetic units. Then the rate of flow past any point will be iC electrostatic

units per second, where C denotes the number of electrostatic units in one

electromagnetic unit (cf. § 484). Thus

CiJl.
dt

If L is the self-induction of the wire per unit length, the total kinetic

energy of the currents is

T = dx 2^ Jq*dx,

where the integral is taken along the wire. In any element dx of the wire

the charge i® “^ ^hat if K is the electrostatic capacity of the wire

per unit length, the potential energy W is given by

W= _Lf/^Y
2K]\dx)

dx.

Let R be the resistance of the wire per unit length in electromagnetic

units, then the rate of generation of heat is

R Jt^dx,

The values of q at different points of the wire may be taken as

Lagrangian coordinates, for they suffice to specify the position of each

element of current. The Lagrangian equation corresponding to the coor-

dinate q at any distance x will be (cf. § 656)

d fd'l

dt \dq

dT dW

in which we have

dW

dT_ Z .

dq~
, dT

and ^ =

dq

To evaluate , let us imagine q changed to g + at every point of the
dq

wire, subject to Bq vanishing at the two ends. The increment in W, say 8 IF,

is given by

and, on integrating by parts, this becomes

Thus at any point a?.

yF__ 1 ^
dq
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The Lagrangian equation accordingly becomes

C*a<* K ^ di‘

Since Oi = ^, it is at once seen that the current i at any point satisfies
ot

the same differential equation, and this is also true of the potential V, since

^ = — iTF. Thus q, % and V all satisfy the same differential equation,

namely

Qi at
- da?

This equation is the general equation for the transmission of electric

signals along a wire. It is called the “ Telegraphic equation ” by Poincar6

and others.

We have seen in § 505 a, how to calculate the self-induction per unit

length of any wire. If the wire is sufficiently thin in comparison with its

distance from other conductors, the self-induction L per unit length becomes

identical with the quantity denoted by L' in § 505, and we accordingly have

the relation (cf. equation (430 e)),

KL^kix,

where k is the dielectric constant, and the magnetic permeability of the

insulator surrounding the wire. Let us put

so that a depends only on the properties of the insulating material, and the

telegraphic equation becomes

a« di ax-^’

For slow signals, the first term in this equation, which arises from the

inertia of the electric current, may be neglected. The equation then reduces

to equation (303) of Chapter IX which was obtained as the equation of

transmis.sion of signals along a submarine cable. Under practical conditions

signals along a submarine cable are so re.tarded by the high electrostatic

capacity of the cable that this inertia term may legitimately be neglected,

but the term has to be retained when the equation is applied to telegraph

and telephone problems.

When the wire is far removed from other conductors, the electrostatic

capacity K will be small. If K is neglected entirely, the equation becomes

d^<b

dt^ dx^
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The solution of this equation is

(f) =f{x - aO + (a? + at),

where f, ^ are arbitrary functions, and the solution is seen to represent the

transmission of a signal without change of type or loss of intensity, the

velocity of transmission being a.

In practical telephony and telegraphy it is not usually possible to neglect

entirely the value of K in the second term of the equation. Solutions of

the general three-term equation have been obtained by Heaviside*, Poin-

caref, PicardJ, Boussinesq§, and Kiemann||.

It is found that the signal is still transmitted with the same velocity a,

but that there is a change of type and loss of intensity
;
there is also an

electric field and current left trailing behind each signal; these would of

course tend to confuse the succeeding signal if the signals are sent without

sufficient interval.

Thus for rapid transmission or clear speaking it is necessary to reduce

the v.alue of KR (cf. § 369); the smaller this term is made, the smaller the

amount of blurring or indistinctness will be. We see at once why telephone

wires are kept as far as possible from other conductors, and can understand

the difficulty of clear speaking or rapid signalling through a submarine cable.

Mkchanical Force acting on a CiRcrrr.

663. Let 6 be any geometrical coordinate, and let 0 be the generalised

force tending to increase the coordinate 6, so that to keep the system of

circuits at rest we must suppose it acted on by an external force — 0. Then

Lagrange’s equation for the coordinate 6 is

(dT\

dt

and therefore, when the system is in equilibrium, we must have

dT0 =
de

.(521).

If the energy of the system were wholly potential and of amount W, the

force 0 would be given b\'

d6

Thus the mechanical forces acting are just the same as they would be if

the system had potential energy of amount — T.

* Fhil. Mag. 1888 and Coll. Papers. t C. R. 117 (1893), p. 1027.

X C. R. 118 (1894), p. 10. C. R. 118 (1894), p. 162.

11
Uiemann-Webcr, Die* partidle Dijferenttalgleichungen der Math. Physik, 4th edn. (1901),

II. p. 322.



506 Dynamical Theory of Currents [ch. xvi

664. Let us suppose that any geometrical displacement takes place, this

resulting in increases ... in the geometrical coordinates ...» and

let the currents in the circuits remain unaltered, additional energy being

supplied by the batteries ' when needed.

The increase in the kinetic energy of the system of currents is

while the work done by the electrical forces during displacement is

which, by equation (521), is also equal to

de.

These two quantities would be equal and opposite if the system were

a conservative dynamical system acted on by no external forces. In point of

fact they are seen to be equal and of the same sign. The inference is that the

batteries supply during the motion an amount of energy equal to tvjice the

increase in the energy of the system. Of this supply of energy half appears

as an increase in the energy of the system, while the other half is used in the

performance of mechanical work.

This result should be compared with that obtained in § 120.

665. As an example of the use of formula (521), let us examine the

force acting on an element of a circuit. Let the

components of the mechanical force acting on any

element ds of a circuit carrying a current i be de-

noted by Xy F, Z.

To find the value of X, we have to consider a

displacement in which the element ds is displaced

a distance dx parallel to itself, the remainder of the

circuit being left unmoved. Let the component of magnetic induction

perpendicular to the plane containing ds and dx be denoted by N, then if

T denotes the kinetic energy of the whole system, the increase in T caused

by displacement will be equal to i times the increase in the number of tubes

of induction enclosed by the circuit, and therefore

dT= iNdsdx.
Thus, using equation (521),

X = ^^= iNds.

and there are similar equations giving the values of the components Yand Z.

If B is the total induction and if B cos e is the component at right angles

to ds, then the resultant force acting on ds is seen to be a force of amount

iB cos eds, acting at right angles to the plane containing B and ds, and in

such a direction as to increase the kinetic energy of the system. This is a

generalisation of the result already obtained in § 498.
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Magnetic Energy.

666. We have seen that the energy of the field of force set up by a

system of electric currents must be supposed to be kinetic energy. We
know also that this field is identical with that set up by a certain system of

magnets at rest. These two facts can be reconciled only by supposing that

the energy of a system of magnets at rest is kinetic energy—a suggestion

originally due to Ampere.

Webers theory of magnetism (§476) has already led us to regard any

magnetic body as a collection of permanently magnetised particles. Ampere
imagined the magnetism of each particle to arise from an electric current

which flowed permanently round a non-resisting circuit in the interior of the

particle. The phenomena of magnetism, on this hypothesis, become in all

respects identical with those of electric currents, and in particular the energy

of a magnetic body must be interpreted as the kinetic energy of systems of

electric currents circulating in the individual molecules. For instance two

magnetic poles of opposite sign attract because two systems of currents

flowing in opposite directions attract.

We have seen that the mechanical forces in a system of energy E are

dE , dE .

—
,
etc., if the energy is potential, but are 4* etc., if the energy is

kinetic. It might therefore be thought that the acceptance of the hypothesis

that all magnetic energy is kinetic would compel us to suppose all mechanical

forces in the magnetic system to be the exact opposites of what we have

previously supposed them to be. This, however, is not so, because accepting

this hypothesis compels us also to suppose the energy to be exactly opposite

in amount to what we previously supposed it to be. Instead of supposing

dE
that we have potential energy E and forces —

, etc., we now suppose that

we have kinetic energy - E and forces H ,
etc., so that the amounts of

the forces are unaltered.

To understand how it is that the amount of the magnetic energy must be

supposed to change sign as soon as we suppose it to originate from a series of

molecular currents, we need only refer back to § 50 1

.

667. The molecular currents by which we are now supposing magnetism

to be originated must be supposed to be acted on by no resistance and by no

batteries, but if the assemblage of currents is to constitute a true dynamical

system we must suppose them capable of being acted upon by induction

whenever the number of tubes of force or induction which crosses them

is changed. In the general dynamical equation

d(dT^\_dT
dt\dx} d.T

E^Rx,
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dT
we may put E and R each equal to zero, and ^ is already known to vanish.

hT
Thus the equation expresses that ^ remains unaltered.

We now see that the strengths of the molecular currents will be changed

by induction in such a way that the electrokinetic momentum of each remains

unaltered. If the molecule is placed in a magnetic field whose lines of force

run in the same direction as those from the molecule, then induction will

decrease the strength of the molecular current until the aggregate number

of tubes of force which cross it is equal to the number originally crossing it.

This effect of induction is of the opposite kind from that required to explain

the phenomenon of induced magnetism in iron and other paramagnetic sub-

stances. It has, howe\'er, been suggested by Weber that it may account for

the phenomenon of diamagnetism.

668. Modem views as to the structure of matter compel us to abandon

Ampere s conception of molecular currents, but this conception can be re-

placed by another which is equally capable of accounting for magnetic

phenomena. On the modern view all electric currents are explained as the

motion of streams of electrons. The flow of Ampere's molecular current may
accordingly be replaced by the motion of rings of electrons. The rotation

of one or more rings of electrons would give rise to a magnetic field exactly

similar to that which would be produced by the flow of a current of electricity

in a circuit of no resistance.

It is on these lines that it appears probable that an explanation of

magnetic phenomena will be found in the future. No complete explanation

has so far been obtained, for the simple and sufficient reason that the arrange-

ment and behaviour of the electrons in the molecule or atom is still unknown.

EXAMPLES.

1. Two wires are arranged in parallel, their resistances being R and 5, and their

coefficients of induction being Z, Jf, N. Shew that for an alternating current of frequency

p the pair of wires act like a single conductor of resistance R and self-induction L) given by

R
RS(,R-\-S)+p^{lt{N-MY+S{L-M)^)

L 1

^LS^+2MRS+p^ {LN- if*) (Z -HA- 2i/) ” (72+Sf+ p-' (Z+A- 2if)*
*

2. A conductor of considerable capacity S is di.scharged through a wire of self-induc-

tion Z. At a series of points along the wire dividing it into n equal parts, (ti— 1) equal

conductors each of capacity S' are attached. Find an equation to determine the jieriods

of oscillations in the wire, and shew that if the resistance of the wire may be neglected,

the equation may be written

2 tan {S- = S' cot

where the current varies as and siu*<^=4S?'A*Z/47i.
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3. A Wheatstone bridge arrangement is used to compare the coefficient of mutual

induction M of two coils with the coefficient of self-induction Z of a third coil. One of the

coils of the pair is placed in the battery circuit AC, the other is connected to Z, Z> as a

shunt to the galvanometer, and the thii:d coil is placed in AD. The bridge is first balanced

for steady currents, the resistances of AB, BC^ CDy DA being then /Zj, Rzy R\ \ the

resistance of the shunt is altered till there is no deflection of the galvanometer needle at

make and break of the battery circuit, and the total resistance of the shunt is then ^R.

Prove that

4. Two circuits each containing a condenser, having the same natural frequency when
at a distance, are brought close together. Shew that, unless the mutual induction between

the circuits is small, there will be in each circuit two fundamental periods of oscillation

given by

where Ci, Co are the capacities, Z^, Z2 the coefficients of self-induction, and if the coefficient

of mutual induction, of the circuits.

5. Let a network be formed of conductors A, 5, ... arranged in any order. Prove that

when a periodic electromotive force Fcospt is placed in A the current in B is the same in

amplitude and phase as the current is in A when an electromotive force Fcospi is placed

in B.



CHAPTER XVII

DISPLACEMENT CURRENTS AND ELECTROMAGNETIC WAVES

Maxwell’s Equations.

669. Our development of the theory of electromagnetism has been based

upon the experimental fact that the work done in taking a unit magnetic

pole round any closed path in the field is equal to Anr times the aggregate

current enclosed by this path. But it has already been seen (§ 534) that this

development of the theory is not sufficiently general to take account of

phenomena in which the flow of current is not steady: “the aggregate current

enclosed by a path” is an expression which has a definite meaning only when

the flow of current is steady. Before proceeding to a more general theory,

which is to cover all possible cases of current flow, it is necessary to deter-

mine in what way the experimental basis is to be generalised, in order to

provide material for the construction of a more complete theory.

The answer to this question has been provided by Maxwell. According

to Maxwell’s displacement theory (§171), the motion of electric charges is

accompanied by a “displacement” of the surrounding medium. The motion

produced by this displacement will be spoken of as a “displacement-current,”

and we have seen that the total flow which is obtained by compounding the

displacement-current with the current produced by the motion of electric

charges (which will be called the conduction-current), will be such that the

total flow into any closed surfece is, under all circumstances, zero. Thus if

Nj, Na are any two surfaces bounded by the same closed

path 5, the total flow of current across is the same as

the total flow, in the same direction, across Nj, so that

either may be taken to be the flow through the circuit s.

Maxwells theory proceeds on the supposition that in

any flow of current, the work done in taking a unit magnetic pole round s is

equal to 47r times the total flow of current, including the displacement-current,

through s. The justification for this supposition is obtained as soon as it is

seen how it brings about a complete agreement between electromagnetic theory

and innumerable facts of observation.

670. Let us first put the hypothesis of the existence of displacement-

currents into mathematical language. Let u, v, w be the components of the
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ordinary current at any point which is produced by the motion of electric

charges, and let this be measured, as before, in electromagnetic units

(cf. § 484). Let the components of the displacement, which has been shewn

to be identical with Faraday’s polarisation (§ 172), be denoted as before by

/, ^r, h. On Maxwell’s theory of displacement, /, g, h are the quantities of

electricity of the second kind which have crossed unit areas perpendicular to

the coordinate axes at any point. The corresponding rates of current-flow, or

quantities which cross unit area per unit time, are of course

df dg dh

dt * di * dt *

These are accordingly the components of Maxwell’s “displacement-

current.” They arc, however, measured in electrostatic units. If we suppose

there to be C electrostatic units of charge in one electromagnetic unit, the

displacement current, measured in electromagnetic units, will have com-

ponents

Idf Idg Idh
Cdt' Cdi* Gdi (522),

and Maxwell’s total current, measured in electromagnetic units, will have

components

\df Ida \ dk

Cdt^ C dt
'

Maxwell’s hypothesis is that the work done in taking a unit magnetic

pole round a closed circuit is equal to 47r times the total current flowing

through that circuit. This hypothesis is, as we have seen, self-consistent,

because the total current behaves like an incompressible fluid, and conse-

quently the total flow through a circuit has a deflnite meaning which is

independent of the particular surface we select, closing up the circuit, over

which to measure the current.

The hypothesis may be transformed into mathematical language by

following the procedure of § 533. It is found to be represented by the

equations

1 df\
Gdl)

II 1
d0y

dz

ldg\
GdiJ ” dz dx

/ ^ 1 dh\

Gdi) dx

.(523).

These are the equations which must replace equations (473)—(475) in the

most general motion of electricity. If we ditferentiate the three equations

with respect to x, y, z and add, we obtain

3a dv dw \ d /df dg ?h\
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Since, by equation (63),

dh

dz

this may be written in the form

Now G ^ '^)^ dydz simply exmesses the rate at which currents

of ordinary electricity, measured in electrolytic units, flow out of a small

element of volume dx dy dz, and so is necessarily equal f*® ^ (it> dydz).

We accordingly see that equation (524) is true, quite independently of

the truth of Maxwell’s displacement-theory. It follows that equations (523)

form a consistent scheme, independently of the truth of the hypothesis from

which they have been derived. The displacement-theory may be regarded

merely as scaffolding, and Maxwell’s theory may be regarded as being simply

the theory expressed by equations (523), independently of any physical in-

terpretation that may be assigned to the various terms in these equations.

Although we may, if we please, discard Maxwell’s interpretation, it will be

convenient to continue to use the name “ displacement-current ” to designate

the vector whose components are given by formula (522).

We proceed to examine the consequences implied in Maxwell’s equations

(523). Since the truth of the equations must ultimately rest on something

more substantial than the displacement-theory by the help of which they

were derived, it is important to seize every opportunity of comparing the

results of the theory with observation.

Maxwell’s Equations for a non-conducting Medium.

671. In a non-conducting medium there can be no ordinary currents of

electricity, so that we put u = v = w = 0, and Maxwell’s equations assume the

form
47r df _^dy d/d'

G di dy dz

4nr dg _da dy

G di^dz dx

47r dh _ 0/3 da

G dt~ dx dy

,

(525).

We notice that the whole of the left-hand members arise entirely from the

displacement-current.” If the displacement-current were omitted, we should

have
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so that the magnetic forces (a, 7) would be derivable from a potential, and
the only magnetic field in a dielectric in which no currents flowed would be

one arising from permanent magnetism.

Maxwell’s hypothesis, as expressed in equations (525), implies that there

will be a magnetic field in a dielectric whenever the electric field changes,

and enables us to calculate the forces in this field.

Magnetic Field of a Moving Charge.

672. As a simple but important example of the use of Maxwell’s

equations (525) let us calculate the magnetic field produced by a single

point charge e moving with a velocity u.

Let the direction of motion of the charge at any instant t be taken for

axis of X, the position of the charge being taken for origin.

Let 0 (fig. 137) be the

position of the charge at time U

and 0’ its position at time

t^dt; then O'O = udt

Let P be the point at which

we wish to evaluate the mag-

netic force. Draw FQ parallel

and equal to 00'. Then the

electric field at P at time t

will be the same as the electric

field at Q at time t — dt, so that

the increase in the electric field at P in time dt will be the same as the in-

crease produced by movjng a distance ---udt parallel to the axis of x. Thus

we have

etc.
ot ox

and equations (525) may be put in the form

y
G dx^dy dz

47r u dg
__
So dy

G dx dz dx

4tirudh _d13 da

G dx“ dx dy'

We have here three equations from which to determine the three com-

ponents of magnetic force, a, and 7.

A solution which obviously satisfies the last two equations is

^ « 47r6^, 4f7rU
o-O,

gf *7“ C
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This solution is also seen to satisfy the first equation in virtue of the

relation (cf. Equation (64)),

0ar ‘bz) *

it is therefore the required solution of the problem.

For the electric field of a single point charge, we have*

A X A A 1.= 47rA = -.

and on substituting these values for /, g. A, the solution becomes

a = 0, .(526).^
(7r»’ ^ ar»

These equations give the components of magnetic force at any point.

The lines of magnetic force are circles about the path of the electron, and

the intensity at distance r from the electron is

ev sin 6

G .(527),

where 6 is the angle between the distance r and the direction of motion.

572 a. If a small element ds of a circuit in which a current i (measured

in electromagnetic units) is flowing contains Nds electrons moving with an

average forward velocity Uq, we have (cf. equation (6) of § 345)

Ne Uo = Ci,

The magnetic force at distance r produced by the motion of the electrons

in the element ds of the circuit is (cf. expression 527))

Nds
eUosin 6

C
ids

sin 0

This is exactly identical with the force given by Ampere's Law (§497).

But Ampere’s formula was only proved to be true when integrated round

a closed circuit, whereas it is now seen that Maxwell’s theory implies that

the formula is true for every element of a circuit.

Experimental Confirmation.

573. The possibility that a moving electric charge might produce a

magnetic field occurred to Faraday and was noted by him in his Experimental

Researches (1837); the effect was observed by Rowland in 1876 and again by

Rontgen in 1885. Maxwell’s equations, as we have just seen, predict the

actual amount of this effect. The only quantity other than the measurable

electric charge which appears in Maxwell’s formulae is C, the ratio of the

electric units, and this can be determined in other ways (cf. § 582 below), its

value being found to be almost exactly 3 x lO^''.

* This is not quite accurate, for the motion of the magnetic field (a, 7) induces an electric

field which ought to be taken into account in evaluating {J, g, h). Equations (526) are, however,

very nearly accurate except for very rapidly moving charges. The exact solution will be given

later (of. §9 624, 647, 666).
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The first attempt to measure the effect quantitatively was made by Rowland
and Hutchinson in 1889. They used discs charged to a potential of 5000 volts,

which were made to rotate at 125,revolutions a second. The motion of the

charged discs may be regarded as the motion of a succession of electric charges,

and the magnetic force predicted by Maxwell's theory can be calculated from

formula (527). On comparing the observed effect with that predicted by

theory, values for C were found which varied from 2*26 x 10“ to 3*74 x 10“, the

mean being 3*19 x 10“. More exact experiments of a similar type performed

by H. Pender in 1901 gave for G an average value of 3*05 x 10“
;
a second

set, with slightly modified apparatus, gave G = 2*90 x 10“ These values will

be seen to agree very closely with the known value for G, 3*00 x 10“, so that

the experiments not only prove the existence of the magnetic field produced

by moving charges, but also confirm Maxwell’s theory quantitatively.

It may be objected that the foregoing experiments only test the magnetic

field produced by a continuous chain of electric charges moving in a closed

circuit, but this objectibn cannot be urged against experiments performed by

E. P. Adams in IfJOl. In these experiments charged brass spheres were made

to pass a suspended magnetic needle at the rate of about 800 per second and

the apparatus was arranged so that the effect of one sphere had almost

disappeared before the needle came under the influence of the next. From a

series of such experiments Adams determined values for G ranging from

2*6 X 10“ to 3*1 X 10“ the mean being 2*8 x 10“.

Further confirmation of the existence of the displacement-current is pro-

vided in a great number of indirect ways, particularly through the electro-

magnetic theory of light and the electromagnetic mass of the electron. For

the present we shall assume the truth of Maxwell’s hypothesis and proceed to

examine its consequences.

The General Equations of the Electromagnetic Field.

674. In § 529, we obtained the system of equations

da_dJ_dY
~di

“* dy dz

in which all the quantities were expressed in electromagnetic units. If the

electric forces are expressed in electrostatic units, X, F, Z must be replaced in

these equations by GA", GY, CZ, and the system of equations becomes

_ 1 ^ ^^ 1

G dt dy dz

^^dX_d^
G dt dz da;

G dt dx dy

(528).
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These three equations together with equations (523), namely

47r (

S/3

Gdt) dy dz

1 dg\ _dj( 07

Gdt)'~dz dx

1 dh\ da

Gdt) dx ~^y
i

.(529),

constitute a system of six equations giving the rate of changes in the electric

and magnetic fields in terms of the field at any instant. With them may be

associated the two equations (63) and (362), namely

(530),
dz ^

..(531).

The eight equations (528)—(531) form the most general system of

equations of the electromagnetic field. In these equations u, v, w, a, 6
, c,

a, A 7 are expressed in electromagnetic units, while /, h, F, Z are

expressed in electrostatic units.

Localisation and Flow of Energy,

676. We have already considered the hypothesis that electromagnetic

energy may not be confined to the regions occupied by electric charges,

magnets and currents, but may be spread through the whole of space. On
this hypothesis the kinetic (magnetic) energy T and the potential (electric)

energy W of an isotropic medium are given by

JJJft(tt^ +^ + y’‘)dxdydz,

W= ^JJJk(X’+ T* + Z>)dxdydz.

and the energy is supposed to be localised in space in the way indicated by

these integrals. Knowing the kinetic and potential energies of the system,

it ought to be possible to determine its equations of motion by the general

dynamical methods explained in Chapter XVI.

The quantities a, 7 which enter in the kinetic energy must be funda-

mentally of the nature of velocities. Let us denote them by so that

(I*
may be treated as positional coordinates.

Similarly u, v, w which express the rates of flow of electricity at any

point are of the nature of velocities. If q^y qy, qz denote the total quantity

of electricity, measured in electrostatic units, which have crossed unit areas

perpendicular to Oxy Oy^ Oz at any point since a specified instant, then

Cu * g*, Cv =* gy, Cw = qz.
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Maxwell’s equations (529) now assume the form

giving on integrating, and replacing 4?]/ by KX,

617

.(532).
0^

This relation connects the various positional coordinates X (regarded

as a “ displacement”), f etc.

The principle of least action can be expressed, as in equation (507), in

the form

[\hT-[hW])dt = 0,
J 0

where the value of (STF) in the present problem is

{8ir} = Sir + JJ
j(XSqx + YBqy + 2^Bqz) dxdydzy

which again, on substituting for W, can be put in the form

lsir}=^||j[X(A:8z+47r8^,)+ y(irsF+47r8yj,)

+ Z(KBZ+ 4!7rBqgy] dxdydz

47rjjj _ \0y dz / \dz dx J [d~x 0///
dxdydz

on using relations (532). On further transforming by Green s Theorem, this

becomes

{SW}=^ff[X (fliS?- n8^) + ...]dS

Similarly on varying T, we find

ST= l^jlfiaSa + fiffSff + /4787] dxdydz

= + hSif + c8f] dxdydz,

giving

J
STdt =

I
J

+ c8f) dxdydz^

~^f dxdydz.

As in § 545, we suppose the values of St), all to vanish at the instants

^ = 0 and t = T, so that the top line on the right hand vanishes.
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Collecting terms, we now obtain

/b dX dZ\ . dY dX\ , , ,

+ (5+ 57-5) *’+ {s+ te - ^) «)*''*'*

- ^r<UXjjl(nT-m^Se+ ...tds.

If our suppositions as to the localisation of the kinetic and potential

energies are correct, then 17, f may be regarded as independent coordinates

at every point of the field. Thus the variations Sf, 817, may have all

possible values at all points of the field. It follows that their coefficients

must vanish separately; hence at every point of the field, we must have

d
0^ dy dz

= 0, etc.

These are the equations which the principle of least action gives as the

equations of motion when we assume Maxwell's equations (529). We see at

once that they are identical with equations (528), so that the two sets of

equations (528) and (529) are related through the principle of least action.

Poynting's Theorem,

576. If we still assume the energy to be localised in the medium in the

way imagined by Maxwell, the total energy in any closed region will be

given by

^+^=1111^ +y’ + ^) + £(a‘ + /3> + 7»)| d^dydz.

whence, on differentiating, and replacing /ut by a, KX by 4nrf, etc.,

-dg
,

1 / da
,

dc\) , , ,diT+W)_
dt -fim
On substituting from equations (528) and (529), this becomes

— C
Jlj(uX

+ vY+ wZ) dxdydz.

In this equation, the last line represents exactly the rate at which

work is performed or energy dissipated by the flow of currents, so that the

first line must represent the rate at which energy flows intb the region from

outside.
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By Green’s Theorem (§179), the first line

—^ ||{i {Z0 -7y) + m{7’f-Za) + n{Ya- Xff)} dS.

I, m, n being the direction-cosines of the normal inwards into the region.

Thus if we put

n. = ~(F7-Z;S).etc (533),

it appears that the value of ^ (^+ is the same as if there were a flow

of energy in the direction I, m, n of amount ZIT* + mlly + nil,. The vector 11

of which n*, Ily, n* are components is of amount

n = v(n** + n/ + n,*)=^RH sin 0
,

where jR, H are the electric and magnetic intensities and 0 is the angle

between them. The direction of the vector 11 is at right angles to both R
and ff, and the flow of energy into or out of the surfaces is the same as if

there were a flow equal to IT in magnitude and direction at every point of

space. This vector IT is called the “Poynting flux of energy.”

The integral of the Poynting Flux over a closed surface gives the total

flow of energy into or out of a surface, but it has not been proved, and we are

not entitled to assume, that there is an actual flow of energy at every point

equal to the Poynting Flux. For instance if an electrified sphere is placed

near to a bar magnet, this latter assumption would require a perpetual flow

of energy at every point in the field except the special points at which the

electric and magnetic lines of force are tangential to one another. It is difficult

to believe that this predicted circulation of energy can have any physical

reality. On the other hand it is to be noticed that such a circulation of energy

is almost meaningless. The circulation of a fluid is a definite oonception

because it is possible to identify the different particles of a fluid ; we can say

for instance whether or not the particles entering a small element of volume

are identical or not with an equal number of particles coming out, but the

same is not true of energy.

Equations for a Uniform Isotropic Dielectric.

677. We return now to the general equations of § 674, and proceed to

examine the form they assume in a uniform isotropic dielectric. Since there

can be no electric current we put u = v =w = 0.
’ We also put

47r/=KX etc., a = fia etc.,
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and the equations assume the form

K dX _dy S/8
]

C dt~dy Si

KdY_d»_^[ ...

C dt ~de dx I

fji dcL

G dt~ dy dz

C dt dz dx'
•(B).

G dt dx 9y/ C dt dx dy)

From the first equation of system (A), we have

K^i d^X
__

3 djy\ d fij, dp\
“

5^ "di^
“

^^zKcdt) •

and on substituting the values ^^ ^ from the last two equations

of system (B), this equation becomes

C* dt^

fdY _dX\
1

.

3 fdX dZ\

\dx ’ dy) dx)

3y* dz^ dx\dy dz) *

Since the medium is supposed to be uncharged, we have

?I + !I+?^=odx^dy dz
’

d^X
so that the last term may be replaced by + , and the equation becomes

C* dt"

By exactly similar analysis we can obtain the differential equation satis-

fied by F, Z, a, and 7, and in each case this differential equation is found

to be identical with that satisfied by X, Thus the three components of

electric force and the three components of magnetic force all satisfy exactly

the same differential equation, namely

dP
= a*W , .(534),

where a stands for Gj^JKfi. This equation, for reasons which will be seen

from its solution, is known as the "equation of wave-propagation.”

Solutions of 4- =a*^=Y.
dt^ ^

Solution for spherical waves.

578. The general solution of the equation of wave-propagation is best

approached by considering the special form assumed when the solution x
is spherically symmetrical. If X is a function of r only, whore r is the

distance from any point, we have

^=a»V»Y = -
dP ^ r" dr \ dr) *
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which may be transformed into

and the solution is

-f(T - aO + ^ (r+ aO (536),

wheref and ^ are arbitrary functions.

The form of solution shews that the value of x at any instant over a

sphere of any radius r depends upon its values at a time t previous over

two spheres of radii r— ai and r + at. In other words, the influence of any

value of ^ is propagated backwards and forwards with velocity a. For

instance, if at time ^ = 0 the value of x z^^o except over the surface of a

sphere of radius r, then at time t the value of x is zero everywhere except

over the surfaces of the two spheres of radii r ±at\ we have therefore two

spherical waves, converging and diverging with the same velocity a.

d'(rx) ^d^(rx)
d {atf dr®

.(535),

General solution (Liouville).

679. The general solution of the equation can be obtained in the

following manner, originally due to Liouville.

Expressed in spherical polars, r, 6 and <l>, the equation to be solved is

_JL_ i. /sin + i^_ 0
r> sin e d0 V ^ dO) ^

'

Let us multiply by sin 0d6d(f) and integrate this equation over the sur-

face of a sphere of radius r surrounding the origin. If we put

a® d<® r® 0r \ dr) i

the equation becomes

X = JJxsin ddO d(l> (537),

1__3

a®d^®“r®0rV dr)*

the remaining terms vanishing on integration,

(cf. equation (536)) is

X — - {f{at — r) + ^ {at

The solution of this equation

+ r)} (538).

For small values of r this assumes the form

X = i [{/(aO + <!> (at)] - r {/' (at) - 4>' (at)] + ^ (/" (at) + («rf)} + . .

.]

(539):

In order that X may be finite at the origin through all time, we must

have
f{at) + ^ (at) = 0

at every instant, so that the function must be identical with —y. On

putting r = 0, equation (539) becomes

(X)r=o = -2/'(aO.
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and from equation (537), putting r = 0, we have

(A.)r-0=47r(x)r-0,

so that 47r (x)r=o — — 2/^ (at) (540).

Elquation (538) may now be written as

rX =f(at- r) -/(at + r).

On differentiating this equation with respect to r and t respectively,

^ (r\) =-f (at - r)-f (ai + r),

and on addition we have

This equation is true for all values of r and t : putting ^ = 0, we have

-2/(r) = |;(rX*=o)+^^(=o

as an equation w-hich is true for all values of r. Giving to r the special

value r = at^ the equation becomes

- 2/ (at) =~ (<X<«o) +

The left hand is, by equation (520), equal to 47r (x)»‘«o* we use % to

denote the mean values of x X averaged over a sphere of radius at at

any instant, the equation becomes

(x)r-o = ^ («X<=o) + <*<=0 (541).

Thus the value of x at any point (which we select to be the origin) at

any instant t depends only on the values of x and x at time t = 0 over a

sphere of radius at surrounding this point. The solution is of the same

nature as that obtained in § 578, but is no longer limited to spherical waves.

General solution (Kirchhoff),

680. A still more general form of solution has been given by Kirchhoff.

Let 4> and be any two independent solutions of the original equation, so

that

^ = = (542).

By Green's Theorem (equation (101))

-2 = jjj
(^\^>'¥-'fV><P)dadi/dz
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by equations (542). The volume integrations extend through the interior

of any space bounded by the closed surfaces Su St, and the normals to

Si, Si, ... are drawn, as usual, into the space. If we integrate the equation

just obtained throughout the interval of time from t = to t = + tf', we
obtain

-KM*"
So far ^ has denoted any solution of the differential equation. Let us

now take it to he^F(r + at), this being a solution (cf. equation (536)) what-

ever function is denoted by F, and let F (a:) be a function of x such that it

and all its differential coefficients vanish for all values of x except x = 0, while

F{x)dx = \.

Such a function, for instance, isF {x)— Lt

We can choose t* so that, for all values of r considered, the value of

r — ai! is negative. The value of r + at" is positive if f is positive. Thus

F{r + at) and all its differential coefficients vanish at the instants t = and

t = — t\ so that the right-hand member of equation (543) vanishes, and the

equation becomes

Let us now suppose the surfaces over which this integral is taken to be

two in number. First, a sphere of infinitesimal radius Tq, surrounding the

origin, which will be denoted by Si, and second, a surface, as yet unspecified,

which will be denoted by S. Let us first calculate the value of the contribu-

tion to equation (544) from the first surface. We have, on this first surface,

'p =l2i’(r, + aO,

a'p 1 1

so that when is made to vanish in the limit, we have

and therefore

//('

^TT .=—r *«•-*>
a f.o

since the integrand vanishes except when t = 0.
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Thus equation (544) becomes

Integrating by parts, we have, as the value of the first term under the

time integral,

= i-|^| i'(r+a<)r' -T ^^^F(r + at)dt.
ardn\ ' \t=-r J^fardnat

The first term vanishes at both limits, and equation (545) now becomes

We can now integrate with respect to the time, for i^(r + at) exists only

at the instant t ~ — r/a. Thus the equation becomes

t«o ^Trji[ardndt dn\r) r dn
'

giving the value of 4> at the time t= Oin terms of the values of ^ and 4>

taken at previous instants over any surface surrounding the point. The

solution reduces to that of Liouville on taking the surface S to be a sphere,

, a a
so that ^

.

0n ar

As with the former solutions, the result obtained clearly indicates propa-

gation in all directions with uniform velocity a.

Propagation of Electromagnetic Waves.

681. It is now clear that the system of equations

?Jf: — v*x
C* dt^

"

etc., obtained in § 577 indicate that, in a homogeneous isotropic dielectric, all

electromagnetic effects ought to be propagated with the uniform velocity

C— This may be compared with the result obtained in § 562. It was
'JKfi,

there shewn that electric signals propagated along a wire would advance with

Q
a velocity -

7
= where K, fi were the inductive capacity and magnetic

wKfi
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permeability of the medium surrounding the wire. It now appears that the

velocity of signals along a wire is identical with the velocity of waves in the

medium outside the wire.

Maxwell's displacement theory gives a simple explanation of this.

A current flowing in a wire is accompanied by a displacement current in

the ether. This sets up a magnetic field which is propagated with velocity

GI^Kfi in the dielectric and this in turn induces a further current in the wire.

On this view the actual process of propagation takes place in the medium,
the wire directs the path of the electromagnetic disturbance and absorbs

some of the energy.

It is to be noticed that the velocity of propagation along wires was

obtained in § 562 before we had introduced the conception of “ displacement-

currents” at all. That the result is not inconsistent with the velocity

obtained on the hypothesis of displacement-currents will be understood from

the result of § 575.

Numerical Values,

582. We notice that in free air, in which A* = /a = 1, the velocity of pro-

pagation of electric waves, whether along wires or in the air, ought to be the

same as (7, the ratio of the electric units. This enables us to apply a severe

test to the truth of the theory which has so far been developed, for both the

value of G and the velocity of propagation of electric waves admit of direct

experimental determination.

The best determinations of (7, the ratio of the two units, are the following:

Rosa and Dorsey (1907)

Pca'ot and Fabry (189S)

Hurmuzescu (1896) ...

Abraham (1890)

2-9971 X 10»®

2-

9973 X low

3-

0010 X low

2-9913 X lOW

The true value is probably very close to the value obtained by Rosa and

Dorsey, namely G = 2'9971 x IQw.

Recent determinations of the velocity of propagation of electromagnetic

wavos in air are as follows

:

Maclean (1899) 2-991 x lOW

Saunders (1897) 2-997 x IQW

Trowbridge and Duane (1895) ... 3-(X)3 x lOW

The mean of these values is 2‘997 x 10^.

In the determinations of Saunders and of Trowbridge and Duane the

waves were guided by copper wires, while the experiments of Maclean dealt

with waves propagated through air without wires. The equality of velocities

is of course a consequence, and also a confirmation, of the results obtained

in § 562.
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The ratio of the units, G, is also equal, or at least very nearly equal, to the

velocity of light in air, and this confirmed Maxwell in his suggestion that

light propagation is a special case of the propagation of electromagnetic

waves. Out of this suggestion, amply home out by the results of further

experiments, has grown the electromagnetic theory of light of which a short

account is given in the next chapter. The best determination of the velocity

of light in air at present available is based on the experiments of Michelson

and is

2*9977 X 10*® cms. a second.

Except for small differences, which are well within the errors of the various

experiments, the quantities previously mentioned are seen to agree with this

in value.

Thus we may say, that the ratio of units G is identical with the velocity

of propagation of electromagnetic waves, and this again is identical with the

velocity of light.

Equations for a Uniform Isotropic Conductor.

683. In an isotropic conductor the current (u, v, w) is proportional at

every point to the electric force (X, F, Z), We are supposing u, v, ti; to be

measured in electromagnetic unita The values of the components of electric

force, measured in electromagnetic units, are CX, (7F, GZ, these being of

course the forces acting on on electromagnetic unit of electrical charge. Thus

by Ohm’s Law,
GX

,u *— , etaT

where r is the specific resistance measured in electromagnetic unita If we

further put 47i^= KX, etc., equations (529) become

dy

and two similar equationa

On replacing equations (629) by these, the equations of §574 become the

general equations of an isotropic conducting medium.

If we differentiate the three equations of the system (646) with respect

to s;, y, F and add. we obtain

MttC
.
Kd\(dX

.
0F^a^\ ^

\ T ^ C dt) ^ dy^ dz)

From equation (530) we have

dX dY
.
dZ 4>irp
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80 that our equation becomes

dt

47rC*

If po is the value of p at time 4 = 0, the solution of this equation is

P = P.e~^^'\

shewing that p falls away exponentially, no matter what electric or magnetic
fields may be acting. This equation is identical with that already obtained

in § 396. the factor C* simply corresponding to a change of units. Thus inside

a conducting medium any initial charge will rapidly disappear, and we may
suppose that

dX dY dZ ^

683 a. Multiply both sides of equation (546) by and differentiate with

respect to the time. We find

Kp. d^X AtirpCdX
__

3 /dc\ 9 /dh\

G dt^ T dt “dy\dt) dz\dt)*

The right-hand member of this equation may by equations (628) be

replaced by

dy \ 9a; 9y / dz\ dz dx)

L 9a; \9a; ^ 9y dzjj

and this is equal to GV^X, in virtue of the relation

dx^^^dz
Thus the equation becomes, on dividing through by G,

Kpd'X
,

AiirpdX

'O' dt^^ T dt’’

This equation involves X only, and so is the differential equation satisfied

by X when electromagnetic waves are propagated in a conductor. Naturally

F, Z satisfy similar equations, and equations (528) shew that a, 5, c or a, 7
again satisfy similar equations. Thus X, F, Z, a, 7 all satisfy the same

differential equation, namely

d^X ^G^ dX
dt^ Kt dt

a»V*Z,

where a stands for Gj^/Kp. The complete solution of this equation has been

given by Riemann*.

LU vartielle Differentialgleichungen dtr Math. Phytik, 4th edn. (1901), ii. p. 399.
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We may notice that in a dielectric, t = oo
, so that the second term dis-

appears. The equation then reduces, as it ought, to equation (534) already

obtained in §577. In many problems, the second term is more important

than the first. When the first term is omitted, the equation reduces to the

well-known equation of conduction of heat, already obtained in § 535

(equation (480)).

To form an estimate of the relative importance of the two terms on the

left, let us examine the case of an alternating current in which the time-

factor is We may as usual replace ^ by rjt), and the equation becomes

(- P’ +^ »p) X =

The neglect of the first term, which is of course the same thing as

neglecting the displacement-current, is clearly permissible if AsttG^IKtp is

numerically large. When this ratio is not large, the error produced by the

neglect of the first term will be greatest in problems in which t is large

(conductors of high resistance) and in which p is large (rapidly changing

fields). On substituting numerical values it will be found that in problems

of conduction through metals, the neglect of the factor KrplAiTrG^ produces

a quite inappreciable error unless p is comparable with 10”

—

i.e. unless we

are dealing with oscillating fields of which the frequency is comparable with

that of light-waves. Thus the effect of the displacement-current in metals

has been inappreciable in the problems so far discussed, so that the neglect

of this effect may be regarded as justifiable. The matter stands differently

as regards the problems to be discussed in the next chapter, in which the

oscillations of the field are identical with those of light-waves.

Units.

684. We may at this stage sum up all that has been said about the

different systems of electrical units.

There are three different systems of units to be considered, of which two

are theoretical systems, the electrostatic and the electromagnetic, while the

third is the practical system. We shall begin by discussing the two

theoretical systems and their relation to one another.

686. In the Electrostatic System the fundamental unit is the unit of

electric charge, this being defined as a charge such that two such charges at

unit distance apart in air exert unit force upon one another. There will, of

course, be different systems of electrostatic units corresponding to different

units of length, mass and time, but the only system which need be considered
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is that in which these units are taken to be the centimetre, gramme and
second respectively.

In the Electromagnetic System the fundamental unit is the unit mag-
netic pole, this being defined to be such that two such poles at unit distance

apart in air exert unit force upon one another. Again the only system

which need be considered is that in which the units of length, mass and
time are the centimetre, gramme and second.

From the unit of electric charge can be derived other units

—

e.g. of

electric force, of electric potential, of electric current, etc.—in which to

measure quantities which occur in electric phenomena. These units will

of course also be electrostatic units, being derived from the fundamental

electrostatic unit.

So also from the unit magnetic pole can be derived other units

—

e.g. of

magnetic force, of magnetic potential, of strength of a magnetic shell, etc.

—

in which to measure quantities which occur in magnetic phenomena. These

units will belong to the electromagnetic system.

If electric phenomena were entirely dissociated from magnetic phenomena,

the two entirely different sets of units would be necessary, and there could be

no connection between them. But the discovery of the connection between

electric currents and magnetic forces enables us at once to form a connection

between the two sets of units. It enables us to measure electric quantities

—

e.g. the strength of a current—in electromagnetic units, and conversely we
can measure magnetic quantities in electrostatic units.

We find, for instance, that a magnetic shell of unit strength (in electro-

magnetic me.asure) produces the same field as a current of certain strength.

We accordingly take the strength of this current to be unity in electro-

magnetic measure, and so obtain an electromagnetic unit of electric current.

We find, as a matter of experiment, that this unit is not the same as the

electrostatic unit of current, and therefore denote its measure in electro-

static units of current by C. This is the same as taking the electromagnetic

unit of charge to be C times the electrostatic unit, for current is measured in

either system of units as a charge of electricity per unit time.

In the same way we can proceed to connect the other units in the two

systems. For instance, the electromagnetic unit of electric intensity will be

the intensity in a field in which an electromagnetic unit of charge experiences

a force of one dyne. An electrostatic unit of charge in the same field would

of course experience a force of 1 jC dynes, so that the electrostatic measure of

the intensity in this field would be 1/(7. Thus the electromagnetic unit of

intensity is 1/(7 times the electrostatic. The following table of the ratios of

the units can be constructed in this way:
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Ratios of Units,

Charge of Electricity; One electromag. unit — G electrostat. units.

Electromotive Force. *> ft ft
= 1/(7 ft II

Electric Intensity. it ft ft
= 1/(7 ft ft

Potential. »» ft II
= 1/C 11 ft

Electric Polarisation. fi ft i>
= (7 II ft

Capacity. » ft ft
= (7«

II ft

Current. ft ft ft
= (7 ft II

Resistance of a conductor. ft ft ft
= 1/(7* II II

Strength of magnetic pole. „ ft ft
= 1/(7 ft II

Magnetic Intensity. ft ft ft
= (7 II ft

„ Induction. It ft ft = 1/(7 ft ft

Inductive Capacity. t» ft ft
= (7*

ft ft

Magnetic Permeability. ft ft ft
= 1/(7*

ft II

686. The value of G, as we have said, is equal to about 3 x 10^^ in c.G.s.

units. If units other than the centimetre, gramme and second are taken, the

value of G will be different. Since we have seen that G represents a velocity,

it is easy to obtain its value in any system of units.

For inatance a velocity 3x10*® in c.G.s. units=6-71 x 10® miles per hour, so that if

miles and hours are taken as units the value of C will be 6*71x10®.

Practical Units,

687. The practical system of units is derived from the electromagnetic

system, each practical unit differing only from the corresponding electro-

magnetic unit by a certain power of ten, the power being selected so as

to make the unit of convenient size. The actual measures of the practical

units are as follows

:

Quantity Name of Unit
Measure in

eleotromag. units

Measure in

eleotrostatio units
(Taking C?=3 x 10*®)

Charge of Electricity Coulomb 10-* 3x10®
Electromotive Force'!

Electric Intensity > Volt 10*

Potential
j

Capacity Farad 10-* 9 X 10**

1}
Microfarad 10-“ 9x10®

Current Ampere 10-* 3 X 10®

Resistance Ohm 10*
1

9 X 10“

For legal and commercial purposes, the units are defined in terms of material standards.

Thus according to the resolutions of the International Conference of 1908 the legal (Inter-

national) ohm is defined to be the resistance offered to a steady current by a uniform
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column of mercury of length 106*300 cms., the temperature being 0* C., and the maea

being 14*4521 grammes, this resistance being equal, as nearly as can be determined by

experiment, to 10^ electromagnetic units. Similarly the legal (International) amp5re is

defined to be the current which, when passed through a solution of silver nitrate in water,

deposits silver at the rate of *00111800 grammes per second.

Physical Dimensions of Units.

688. As explained in §18, all the electric and magnetic units will have

apparent dimensions in mass, length and time. These are shewn in the

following table:

Charge of Electricity e

Electrostatio

j/lx* T-^

Electromagnetic

Density P M^L-^ T-^ M^L-^

Electromotive Force E r-*

Electric Intensity Y,Z)

Potential V M^LT^ y-i

Electric Polarisation P{f9.h)

Capacity c L X-iy*

Current %

Current per unit area (m, V, w) 7»-i

Resistance R L-^T LT-^

Specific resistance T T

Strength of magnetic pole m Jf1 r-i

Magnetic Force R («» y)
2£h x-i T-^

„ Induction B{a, b,c)

Inductive Capacity K 1 L-^T*

Magnetic Permeability P L-%t^ I



CHAPTER XVIII

THE ELECTROMAGNETIC THEORY OF LIGHT

Velocity of Light in Different Media.

689. It has been seen that, on the electromagnetic theory of light, the

propagation of waves of light in vacuo ought to take place with a velocity

equal, within limits of experimental error, to the actual observed velocity

of light. A further test can be applied to the theory by examining whether

the observed and calculated velocities are in agreement in other media.

According to the electromagnetic theory, if V is the velocity in any

medium, and Vq the velocity in vacuo, we ought to have the relation

V 1^ / 1 ^
Vo ^/Kfil

where Kot fio refer to free space.

For free space and all media which will be considered, we may take ft = 1,

Also if V is the refractive index for a plane wave of light passing from free

space to any medium, we have from optical theory the relation

so that, according to the electromagnetic theory, the refractive index of any

medium ought to be connected with its inductive capacity by the relation

One difficulty appears at once. According to this equation there ought to

be a single definite refractive index for each medium, whereas the phenomenon

of dispei-sion shews that the refractive index of any medium -Varies with the

wave-length of the light. It is easy to trace this difficulty to its source. The
phenomenon of dispersion is supposed to arise from the periodic motion of

charged electrons associated with the molecules of the medium (cf. § 610,

below), whereas the theoretical value which has been obtained for the vf locity

of light has been deduced on the supposition that there are no moving

charges at any point of the dielectric (cf. § 577). A correction to the value

just obtained for v will be needed to represent the effect of the motion of

charged electrons in the medium. When this motion is infinitely slow, the

correction disappears, so that our equation ought to give the true value of v

in the limiting case of light, or other electromagnetic waves, of infinite wave-

length. It is impossible to deal experimentally with waves of infinite wave-
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length, but the following tables* shew that as the wave-length increases, the

refractive index v approximates to

Water.

,y^^
= V80 = 8-94.

Wave-length
(cms.)

V (observed)

65 8-88
8-8 8-89

5*7 8-79
3-7 8-10

1*76 7*82
0-8 8-97
0-4 9-50

•000126t 1-32

•0000589+ 1*33

Ethyl Alcohol.

yi.-
Wave-length

(cms.)
V (observed)

•

65 4-89

57 3-4

0-8 2-57

0-4 2*24

•00005891 1-36

690. For gases there is quite good agreement between theory and

experiment, in spite of the failure of the theory to take all the facts into

account.

In the following table, the values of \J

^

^re mean values taken from

the table already given on p. 132 of the inductive capacities of gases. The
values of v refer to sodium light.

Gas y (observed)

Sodium D-lineI|

Hydrogen 1-0001.32 1 000138

Air 1-000293 1-000292

Carbon Monoxide 1*000.347 1-0003.34

Carbon Dioxide 1-000492 1-000450

l^itrous Oxide ... 1 000495 1-000515

Ethylene 1-00073 1-000719

* From material collected by Fidduck, A Treatise on Electricity (Gamb. Univ. Press, 1916),

p. 451.

t Infra-red radiation. | Sodium light.

§ From table on p. 132.

0 Kaye and Laby, Physical and Chemical Constants (eighth edition), p. 75.
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Waves of Light in non-conducting Media.

Solution of Differential Equation for Plane Waves.

691. The equation of wave-propagation

has, as a particular solution,

X = (Ix+my+nz-at)
(647),

provided Z* 4* m* + w* = 1 . This value of is a complex quantity of which the

real and imaginary parts separately must be solutions of the original equation.

Thus we have the two solutions

X = AcosK(la!-^ my + nz— at) (548),

X — AbHhk (lx + my + rwr — at).

Either of these solutions represents the propagation of a plane wave.

The direction-cosines of the direction of propagation are Z, m, n, and the

velocity of propagation is a. Usually it will be found simplest to take the

value of X ^7 equation (547) as the solution of the equation and reject

imaginary terms after the analysis is completed. This procedure will be

followed throughout the present chapter; it will of course give the same

result as would be obtained by takiug equation (548) as the solution of the

differential equation.

Propagation of a Plane Wave.

592. Let us now consider in detail the propagation of a plane wave of

light, the direction of propagation being taken, for simplicity, to be the axis

of X. The values of X, Y, Z, «, yS, 7 must all be solutions of the differential

equation, each being of the form

X = (549).

The six values of X, F, F, a, 7 are not independent, being connected by

the six equations of § 577, namely

C dt dy dz

-?y\ rA'i
a dt~dz dx

I

C dt dx dyl



691-592 a] Crystalline Media 535

From the form of solution (equation (549)), it is clear that all the differ-

ential operators may be replaced by multipliers. We may put

d . a . a a A
dt dx dy dz

The equations now become

.(AO, (B').

Since Kfia? = C®, it is clear that the second and third equations in (A') are

identical with the third and second e(}uations respectively in (B').

Since A’ = 0, a = 0, it appears that both the electric and magnetic forces

are, at every instant, at right angles to the axis of x, i.e. to the direction of

propagation. From the last two equations of system (A') we obtain

^F+ 7^=0,

shewing that the electric force and the magnetic force are also at right angles

to one another.

On comparing the results obtained from the electromagnetic theory of

light, with those obtained from physical optics, it is found that the wave of

light which we have been examining is a plane-polarised ray whose plane of

polarisation is the plane containing the magnetic force and the direction of

propagation. Thus the magnetic force is in the plane of polarisation, while

the electric force is at right angles to this plane.

Crystalline Dielectric Media.

692 a. Let us consider the propagation of light, on the electromagnetic

theory, in a crystalline medium in which the ratio of the polarisation to the

electric force is different in different directions.

By equation (92), the electric energy W per unit volume in such a medium
is given by

F = ~(7C.^- + 2/ir„XF+...).

If we transform axes, taking as new axes of reference the principal axes of

the quadric

.
KnX^ + S/Tioajy + ... = 1,

then the energy per unit volume assumes the form

W =^ (K,X* + K,Y>+ K,Z^).
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The components of polarisation are now given by (cf. equations (89))

471/= \nrg = iT*F, ^nrh = K^Zy

so that the general equations (529) and (528) of § 574 assume the forms

G dt dy
.^1
dz

G dt
~~

dz dx^
•(A").

fjL da

G dt

fjL d^
G dt

'

d^
’

dz

d_X __d_^.

dz dx '

fi dy ^ dV dX
G dt dx dy

.(B").

^3 dZ^d0_da\
G dt dx dyl

These may be compared with equations (A) and (B) of § 592.

If we differentiate the system of equations (A") with respect to the time,

and substitute the values ^ from system (B"), we obtain

K,y.d^X_^^^^ dfdXdYdZ\
^

'(? dto dxKdx'^ dy'^ dz) ’

On assuming a solution in which X, F, Z are each proportional to

giK (Ix+mjf+nz- VO

these equations become

^V'‘J[ = X-l(lX + mV+ nZ) = 0, etc.

On eliminating X, Y and Z from these three equations, we obtain

G^ 0 ® (7
®

G^
If we put = Vj®, etc., and simplify, this becomes

i® ?n®
^

?i®

0.

This equation gives the velocity of propagation V in terms of the direction-

cosines ly m, n of the normal to the wave-front. The equation is identical

with that found by Fresnel to represent the results of experiment. It can be

shewn that the corresponding wave-surface is the well-known Fresnel wave-

surface, and all the geometrical phenomena of the propagation of light in a

crystalline medium follow directly. For the development of this part of the

theory, the reader is referred to books on physical optics.

Assuming that a, yd, 7 as well X,Yy Z are proportional to the exponen-

tial e»«(te+mif+n*-FO^ the equations of system (A") become

A = wy-Ti/d,

and two similar equations.
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If we multiply these three equations by Z, m, n respectively and add, we
obtain

IKiX. + = 0 ,

shewing that the electric polarisation is in the wave<front.

The system (B") of equations reduce to

V
fi — wF,

and two similar equations, and on again multiplying by Z, m, n and adding,

we obtain

loL + mfi + n7 = 0,

which shews that the magnetic force also is in the wave-front.

We shall not discuss crystalline media in detail in the present book since

their special peculiarities are the same on the electromagnetic as on any

other theory of light. The discussion of these peculiarities is a branch of the

science of optics rather than of electromagnetism.

Mechanical Action.

Energy in Light-waves,

592 b. For a wave of light propagated along the axis of Ox, and having

the electric force parallel to Oy, we have (cf. § 592) the solution

X = Z = 0
;
Y Yq cos k(x — at),

a = /S = 0; 7 = 7o cos ic (a? — at),

and this satisfies all the electromagnetic equations, provided the ratio of 7© to

Fo is given by _

Fo“ G " fia'V fj.'

The energy per unit volume at the point x is

~(KY* + fvy') :=^(KY,* + cos’ * («- ai).

Since gjy^ = KY^, it appears that the electric energy is equal to the

magnetic at every point of the wave. The average value of cos* #c (a? — aZ),

averaged wit h respect either to x or to t, is so that the average energy per

unit volume

Stt Stt
'

As Maxwell has pointed out*, these formulae enable us to determine the

magnitude of the electric and magnetic forces involved in the propagation of

* Maxwell, Electricity and Magnetitm (Third Edition), § 793.
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light. According to the determination of Langley, the mean energy of sun-

light, after allowing for partial absorption by the earth's atmosphere, is

4*3 X 10"" ergs per unit volume. This gives, as the maximum value of the

electric intensity.

To = *33 c.G s. electrostatic units = 9*9 volts per centimetre,

and, as the maximum value of the magnetic force,

7o
= *033 c.G.s. electromagnetic units,

which is about one-sixth of the horizontal component of the earth's field in

England.

The Pressure of Radiation,

692 c. In virtue of the existence of the electric intensity F, there is in any

KY^
medium (§ 165) a pressure — per unit area at right angles to the lines of

electric force. There is therefore a pressure of this amount per unit area

over each wave-front. Similarly the magnetic field results (§471) in a pres-

sure of amount ^ per unit area.

Thus the total pressure per unit area

KY^^JfYl±^
Stt 87r

cos® « (a? — at).

This is exactly the expres.sion just found for the energy per unit volume.

Thus we see that over every w^ave-front there ought, on the electromagnetic

theory, to be a pressure of amount per unit area equal to the energy of the

wave per unit volume at that point. The existence of this pressure has been

demonstrated experimentally by Lebedew* and by Nichols and Hull f, and

their results agree quantitatively with those predicted by Maxwell’s Theory.

Refraction and Reflection.

Conditions at a Boundary between two different media.

693. Let us next consider what happens when a wave meets a boundary

between two different dielectric media 1, 2. Let the suffix 1 refer to quanti-

ties evaluated in the first medium, and the suffix 2 to quantities evaluated in

the second medium. For simplicity let us suppose the boundary to coincide

with the plane of yz.

Annalen der Phytik, 6, p. 43S. + Physical Review^ 13, p. 307.
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At the boundary, the conditions to be satisfied are (§§ 137, 467)

:

(1) the tangential components of electric force must be continuous,

(2) the normal components of electric polarisation must be continuous,

(3) the tangential components of magnetic force must be continuous,

(4) the normal components of magnetic induction must be continuous.

Analytically, these conditions are expressed by the equations

KiXi — K^X%y (550),

7i = 7a (551).

It will be at once seen that these six equations are not independent : if

the last two of equations (550) are satisfied, then the first of equations (551)
is necessarily satisfied also, as a consequence of the relation

^doL ^“dZ 0F
C dt dy dz

being satisfied in each medium, while similarly, if the last two of equations

(551) are satisfied, then the first of equations (550) is necessarily satisfied.

Thus there are only four independent conditions to be satisfied at the

boundary, and each of these must be satisfied for all values of y, z and t.

It is most convenient to suppose the four boundary conditions to be the

continuity of F, Z, p, y.

^
Refraction of a Wave polarised in plane of incidence,

694. Let us now imagine a wave of light to be propagated through

medium (1), and to meet the boun-

dary, this wave being supposed polar-

ised in the plane of incidence. Let

the boundary, as before, be the plane

of yZy and let the plane of incidence

be supposed to be the plane of xy.

Since the wave is supposed to be polar-

ised in the plane of incidence, the

magnetic force must be in the plane

of a?y, and the electric force must be

parallel to the axis of z. Hence for

this wave, we may take

Z = F=0,

Z= Z' Yxt)^

a = a cos ®i+y Bin «i- KiO

^ giici UcoBtfi+ifBinffi- KiO^

7 = 0,
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and it is found that the six equations (A), (B) of p. 534 are satisfied if

_ Z'

8intf,“-cosd,"

The angle 0^ is seen to be the “ angle of incidence ” of the wave, namely,

the angle between its direction of propagation and the normal {Ox) to the

boundary.

Let us suppose that in the second medium there is a refracted wave,

given by
x= y=o,

Z= Z*' sin F,^)^

^ __ ix cos e,+jf sin fi,- Vtt)
^

/3=: gilt, (* cos ®,+if sin fi,-

where, in order that the equations of propagation may be satisfied, we must

have

siner- cos e,
" "7^
V K,

It will be found on substitution in the boundary equations (550) and

(551) that the presence of an incident and refracted wave is not sufficient to

enable these equations to be satisfied. The equations can, however, all be

satisfied if we suppose that in the first medium, in addition to the incident

wave, there is a reflected wave given by

Z=F=0,
Z^Z'” et«'i(*cos®,+y8intf,-F,0^

a — gfit,(xcostfj+y sin tf,-

P =s gi«s(»cos«3+y sin»,- Vit)^

7 = 0,

where, in order that the equations of propagation may be satisfied, we must

have
a'" Z'''

sin ^3 —cos ^3
' '*

^/Ky,

The boundary conditions must be satisfied for all values of y and i. Since

y and t enter only through exponentials in the different waves, this requires

that we have
sin = k2 sin sin 6^

^
.(655),

.(5o6).
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From (666) we must have and hence from (666), sin0i = Bin0^.

Since 0i and 0^ must not be identical, we must have = tt - ^3. Thus

The angle of incidence is equal to the angle of reflection.

We further have, from equations (666) and (666),

sin^i Fi

sindl.T,""

where v is the index of refraction on passing from medium 1 to medium 2,

so that the sine of the angle of incidence is equal to v times the sine of the

angle of refraction.

Thus the geometrical laws of reflection and refraction can be deduced at

once from the electromagnetic theory. These laws can, however, be deduced

from practically any undulatory theory of light. A more severe test of a

theory is its ability to predict rightly the relative intensities of the incident,

reflected and refracted waves, and this we now proceed to examine.

696. The only boundary conditions to be satisfied are the continuity, at

the boundary, of Z and (cf. § 693). Thus we must have

Z' + Z'"==^Z" (568),

+ = (559).

On substituting from equations (662), (563) and (554), the last relation

becomes _
cos 0, (Z'- Z"') = cos Z" (560).

SO that all the boundary conditions are satisfied if

l+M 2~1 -m

where = (562).
fl2 AjCOS^^, ^ '

For all media in which light can be propagated, we may take /i = 1, so

that

__ /Ki cos 02 _ sin 01 cos 02
__

tan 0^

V ilTi cos 6^1

””
sin 6^2 cos

”
tail

^

Thus the ratio of the amplitude of the reflected to the incident ray is

Z'" _ \ — u _ tan 02 — tan 0^ _ sin (^2 — ^1]

Z' \+u~ tan 02 + tan ” sin (^2 + ^1) ^

This prediction of the theory is in good agreement with experiment.

This being so, the predicted ratio of is necessarily in agreement with ex-

periment, since both in theory and experiment the energy of the incident

wave must be equal to the sum of the energies of the reflected and refracted

waves.
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Total rejlection.

696. We have seen (equation (557)) that the angle 0^ is given by

sin ^2 = - sin
V

where v is the index of refraction for light passing from medium 1 to

medium 2. If v is less than unity, the value of sin 6^ may be either

greater or less than unity according as ^, > or < sin“* v. In the former case

sin 02 is greater than unity, so that the value of 0^ is imaginary.

This circumstance does not affect the value of the foregoing analysis in a

case in which 0^ > sin"^ v, but the geometrical interpretation no longer holds.

Let us denote
^
sin 0^ by p, and Vp- —1 by q. Then in the analysis we

may replace sin 0^ by p, and cos 0^ by iq, both p and q being real quantities.

The exponential which occurs in the refracted wave is now

giVti (x cos sill - \\t )

Thus the refracted wave is propagated parallel to the axis of y, i.e.

parallel to the boundary, and its magnitude decreases proportionally to the

factor At a small distance from the boundary the refracted wave

becomes imperceptible.

Algebraically, the values ofZ\ Z*' and Z'" are still given by equations (561 ),

but we now have

_ / cos ^2 q
^ V p2^i cos 0Y ^ cos 0^

'

so that u is an imaginary quantity, say ti = iv, and, from equations (561),

Z"' ^l^iv
Z' i + u~^\+iv'

= 1, SO that we may take

1 — iv\
where

(

1 “
2tan-«.

In the reflected wave, we now have

Z = e***
(-*cosfl,+|f sine, - F,ft
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Comparing with the incident wave, in which

Z—Z* (acos^i+ysinffi-

we see that reflection is now accompanied by a change of phase — 2/^ tan"^ v,

but the amplitude of the wave remains unaltered, as obviously it must from

the principle of energy.

Refraction of a Wave •polarised perpendicular to plane of incidence.

697. The analysis which has been already given can easily be modified

so as to apply to the case in which the polarisation of the incident wave is

perpendicular to the plane of incidence. All that is necessary is to inter-

change corresponding electric and magnetic quantities: we then have an

incident wave in which the magnetic force is perpendicular to the plane of

incidence, and this is what is required.

Clearly all the geometrical laws which have already been obtained will

remain true without modification, and the analysis of § 596 (total reflection)

will also hold without modification.

Formula (663), giving the amplitude of the reflected ray, will, however,

require alteration. We have, as in equation (564), for the ratio of the

amplitudes of the incident and reflected rays,

y 1 —U
y' \+U ,(565),

but the value of w, instead of being given by equation (563), must now be

supposed to be given by

j __
/ij iTj cos® ^2

this equation being obtained by the interchange of electric and magnetic

terms in equation (562). Taking //a= we obtain

u
cos $2 __

sin 02 cos 62 __
sin 2^2

K2 cos $1 ” sin 01 cos 0i sin
*

.(566),

whence, from equation (665),

y^ _ tan (^2-^1)

y tan (^* + ^1)

giving the ratio of the amplitudes of the incident and reflected waves. This

result also agrees well with experiment.

698. We notice that if 0^ + 02 = 90°, then 7'" = 0. Thus there is a certain

angle of incidence such that no light is reflected. Beyond this angle y" is

negative, so that the reflected light will shew an abrupt change of phase

of 180°. This angle of incidence is known as the polarising angle, because if

a beam of non-polarised light is incident at this angle, the reflected beam will
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consist entirely of light polarised in the plane of incidence, and will accordingly

be plane-polarised light.

It has been found by Jainin that formula (566) is not quite accurate

at and near to the polarising angle. It appears from experiment that a

certain small amount of light is reflected at all angles, and that instead of

a sudden change of phase of ISO"" occurring at this angle there is a gradual

change, beginning at a certain distance on one side of the polarising angle

and not reaching 180° until a certain distance on the other side. Lord

Rayleigh shewed that this discrepancy between theory and experiment

can often be attributed largely to the presence of thin films of grease and

other impurities on the reflecting surface. Drude found that the out-

standing discrepancy could be accounted for by supposing the phenomena

of reflection and refraction to occur, not actually at the surface between the

two media, but throughout a small transition layer of which the thickness

must be supposed finite, although small compared with the wave-length of

the light.

Waves in Metallic and Conducting Media.

699. In a metallic medium of specific resistance r, equations (A) of § 592,

namely
KdX _dy dff

^ ,

etc., must be replaced (cf. equation (546)) by

etc.

For a plane wave of light, the time may be supposed to enter through the

complex imaginary and we may replace ^ by ip. Thus the left-hand of

equation (567) becomes X, while the left-hand of equation (568) becomes

+ accordingly appears that the conducting power of the
\ T

medium can be allowed for by replacing K by K +
AsirO

ipT

600. In a non-conducting medium, the equation ^ satisfied by

each of the quantities X, F, Z, a, /9, 7 (cf. §577), reduces to
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when the wave is of frequency p/27r. The corresponding equation for a con-

ducting medium must, by what has just been said, be

(«’)•

an equation which has already been obtained in § 583 a.

For a plane wave propagated in a direction which, for simplicity, we shall

suppose to be the axis of rc, the solution of this equation will be

X= (570),

where (g + tr)»= - (571).

Clearly the solution (570) represents the propagation of waves with a

velocity V equal to p/r, the amplitude of these waves falling off with a

modulus of decay q per unit length.

On equating imaginary parts of equation (571) we obtain

so that q is given by
2wfip __ 2TrVfi

TV T

(572)

,

(573)

.

601. For a good conductor r is small, so that q is large, shewing that

good conductors are necessarily bad transmitters of light. For a wave of

light in silver or copper we may take as approximate values in e.G.S. units

(remembering that r as given on p. 342 is measured in practical units)

T = 1’6 X 10”® ohms =1’6 x 10* (electromag.), ya = 1, F= 3 x 10'®,

from which we obtain = 1*2 x 10®. It appears that, according to this theory,

a ray of light in a good conductor ought to be almost extinguished before

traversing more than a small portion of a wave-length. This prediction of

the theory is not borne out by experiment.

We shall see below (§ 600) that the difficulty is to some extent removed

on taking account of the presence of electrons in the metal. Before passing

to the more general theory in which the electrons are taken into account we

shall examine the phenomenon of metallic reflection according to our present

simple theory, and shall again find that the simple theory fails to agree with

the facts.
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Metallic Reflection,

602. Let us suppose, as in fig. 138, that we have a wave of light inci-

dent at an angle 6^ upon the boundary between two media, and let us suppose

medium 2 to be a conducting medium of inductive capacity Then (cf.

§ 599) all the analysis which has been given in §§ 593—597 will still hold if

we take to be a complex quantity given by

+ (574).

Since is complex, it follows at once that Fg is complex, being given by

and hence that the angle $2 is complex, being given (cf. equation (557)) by

(575).sin» e - ‘ —sin 0,- K,

Ag/Xa

The value of u is now given, from equation (562), by

_ Ao f^i cos^ 02

/4^'X COS* <9,

= sec« d, - tan* 0, (576)

(cf. equation (575)) for light polarised in the plane of incidence. For light

polarised perpendicular to the plane of incidence, the value of u is found, as

before, by interchanging electric and magnetic symbols.

On putting u = a + iff, we have, as before (equation (564)),

Z'"
__

1 — w _ 1 — a — 1/9

Z' ^ 1+u 1 + a + i/9

’

If we put this fraction in the form pe% then the reflected wave is

given by

Z= Z” =Z pe»«i(-*costf,+y8in«i- r,«+x/ir,)^

Comparing this with the incident wave, for which

Z-ss. Z ** cos sin fli -Vit)^

we see that there is a change of pha.se x reflection, and the amplitude

is changed in the ratio 1
: p. The electric force in the refracted wave is

accompanied by a system of currents, and these dissipate energy, so that

the amplitude of the reflected wave must be less than that of the incident

wave.

pe<x =
1 - a — 1/9

l + a + i/9'
We have
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so that

MetdRic Rejkction

,_(l-a)*+ y9» 4a

^ il+ay +^ (l+a)* + /8“‘

shewing that p < 1, as it ought to be. Also

' = - tan”^ tan"^ = - tan”* =

—

--
1-a 1 + a l-a*-/S*

603. Experimental determinations of the values of p and x
obtained, but only for light incident normally, the first medium being air.

For this reason we shall only carry on the analysis for the case of ^ = 0. It

is now a matter of indifference whether the light is polarised in or at right

angles to the plane of incidence ;
indeed it is easily verified that the values

given for p and x by equations (577) and (578) are the same in either case.

Taking for simplicity the analysis appropriate to light polarised in the

plane of incidence, and putting ^ = 0, /iti = 1, jK'i = 1, we have from equation

(576)

and, since u = a + il3, this gives

a^ = -

604. Let us consider the results as applied to light of great wave-length,

for which p is very small. For such values of p, a0 is clearly very large

compared with a* — so that o and 0 are nearly equal numerically, and we
may suppose as an approximation that (cf. equation (580))

—
When a and ^ are equal and large, equation (577) becomes

"-i-l-i-Vs; (“2).

Let us suppose that an incident beam has intensity denoted by 100, and

that of this a beam of intensity R is reflected from the surface of the metal,

while a beam of intensity 100 — R enters the metal. Then R may be called

the reflecting power of the metal.

The intensity of the absorbed beam is

100-ii=100 (l-p»)

= 200 ,(583).
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We notice that for waves of very great wave-length (p very small) jB

approximates to 100, so that for waves of very great wave-length all metals

become perfect reflectors. This is as it should be, for these waves of very

long period may ultimately be treated as slowly-changing electrostatic fields,

and the electrons at the surface of the metal screen its interior from the

effects of the electric disturbances falling upon it (cf. § 114).

Equation (583) predicts the way in which 100 —R ought to increase

as p increases, and an extremely important series of experiments have been

conducted by Hagen and Rubens* to test the truth of the formula for

light of great wave-length. The following table will illustrate the results

obtained f:

Metal

100 -R for \= 12fi

observed calculated

Silver 115 1-3

Copper 1-6 1-4

Gold 21 1-6

Platinum 3-6 3-5

Nickel 41 3*6

Steel 4*9 4*7

Bismuth 17-8 11*5

Patent Nickel P ... 5-7 5*4

„ M 70 62
Constantin 60 7*4

Rosse’s alloy 71 7-3

Brande’s and Schunemann’s alloy 91 8-6

In the calculated values, the value of K is assumed to be unity, and an

error is of course introduced from the fact that the wave-length dealt with,

\ = 12/1, although large is still finite.

It will be seen that the agreement between the calculated and the

observed values is surprisingly good, when allowance is made for the extreme

difficulty of the experiments and for the roughness of some of the approxi-

mations which have to be made.

605. Hagen and Rubens also conducted experiments for light of

wave-lengths \ = 25*5 /a, 8/a, and 4/a. On comparing the whole series it is

found that the differences between observed and calculated values become

progressively greater on passing to light of shorter wave-length. Drude has

conducted a series of experiments on visible light, from which it appears that

the simple theory so far given fails entirely to agree with observation for

wave-lengths as short as those of visible light.

* Annalen der Physik^ 11, p. 873; Phil, Mag, 7, p. 157.

t Phil, Mag, 7, p. 168.
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Electron Theory.

606. We have now reached a stage in the development of electromagnetic

theory in which it is clear that the simple conceptions which have so far been

employed are no longer adequate to give a complete explanation of the

phenomena. The conceptions on which the preceding analysis has been based

have been the original conceptions of Maxwell’s theory: it is natural now to

examine in what way the theory can be modified or improved by the intro-

duction of the more modern conceptions of the electron theory. Instead of

regarding a current as a continuous fiow of electricity, we shall take definite

account of the presence of electrons. We shall have to consider two sets

of electrons, the “free” and “bound” electrons of § 345 a, these being the

mechanisms respectively of conduction and of inductive capacity.

The application of an electric force X will result in a motion of free

electrons similar to that investigated in § 345 a, and in a motion of the

bound electrons similar to that discussed in § 151. But if X is variable

with the time, the inertia of the electrons will come into play and the

resulting motions will be different from those given by Ohms law and

Faraday’s law. We shall suppose that at any instant the current produced

by the motion of the free electrons is «/, and that that produced by the

motion of the bound electrons is

607. We may consider first the evaluation of Uf, Taking to be the

number of free electrons per unit volume, and allowing for change of notation,

equation (c) of § 345 a may be re-written in the form

GX=^TUf +
m dvf

Ne" dt
(584),

in which, as throughout this chapter, X is expressed in electrostatic units,

while Uf is in electromagnetic units, and t stands for ^INe\ so that t becomes

identical with the specific resistance t when the currents are steady.

This equation is applicable to our present investigation if we suppose

X to be periodic in the time of frequency p/27r. Taking X = the

solution of equation (584) is

—
T + ip

The quantity r’ here may depend on p, and without a full knowledge of the

structure of matter it is impossible to decide how important the dependence

of T on p may be. We are therefore compelled to retain it as an unknown

quantity in our equations, remembering that it becomes identical with r when

p a 0, and is probably numerically comparable with r for all values of p.
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We may note that the real part of the current, corresponding to the force

X = X, coapt, is

—j-? cos (pt— e) cos e,
T

in which tan e= » shewing that the inertia of the electrons, as repre-

sented in the last term of equation (584), results in a lag e in the phase

of the current, accompanied by a change in amplitude. The rate of generation

of heat by the current u/, being equal to the average value of uyXoCospt,

is found to be —7^ cos* 6 or *
, where

T Tj,

T sec* € = T + .(586).

It is worth noticing that for light of short wave-length the last term in Tp

may be more important than the first term t'. Thus Tp may be largest for

good conductors, and smallest for bad conductors.

608. We turn to the evaluation of uj,, the current produced by the small

excursions of the bound electrons, as they oscillate under the periodic electric

forces.

We shall regard a molecule (or atom), as in § 151, as a cluster of electrons,

and these electrons will be supposed capable of performing small excursions

about their positions of equilibrium. As has already been said (§ 192) it is

probable that this conception of the structure of the molecule represents only

a half-way house towards the truth, but it provides a picture or model of the

structure with the help of which many properties may bo explained.

Let 6i, ... be generalised coordinates (cf. § 548) determining the

positions of the electrons in the molecule, these being chosen so as to be

measured from the position of equilibrium. So long as we consider only

small vibrations, the kinetic energy T and the potential energy W of the

molecule can be expressed in the forms

2W = + (587),

rr= + 2bJA + + (588),

in which the coefficients Uu, aja, ...» 5ii, ... may be treated as constants.

By a known algebraic process, new variables <^i, <^2 i ••• can be found, such

that equations (587), (588) when expressed in terms of these variables

assume the forms

2Tr=a,c#)»*-»-aa<#»a’-f (589),

= (590),

these equations involving only squares of the new coordinates 0a i ••..

The coordinates found in this way for any dynamical system are spoken of as

the principal coordinates’* of the system.
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The equation of motion of the molecule, when acted on by no external

forces, is readily found to be (cf. equations (500))

= (s=l,2,...) (691).

These equations are known to represent simply periodic changes in

4>2 t ••• of frequencies ni/27r, given by

= (692).

It is possible that we have evidence of the frequencies of molecular vibra-

tion in certain of the lines of the spectrum emitted by the substance under

consideration; if so equations (592) connect the frequencies of these spectral

lines with the coefficients of the principal coordinates of the molecule.

609. If the molecule is now supposed to vibrate under the influence of

externally applied forces (such, for instance, as would occur during the

passage of a wave of light through the medium), equation (591) must be

replaced (cf. equation (508)) by

== “* (593),

where is that part of the generalised force** corresponding to the

coordinate which originates in the externally applied forces.

If X is the electromotive force in the wave of light at any instant, each

electron will experience a force Xe, and there will be a contribution of the

form ^gXe to

Again the electrostatic field created by the displacements of the electrons

in the various neighbouring molecules will contribute a further term to

The displacement of any electron through a distance ^ will produce the same

field as the creation of a doublet of strength Thus if there are M
molecules per unit volume, the total strength of the doublets per unit

volume, say F, may be supposed to be of the form

r^Me + y2<f>2 + . . .) (594),

and these will produce an electric intensity of which the average value may
be taken to be (cf. § 145) /vF, which must be added to the original intensity

X of the wave.

The total value of is therefore (X + «F), so that on replacing cr, by

its value from equation (592), equation (593) becomes

A(*. + n/^.) = r.e(Z + icr) (595).

If we suppose X to depend on the time through the factor then

(j} will clearly depend on the time through the same factor, and we may
replace by — Equation (595) now becomes

_ f^(Z-H^F)
(596 ),
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whence, by equation (594),

<“’>•

and if we write

this gives, as the value of F.

The current produced by the motion of the bound electrons is % in

electromagnetic, and therefore Gu^ in electrostatic units. Its value in

dP
electrostatic units is also (cf. § 345 a) Neu or where the summation

ot

is taken through a unit volume, and this in turn is equal to F. Thus

F ipO X

The total current, expressed in electromagnetic units, is

1 df

In calculating f we must remember that the polarisation produced by

the motion of the bound electrons is already allowed for in the presence

of the term ua. We accordingly take / equal simply to X/47r, and on

further replacing uj and Uf by the values found for them, the total current

becomes
ipX / 47r^ N CX
AtirG V I-kOJ^Z (600).

In place of equation (569), the equation of propagation is

As in § 600, the solution is

(601),

,(602).

Non-conducting media.

610. For a non-conducting medium t' = oo
, so that the last term in

equation (602) vanishes, and the right-hand member becomes wholly real.

For certain values of 6, this right-hand member is negative, so that ^ = 0,

shewing that light is transmitted without diminution; the medium is

perfectly transparent.
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For transparent media we may take /a = 1, and the velocity of propagation

V is given by
1 _ _ 1 / 1

47r^ \

If V is the refractive index of the medium, as compared with that of a

vacuum, V= Gjv, so that

i;> = l
AsirO

^ \ — k6
(603),

whence
1/^-1

i/*+ a
= Ke^M% Cm

.(604),

in which a =~ — 1, c* = A , SO that a and c, are constants.

Clearly (cf. § 609) the value of a can be calculated if we make
assumptions as to the arrangement of the molecules in the medium. On
assuming that the molecules are regularly arranged in cubical piling, fc is

found to have the value ^tt, so that a becomes equal to 2.

Formula (604) in which a is neglected altogether becomes exactly identical

with the well-known Sellmeyer or Ketteler-Helmholtz formula for the

dispersion of light, of w^hich the accuracy is known to be very considerable.

If a is put equal to 2, the formula becomes identical with dispersion formulae

which have been suggested by Larmor and Lorentz.

It has been shewn by Maclaurin* that formula (604) will give results in

almost perfect agreement with experiment, at least for certain solids, if a is

treated as an adjustable constant. The agreement of the formula is so very

good that little doubt can be felt that it is founded on a true basis. Mac-

laurin finds for a values widely different from 2 (for rocksalt a = 5’51, for

fluorite a = r04), the differences between these numbers and 2 pointing

perhaps to the crystalline arrangement of the molecules. For liquids and

gases we should expect to find a equal to 2.

Since M is proportional to p, the density of the substance, formula (604)

ought to vary directly as p when p varies. This law.indicates that
1/^-1

v^ +

a

with a taken equal to 2, was announced by H. A. Lorentz f of Leyden and

L. LorenzJ of Copenhagen in 1880. Its truth has been verified by various

observers, and, in particular, by Magri§ for a large range of densities of air.

From equation (604) it also follows that the values of — - for a mixture

v^-\
of liquids or gases ought to be equal to the sum of the values of for its

* Proe. Roy, Soe, A, 81, p. 367 (1908).

t Wied, Ann, 11, p. 70 (1880).

t Wied, Ann, 9, p. 641 (1880).

§ Phy$. ZeiUchrift, 6, p. 629 (1905).
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ingredients, a law which is also found to agree closely with observation on

taking a ^ 2.

611 . For certain other values of 0, the right hand of equation (602) (in

which T is taken infinite) is found to be real and positive. We now have r = 0

and the solution (601) becomes

(605),

shewing that there is no wave-motion proper, but simply extinction of the

light. Thus there are certain ranges of values ofp (namely those which make

{q + iry positive in equation (601)) for which light cannot be transmitted

at all; these must represent absorption bands in the spectrum of the sub-

stance.

Clearly {q + iV)* becomes positive when 6 is large and negative. It will

be noticed that 0, as given by equation (598), becomes infinite when p has

any of the values rij, nj, ..., changing from — oo to + oo as p passes through

these values. Thus the absorption bands will occur close to the frequencies

of the natural vibrations of the molecule. But just in these regions we have

to consider certain new physical agencies which cannot legitimately be

neglected when p has values near to rij, Wg, ...» although probably negligible

in other regions of the spectrum.

612. Equation (593) is not strictly true with the value we have assigned

to For, in the first place the vibrations represented by the changes in

are subject to dissipation on account of the radiation of light, and of this no

account has been taken. In the second place there must be sudden forces

acting in liquids and gases occasioned by molecular impacts and requiring the

addition of terms to throughout the short periods of these impacts. There

must be analogous changes to be considered in the case of a solid, although

our ignorance of the processes of molecular motion in a solid makes it im-

possible to specify them with any precision.

The effect of these agencies must be to throw the <^«*s of the different

molecules out of phase with one another and also out of phase with X and F.

The analysis of § 609 has made the ratios of Z’ : F : wholly real (cf. equa-

tions (596) and (597)), indicating that X, F and
(f>g

are exactly in the same

phase. The considerations just brought forward shew that these ratios ought

also to contain small imaginary parts.

The process of separating real and imaginary parts in equation (602) now

becomes much more complicated, but it will be obvious that for all values of

p, both q and r will have some value different from zero. Thus there is

always some extinction of light and some transmission, for all values of p, and

there is no longer the sudden change from total extinction to perfect trans-

mission. The edges of the absorption band become gradual and not sharp.
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But the molecular model now in use probably does not represent the details

of molecular action with sufficient truthfulness to make it worth trying to

represent the conditions now under discussion in exact analysis.

Conducting media.

613.

For a conducting medium we retain r in equation (602), and on

equating imaginary parts we obtain, in place of equation (572) of § 600,

27rp/xT^ 27r/ijp

T* + -

.(606),

where Tp is given by equation (586). Thus equation (573) of § 600 becomes

replaced by

5 =?^ (607).
Tp

For visible light this gives a very much smaller value of q than that

discussed in § 600, and the value of q will obviously be still further modified

by the considerations mentioned in § 612.

614.

On comparing the total current, as given by formula (600), with the

value assigned to it in the analysis of ^ 594—598, we see that all

this earlier analysis will apply to the present problem if we suppose K to be

a complex quantity given by

47rO
ir=i/^+

where v is given by formula (603).

If, as in § 603, we put

.(608),

we find
fj,2

a/3 = -
pTpfl2

.(609),

so that the reflecting power R of a metal may be calculated from equation

(577) in terms of

615.

On comparing formulae (609) with experiment, the general result

appears to emerge, that, in order to account for the optical properties of

conductors in this way, the number of free electrons in conductors must be

comparable with the number of atoms. According to a paper by Schuster,
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published in 1904*, the ratio of the number of free electrons to atoms ought

to range from 1 to 3 in various substances; Nicholson f, as the result of a more

elaborate investigation, obtains values for this ratio ranging from 2 to 7.

This result discloses a difficulty from which the electron theory, in the

form in which we have so far considered it, has shewn little power of extri-

cating itself.

Specific Heats and Electrical Conductivity,

616. According to the well-known law of Dulong and Petit the atomic

heats of a large number of elements have values which are approximately all

equal. Nernst and Lindemann have recently determined the specific heats of

a large number of elements, and have found that, for all the elements they

have examined, the atomic heats measured for constant volume {i,e. after

correction for expansion arising out of change of temperature) have all the

same value 5*95. Now the atomic heat represents the increase per unit rise

of temperature in the energy of the solid measured per atom of its structure.

This energy can be regarded as the sum of two contributions, namely the

energy of the atoms and the energy of the free electrons. The energy of the

atoms can be calculated by the well-known methods of the Kinetic Theory of

matter, and it is found that this energy will provide a contribution to the

atomic heat equal exactly to the total amount of the atomic heat, namely

5’95; in other words the contribution from the energy of the free electrons is

as small as the experimental error. But the contribution from a given number

of free electrons also admits of theoretical calculation if we make the assump-

tion that their motion conforms to the ordinary dynamical laws. If there

were as many free electrons as one-tenth of the number of atoms, the contri-

bution to the atomic heat would be *30, so that the total atomic heat would

be 6’25, a number much too large to be reconciled with the experiments of

Nernst and Lindemann.

617. The foregoing figures refer only to matter at comparatively high

temperatures. The specific heats of the elements have however been deter-

mined by Nernst and Lindemann through a very wide range of temperatures,

namely from normal temperatures down to the lowest temperatures now
available in the laboratory. And it has recently been shewn by Debye that

the atomic heats found by these experiments are, at all temperatures, almost

exactly equal to those to be expected on theoretical grounds on the supposition

that the free electrons contribute nothing to the specific heat. The observed

atomic heats agree so well with those calculated from theory, for all substances

examined and at all temperatures available, that the conclusion seems to be

inevitable that the number of free electrons is very small compared with the

number of atoms.

Phil, Mag. February 1904. t Phil. Mag. Aug. 1911.
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618. Thus we are led to the conclusion that although the present electron

theory may shew a certain power of explaining the optical properties of

metals, qualitatively at least, yet this explanation demands the presence of

a far greater number of free electrons than can be reconciled with the values

of the specific heats.

If the present electron theory were in other respects satisfactory, the

difficulty just revealed might be thought to constitute a serious defect in the

electromagnetic theory of light. But the present electron theory is far from

satisfactory in other respects; indeed a difficulty very similar to that just

disclosed has been, found to arise in connection with a much simpler pheno-

menon, namely the conductivity of metals. We have seen (§ 345 a) that the

electron theory requires that in a good conductor the number of free electrons

should be large; approximately how large it must be is a matter which can

also be determined by further analysis. The requisite analysis has been

given by Drude.

619. We may suppose, as a rough approximation to the truth, that in a

conductor each free electron moves freely for a certain length of time t

between two consecutive collisions with molecules. In the notation already

used in § 346 a, the momentum gained in this time will be Xet If we

suppose this momentum to be entirely checked at each collision (cf. §§ 355,

373), the average forward momentum of all the electrons at any instant will

be \Xetf and since this is equal to mu in the notation of § 345 a, we have

ti

\Xe
2 m (610),

and hence (by equation (6), § 345 a)

i = Next = -— tX
JL m ,(611).

Thus the quantity 7 of § 345 a is, as regards order of magnitude at least.

equal to—

,

t
and the specific resistance t of a substance will be given by

I INe^

T 2 m (612),

whereN is the number of free electrons per cubic centimetre. Now for silver

or copper t= 1'6 x 10“* ohms= 1*8 x 10”*® in electrostatic units. The value of

1 e®- — in electrostatic units is 1’26 x 10®, and hence to give to t the value
27/1

approprifite for silver or copper we must have Nt=^5x 10® approximately. In

silver or copper the number of atoms per cubic centimetre is of the order of

10“ so that if the observed values of the specific heats do not allow ofN being

more than one-hundredth part of this we must at most suppose that N is of

the order of 10**, and this requires ^ to be comparable with 5 x 10”** at least.
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Since the average velocity of the free electrons is believed to be about lO^cms.

per second (§ 345 a), this would require each electron to travel an average

distance of 5xl0~”cms. between consecutive violent collisions. This appears

to be too large to be reconciled with present beliefs as to the structure of

matter.

The difficulty becomes much worse when we consider the phenomenon at

low temperatures. Kamerlingh Onnes has found for silver at a temperature

of 13’88® abs. a resistance only equal to 0*7 per cent, of that at 0® C. Thus in

silver at this low temperature we must have Nt of the order of 10", so that if

we take N= 10“ as above, t = 10“*. This velocity of free electrons at this low

temperature is of the order of 2 x 10^ so that the average distance travelled

would be about^ cm.

620. We have now found that contradictions exist in connection with

the Electromagnetic Theory of Light, the theory of Specific Heats of metals,

and the theory of Electric Conductivity, so long as we treat these questions

in terms of ordinary dynamical laws and Maxwell’s electromagnetic equations.

A large accumulation of evidence, of which our discussion has touched only on

a small fringe, suggests that a new system of dynamics and a new electron

theory is needed. So far as can be seen the special feature of this new theory

must be that the interaction between electrons and radiation is of an entirely

different nature from that imagined by the classical laws. The new theory is

in existence and is generally known as the Quantum-theory. A brief intro-

duction to it will be found in the last chapter of the present book.



CHAPTER XIX

THE MOTION OF ELECTRONS

General Equations.

621 . The motion of an electron or other electric charge gives rise to

a system of displacement currents, which in turn produce a magnetic field.

The changes in this magnetic field give rise to new electric forces, and so on.

Thus the motion of electrons or other charges is accompanied by magnetic

and electric fields, mutually interacting. To examine the nature and effects

of these fields is the object of the present chapter

The necessary equations have already been obtained in § 574, but the

current % v, w will now be regarded as produced by the motion of charged

bodies. If at any point y, z there is a volume density p of electricity

moving with a velocity of components u, r, w, then the current at a?, y, z ha^

components pl\ pv, pw in electrostatic units. Since u, v, w in equations (529)

are measured in electromagnetic units, they must be replaced by pujC, pvjG,

p wjC, and the equations become

_ 07 __
i

ay

Equations (528), namely
lda_^dZ dY

remain unaltered, and the two sets of equations (613) and (614) provide the

material for our present discussion.

When we had these same equations under review in
§ 574, G was regarded

merely as the ratio of the units. We may now regard G as being the velocity

of light, this being also the velocity of any other electromagnetic disturbance

in free space.

622 . If we differentiate equations (613) with respect to a?, y, z and add,

we obtain

0/.0/.0/. d fdf 0(7 dh\

We have also, as an equation of continuity, expressing that the increase

in p in any small element is accounted for by the flow of electricity across the

faces by which the element is bounded,

^(p^)+l(py)+li(p^)+^r^’
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By comparison with the equation just obtained, we have

[oh. XIX

dt \9a 9w dzj dt
’

of which the integral is our former equation (63), namely

9/^9y^9A_^
+^ +

Similarly, on differentiating equations (614) with respect to an, y, z and

adding, we obtain

dt \0a? 0y 0-a:/

“ *

of which the integral is our former equation (362), namely

9o 96 9c_^
Tx^^^dz-^

623. At a point at which there is no electric charge {p 0), equations

(613) and (614) become identical with the systems of equations (A) and (B)

of § 577, and the quantities X, Y, Z, a, 7 must all satisfy the differential

equation (534), namely

^ = (ei7)-

Force of a Moving Electron.

624. Consider afresh the problem of which a preliminary discussion has

already been given in § 572, of a single electron moving with a velocity v

parallel to Ox, Since the field necessarily moves with the electron, the rate

of change of any quantity % as we follow it in its motion must be nil. Thus

we must have

(a+4)*-"
d 9

so that ^ may be replaced ^7 “ throughout our equations.

Equation (617) becomes

0aj* \0a!;* 0y* 0z®/
*

or, since a® = G^IKp,

(
Kfi,u*\d>x

V ^ + 9F
- ®

Also equations (613), (614) assume the forms

<«»).

Gdx^ By dz
(620).
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625.

In most problems, the velocity of motion u is small compared with

the velocity of light, so that v\C may be treated as a small quantity.

Equation (619) shews that the magnetic field set up by a moving charge may
be regarded as small if ij\0 is small. The same is of course true of the field

set up by any number of moving charges provided all their velocities are

small compared with that of light.

When ulQ is small, equation (620) shews that

dy dz

will be a small quantity of the second order. Let us suppose, until the con-

trary is stated, that uIG is so small for each moving charge that u^/G^ may
legitimately be neglected. Then

X
dz

0, etc..

so that the forces X, F, Z are derivable from a potential H. When u^/G^ is

neglected equation (618) reduces to = 0. This equation is satisfied by

X, F, Z separately, and therefore also by fl. Since X, F, Z also satisfy

equation (615), or

dX dY dZ ,

dx dy dz

it is clear that the values of X, F, Z are exactly the same as if the moving

charge were instantaneously at rest.

626.

This is exactly the assumption we made in § 572 in calculating the

magnetic force from a moving charge. The forces there calculated, namely

a = 0, P
u ez

c^’ y-C'^ (621),

are now seen to be accurate provided u^/G^ may be neglected, but not

otherwise.

The Force acting on a Moving Electron.

627.

The assumption we have made that u/G is small is the same as

assuming to a first approximation that G is so great that the medium may be

supposed to adjust itself instantaneously to changes occurring in it, just as

an incompressible fiuid would do. The time taken for action to pass from

one point to another may be neglected. We may accordingly assume that at

any instant the mechanical actions of any two parts of the field upon one

another are such that action and reaction are equal and opposite.
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From equations (621), it appears that an electron moving with velocity

0, 0 at the origin will exert a force of components

^ ^uemz ue my

upon a magnetic pole of strength m at x, y, z. It follows that a magnetic

pole of strength m at d?, y, z will exert a force of components

0,

ue mz
'C~^*

ue my
G r*

(622)

upon the moving electron at the origin.

628. If we have a number of magnetic poles, the resultant force upon

the moving electron has components

.(623)^ ue ^ mz ue ^ my

and the components of magnetic force at the origin are given by (cf. § 408)

^mx .

a = — 2 —u-
, etc.

Thus the force on the moving electron may be put in the form

0. (624).

Plainly the force on the electron will be given by formulae (624), whether

the magnetic held arises from poles of permanent magnetism or not. It is

clearly a force at right angles both to the direction of motion of the electron,

and to the magnetic force a, yS, 7 at the point. IfH is the resultant magnetic

force, and 6 the angle between the directions of H and the axis of a;, then

the resultant of the mechanical force is ueH sin BjG.

629. If the electron has components of velocity u, v, w, the component

of the mechanical force on it will be

^{yv-fiw). ^(aw-yu), ^(0u-ar) (625).

Since the mechanical force is always perpendicular to the direction of

motion, it does no work on the moving particle; and, in particular, if a

charged particle moves freely in a magnetic held, its velocity remains con-

stant.

The existence of this force explains the mechanism by which an induced current is set

up in a wire moved across magnetic lines of force. The force (625) has its direction along

the wire and so sets each electron into motion, producing a current proportional jointly to

the velocity and strength of the field

—

i.e. to dNldt.
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The Hall Effect630.

Very direct evidence of the existence of this force is provided by

the “Hall Effect.” Hall* found that when a metallic conductor conveying

a current is placed in a magnetic field, the lines of flow rearrange themselves

as they would under a superposed electromotive force at right angles both

to the direction of the current and of the magnetic field. The same effect

has also been detected in electrolytes and in gases.

The Hall Effect is of interest as exhibiting a definite point of divergence

between Maxwell’^ original theory and the modern electron theory. Accord-

ing to Maxweirs theory, a magnetic field could act only on the material

conductor conveying a current, and not on the current itself, so that if the

conductor was held at rest the lines of flow ought to remain unaltered f.

The electron theory, confirmed by the experimental evidence of the Hall

Effect, shews that this is not so, and that the lines of flow must be altered

in the presence of a transverse magnetic field.

Motion of a charged particle in a uniform magnetic field.

631.

Let a particle of charge e move freely in a uniform magnetic field

of intensity H. Let its velocity be resolved into a component A parallel to

the lines of force, and a component B in the plane perpendicular to them.

By what has just been said (§ 629) both A and B must remain constant

throughout the motion, and there will be a force eHBjC acting on the particle

in a direction perpendicular to that of B, and in the plane perpendicular to

the lines of force. Thus if rn is the mass of the particle, its acceleration must

be eHBImC in this same direction.

Considering only the motion in a plane perpendicular to the lines of force,

we have a velocity B and an acceleration eHBImC perpendicular to it. This

latter must be equal to B^/p, where p is the curvature of the path. Thus

^ constant, shewing that the motion in question is circular.

Combining this circular motion with the motion parallel to the lines of

force we find that the complete orbit is a circular helix, of radius BmCjeH,

described about one of the lines of magnetic force as axis.

632.

By measuring the curvature of an orbit described in this manner,

it is found possible to determine ejm experimentally for electrons and other

charged particles (cf. § 665 below). Incidentally the fact that curvature is

observed at all provides experimental confirmation of the existence of the

force acting on a moving electron.

* Phil. Mag. 9 (1880). p. 225.

f Maxwell, Electricity and Magnetism^ § 501.
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The Zeeman Effect

633. When a source of light emitting a line-spectrum is placed in a

strong magnetic field, the lines of the spectrum are observed to undergo

certain striking modifications. The simplest form assumed by the pheno-

menon is as follows.

If the light is examined in a direction parallel to the lines of magnetic

force, each of the spectral lines appears split into two lines, on opposite sides

of, and equidistant from, the position of the original line, and the light of

these two lines is found to be circularly polarised, the direction of polarisation

being different for the two.

If the light is. examined across the lines of force, these same two lines

appear, accompanied now by a line at the original position of the line, so

that the original line now appears split into three. The side lines are

observed to be plane polarised in a plane through the line of sight and the

lines of force, while the middle line is plane polarised in a plane perpendicular

to the lines of force.

634. These various phenomena were observed by Zeeman in 1896, and

an explanation in terms of the electron theory was at once suggested by

Lorentz.

Let us first examine a simple artificial case in which the spectrum contains

one line only, assumed to be produced by the oscillations of a single electron

about a position of equilibrium.

If the frequency of this oscillation is p/27r, the equations of motion of the

electron must be of the form

m -mp% etc (626),

in which Xy y, z are the coordinates of the electron referred to its position of

equilibrium.

Next suppose the electron to move in a field of force of intensity H
parallel to the axis of x. In addition to the force of restitution of components
- mp^Xy - mp% - mp% the electron will be acted on by a force (cf. formulae

(625)) of components

^ ^ dz ^ eH dy
* ~Gdi'

In place of the former equations, the equations of motion are now

d?x _

d'y
,

eH dz

d^z eH dy

G dt

i^dj
G dt)

.(627).
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The solutions of these equations are

x =A cos (pt — e),

y = Ai cos {q^t - €i) + A^ cos {q^t - ea),

z^A^ sin {q^t- c^) + A^ sin (q^t - e.,),

in which A, Ai, A^, e, Ci, 6a are constants, and qi, q^ are the roots of

eH
-mq^ = -mp^-{--^q (628).

For even the strongest fields which are available in the laboratory, the

value of the last term in this equation is small compared with that of the

other terms, so that the solution of equation (628) may be taken to be

^ eH

The original vibrations of the electron, all of frequency p, may now be

replaced by the three following vibrations

:

I. a; = il cos(pi — e), y = 0, z = 0,

II. * = 0. y = yl.cos[(p + ^^^)«-e.], ^.sin .

III. * = 0, y = ^cos[(^-^,

.

=

Vibration I of frequency p is a linear motion of the electron parallel

to Ox, the direction of the lines of magnetic force. The magnetic force in

the emitted radiation is accordingly always parallel to the plane of yz and

vanishes immediately behind and in front of the electron (cf. § 618). Thus

there is no radiation emitted in the direction of the axis of x, and the

radiation emitted in the plane of yz will be polarised (§ 592) in this plane.

Vibrations II and III represent circular motions in the plane of yz of

eH
frequencies p ± • Clearly the radiation emitted along the axis of x will

be circularly polarised, while that emitted in the plane of yz will be plane

polarised in a plane through the line Ox and the line of sight (the motion

along the line of sight sending no radiation in this direction). Thus the

observed appearances are accounted for.

636. The analysis just given explains the observed facts of the normal

Zeeman Effect, but only in terms of a model which is known not to be in

accordance with the actual facts of atomic structure. As was pointed out by

Larmor, the explanation just given can be easily generalised so that the atomic

model shall at least accord better with the facts of nature than that we have

just had under discussion.
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If an electron is moving in a field of magnetic force of intensityH parallel

to the axis of x, its equations of motion will be

<«»)•

C dt)

where Fx, Fy, Fg are the components of the force which acts on the electron

apart from the superimposed magnetic field H. These equations of course

contain equations (627) as a special case.

If X, y, z were coordinates measured with reference to a system of axes

rotating with uniform angular velocity o> about the axis of x in the direction

from Oy to Oz, the component of the velocity of the point y, z in space

would be given by

dx ^

dy

and the accelerations in space by

Bv dv dv dv ?v d'y dz ,

dz dt^

and similar equations.

When the angular velocity is so small that o)* may be neglected, the

system of accelerations, as given by equations such as (631), reduce to

Bu
__
d^x '

Bv d^y - dz

Bw d^z
. „ dy

Thus if a> is defined by the equation

eH
(633),
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the equations of motion (629) of the electron in the superimposed magnetic

field become

Zf

Zl

which would be precisely the equations of motion of the electron referred to

axes at rest with the magnetic field non-existent. Thus the superposition

of the magnetic field parallel to the axis of x is seen to have had precisely the

same effect on electronic motion as the setting of the axes in rotation with

an angular velocity u defined by equation (633).

Before the magnetic field is superposed, let the electron describe a path

such that when its coordinates arc resolved into simple-harmonic terms by

Fourier's theorem, one of the constituent simple-harmonic vibrations is of

the form

®= 0, y = ill cos (pt — €i), r =a ill sin {pt — ci).

Assume that one of the lines in the spectrum of the atom when in its natural

state corresponds to a frequency p/27r. The superposition of a magnetic

field has the same effect on the coordinates x, y, z as the setting of the axes

in rotation with an angular velocity oi, so that when this field is superposed

the coordinates of the electron may be taken to be

= y = iliCOs[(p-l- ©)< — €i], ^ = i4isin[(p-l-o))< - ej.

It is at once seen that the vibration is identical in general type with the

vibration II that we found in § 634, so that the discussion of the polarisation

and change of frequency there given will apply to the present case also.

636. The discussion of the last section is applicable to any electron

describing an orbit such that its motion can be resolved into oscillations of

definite frequencies. It shews that each spectral line ought in general to be

resolved into a triplet of three equidistant lines, a line initially at p giving

place to lines at p + where

w
This represents what is normally observed, and a formation of triplets of

this type is commonly spoken of as the normal Zeeman Effect. Certain lines

separate out in a more complex way in the presence of a magnetic field, these

lines having generally appeared as multiple lines (doublets, triplets, etc.) even

before the magnetic field was turned on. This is known as the complex or

abnormal Zeeman Effect, and is not covered by our simple theory.
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In the normal Zeeman Effect, the frequency difference, predicted by

equation (634), is constant for all the lines of the spectrum. Observationally

this is found to be the case, and equation (634) makes it possible to determine

a value of ejm from the observed separation of spectral lines in a magnetic

field of known strength. The value so obtained proves to be in good agree-

ment with values for ejm measured by other and more direct methods.

The General Equations of Moving Electrons.

637. We now return to the general equations of §621, namely

^7
^ etc.
cy dz

lda_d^_dY
^'G'dt''dy

(635)

,

(636)

,

and discuss the field set up by the motion of electric charges when there is

no restriction as to the smallness of their velocities.

On multiplying both sides of equation (636) by y, and differentiating with

respect to the time, we obtain

47r;i d /
^

df\ _ d /dc db\

G dt V
^ ^ hi) ^ dt dz) ’

Using relations (636) we readily find that the right-hand member

L9y\9a? dy) dz\dz dx)j

Putting iirf= KX and^ becomes
dy

KtJk d^X
'O'dF

^ ^ ^ /7/»
“ Qa ^

47r dp

638. This is the differential equation satisfied by X. Similar equations

are of course satisfied by Y and Z. If we divide both sides of equation (636)

by fi and differentiate with respect to the time, we readily find that a satisfies

the differential equation

We shall shortly obtain these differential equations in another way.
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Introduction of the Potentials.

639. With equations (636) we may combine the relation

+ S = 0 (637)

(equation (616)), and it follows, as in §443, that we can find a vector-potential

of components F, G, H connected with a, 6, c by the relations

(638).

and with X, Y, Z by the relations (cfi § 530)

^ + (639),

in which ^ is a function, at present undetermined in the general case, which

becomes identical with the electrostatic potential when there is no motion

640. We have seen (§ 442) that equations (638) are not adequate to

determine F, G, H completely, and hence ^ also (cf. equation (639)) is not

fully determined.

Let Fq, Go, Ho, 'Po be any special set of values satisfying equations (638)

and (639). Then the most general values of F, G, H are given by (cf. §442)

+ (640),

where % is any arbitrary single-valued function.

To find the most general value of "Y, we have from equation (639)

dx ^C\dt dxdtj dx Cdxdt*

and similar equations in y and z, so that, on integration,

^ = ^ 57 + fif), a function of t only (641).
0 ot

From (640) and (641) we obtain

ox'^ dy^ dz 0 dt dx ^ dy dz ^ C dt ^ O dt^

+ ^/'(0 (642).

The function % is entirely at our disposal, so that

dt^

may have any value we please to assign to it. Let us agree to give to x fi'ich

a value, for every instant of time and all values of x, y^ z, as shall make the

right-hand member of equation (642) vanish.
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The value of x is now fixed, except for a set of values of x such that

^ ^ c* at*

at every instant and point, these values of x representing of course contribu-

tions that might arise from a set of disturbances propagated through the

medium from outside.

Except for such additional values of the values of F, G, H, ^ are now
uniquely determined by equations (640) and (641). The vector-potential

will in future mean the special vector of which these values of F, G, H are

the components, while the corresponding special value of will be called the

“ Electric Potential.”

From equation (642') it follows that the vector-potential and the electric

potential are connected by the relation

dx ^ dz C dt
.(643).

Differential Eqitations satisfied by the Potentials.

641. If we differentiate equations (639) with respect to x, y, z and add,

we obtain

\0a? dz) C dt\dx dy dz J

which, on substituting from equations (643) and (639), becomes

O dt^ K ^

the differential equation satisfied by We notice that for a steady field it

becomes identical with Poisson’s equation, while in regions in which there are

no charges it becomes identical with the equation of wave-propagation.

642. To obtain the differential equation satisfied by F, we transform

equation (635) by the use of equations (638). We have

AiiTfi f ,
df\ 0c 05

~V~ di) ~^~^z
dH^(^1 _ ^JL

dy\dx cy) dz\dz dx

dej *

whence, from equations (643) and (639),

C* dt^

4nr/jt

-VTPO ..(645),

the differential equation satisfied by F, Similar equations are of course

satisfied by G and H.
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Differential Equations satisfied hy the Forces.

671

643. Operating on equation (639) with the operator

have

(?• ” Odd C^' rftV O dt^)

<»“)•

This is the differential equation satisfied by Z, and similar equations are

satisfied by Y and Z. These same equations were obtained by a more direct

method in § 637.

644. For the differential equation satisfied by a, p, y we have, from

equations (638) and (645),

_
" G‘de~^i\ C'deJKdy dzj

_ 4nr (d(p\r) a(pK)1— cili;
—

and similar equations for and 7. These equations agree with those already

obtained in § 638.

Solution of the Differential Equations.

645.

It will be seen that all the differential equations are of the same

general form, namely

<«“>

where <r arises from electric charges, at rest or in motion.

Clearly the value of x regarded as the sum of contributions from

the values of o- in the different small elements of volume. The simplest

solution for x arising from a distribution of cr at and close to the

origin, <r being zero everywhere else.

For this special solution ^ function of r only, which must satisfy

V.y=i^^ dt^

everywhere except at the origin. Proceeding as in § 578, and rejecting the

term which represents convergent waves, as having no physical importance,

we obtain the solution (cf. equation (536))

where/ is so far a perfectly arbitrary function.

(649).
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Close to the origin, this reduces to

.(650),

and it now appears that in equation (648) the middle term becomes insig-

nificant near the origin in comparison with the first term Thus close

to the origin the equation becomes identical with Poisson's equation, and the

integi'al is

jJJ<rdivdt/dz

.(651),

where the integral is taken only through the element of volume at the origin

in which <r exists, and t represents the integral of a taken through this

element of volume.

On comparing solutions (650) and (651), both of which are true near the

origin, we find that

/(~aO= T (G52),

and this determines the function / completely. The general solution (649)

is now fully known, and by summation of such solutions the general solution

of equation (648) is obtained.

Let P, Q be any points distant r apart; let t be any instant of time, and

let to denote the instant of time rja previous to it, so that to = t — rla.

Clearly to is the instant of departure from P of a disturbance reaching Q at t

We may speak of to as the “retarded time” at P corresponding to the time

t at Q.

With this meaning assigned to to, we have

/(r - at) =/|- a Q • =/(- at,) = t,

where t is evaluated at time to (cf. equation (652)). If we agree to denote

by
[<f>]

the value of tp estimated at the retarded time at the point at which <p

occurs, then this value of t will be expressed by [t], and solution (649)

becomes

x = (653).

The most general solution of equation (648), obtained by the summation

of solutions such as (653), is

the last form applying when the distribution of <r occurs only at points or in

small regions so small that the variations of the retardation of time through

each region are negligible.

The analogy of Poisson s equation and its solution in electrostatics (cf.

§§ 49, 40, 41) is obvious.
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646.

given by

From equations (644) and (645) it follows that the potentials are

[p]dxdydz

u\dxdydz
etc.

(655),

.(656).

These potentials are commonly spoken of as “Retarded Potentials.’* They
differ from the ordinary potentials, in which the finite velocity of propagation

is not taken into account, only in that the quantities in the numerators must

be evaluated at the retarded times appropriate to the point.

The solution of equations (646) and (647) may be similarly written down,

but it is usually easier to evaluate the forces by differentiation of the

potentials.

If the moving electrons in formula (656) are conveying currents in linear

circuits, the formula becomes (on taking /i. = 1)

where the summation is over the different circuits and i* denotes the

dx
a?-component of the current, which may also be expressed as This

formula may be compared with (419), from which it differs only in that it

takes account of the finite time required for the propagation of electro-

magnetic action.

The Field set up by Moving Electrons.

647. An electron is a charge of total amount e spread through a very

small volume. When we attempt to apply the equations just obtained to the

motion of electrons, a complication arises. We must not integrate p or pu
through the space occupied by the electron because the retarded time varies

from one part of the electron to another. And this complication does not

disappear even when we pass to the limit and suppose the electron to be of

infinitesimal size.

Let the electron be moving with a velocity (not necessarily uniform) of

which the components at any instant are u, V, w. Suppose we wish to

evaluate the potentials at x\ y\ z' at time t

Let X, y, z be the position of any element of the electron at the retarded

time defined by

<0= < — - where r* = («' — a?)* + (y* - y)“ + (^' - ^)*.
(h

We may speak of a;, y, z as the effective position of the element of the

electron under consideration, since the clement contributes to the potentials

we are in search of, only when it is at x, y, z.
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The retarded time io will be different for different parts of the electron.

Let its value at the centre of the electron be 6^, Let the’ position of the

element under consideration at time 6q be Zq, Then the element which

is at yo, Zq at time Oq has moved to x, y, z by time ^o, so that

x = Xo-{- u(to- 6o) + i u(to-0oy+ ••• etc.,

where r, r, ir refer to the velocity of the electron at time 0o.

Remembering that U is a function of x, y, z, we obtain on differentiation

with respect to x,

—* = 1 ~^ { + u (to — Oq) + i (to — OoY + .

.

and similarly,

ly
“ -^ 1^^+ ^(<0 - ^.) +H (<«

-

Those elements of the electron which have their effective positions inside

a small element of volume dxdydz occupy at the fixed time do an element of

volume dxodyodzo. The ratio of these elements of volume is given by the

usual Jacobian determinant

dxodyodzo ^
dxdydz

^0
dx*

dx ’

dzo

dx*

By*

^!/o

By *

Bzq

Bs^

Bz

Bz

Bzo

Bz

On inserting the values of the differential coefficients as just calculated,

and expanding the determinant, we readily obtain

dxodyodzo .1- 2 ^"{t^+{;(<o-^o) + Ji/(<o-^o)’‘+...),dxdydz

all terms in u, i", w of degree higher than the first being found to disappear.

If the electron is small in comparison with its distance from the point

x\ y\ z\ local variations of x, y, z throughout the electron may be neglected,

so that to — do may be neglected, and in the above expression a?, y, z^ r may be

supposed to refer to the centre of the electron. In this case we have

dxdydz x,y.zGx a\ Bx By Bzj

or, if Vr denote the radial velocity of the electron towards the point x\ y\ z'

at the instant I = do,

dxpdyodzo _ j __

dxdydz a
'

Equation (655) may now be written in the form

1 f [ fP dx,4?/odzo
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where all quantities are evaluated at the time t= 0^, or since

fffpdiCadytdzt = e,

where square brackets signify that the quantity inside is to be evaluated

at the retarded time as estimated at the electron. Similarly equation (656)
becomes*

C
U -)

r(
\ aj_

Suppose it is required to calculate the field at a point 0 at time t Let
E be the position of one of the electrons in the

field at a time such that

a

where r = EO. Then the quantities in square

brackets must be calculated for this electron in

the position E at the time t^.

Let the velocity of the electron at the time

be V in a direction EF making an angle 6 with i*^*!?* 13^^-

EOf and let EF be the distance V {t —Q which the electron would describe

by the time t if its velocity remained constant.

If FO is the perpendicular from F on to EO, the intercept EG is given by

EG = EF cos ^ = F cos ^ - Q.

Now Y QOS 0 is simply the component Vr of velocity along EO^ while

t — tQ = rja. Thus EG = rVri'a and

00 = r-EG = r^l-^y

The formulae for the potentials now become

^'‘KOG^ GOG'

If squares of VI

G

are neglected, the angle FOE in figure 139 is a small

angle and OG is approximately equal to OF, Thus as far as terms of the first

* These formulae for and F were first given by Lienard {VTclairage Eleetrique, 1898) and

E. Wiechert {Arch. Neerland. 5, 1900, p. 649). Our proof has followed closely the method given

by Lorentz (Theory of Electrons^ p. 254) ; an alternative proof is given by Schott (Electromagnetic

Radiation, 1912, p. 22).
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order in VIG the potentials are

i -£_• gy_ M

where F is the position of the electron at the instant at w'hich the potentials

are evaluated, except for a correction arising from accelerations or sudden

changes in the motion of the electron.

648. In the case in which u, v, w are treated as small we can also write

down the potentials directly from equations (655) and (656). For in this case

dyo dzQ becomes equal to da: dy dz and the equations assume the forms

w
Kr'

F=
C r ’

where r is the distance from the point y\ z* at which the forces are measured

to the effective position of the electron. Thus the magnetic forces are given by

Since [ew] is a function of i — r/a, we have

0

dr

so that

d [ew\^r/- y d[ew]^ y'-

y

Q [ew] [eir]|

r (a92
/' r dr r ^ r

and on substitution in equations (657) we obtain formulae for a, y.

These formulae are seen to contain terms both in and At a great

distance from the electron the former alone are of importance, and the com-

ponents of force become

etc. .(658).

Similarly we find for the electric forces at a great distance

V M [«9^] .A = ~ ^ —
, etc

(7* r
.(659).

For a single electron moving along the axis of x with an acceleration 0,

in free space for which K = 1, the components of force assume the simple

forms

a=0. /8=-

X=-

C>r»

1
F=0, Z=0

.(660),

these being accurate only at great distances from the electron.
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Radiation of Energy.

649. We saw in § 576 that the flow of energy across any closed surface

is given by

Jf
(in, + mHy + nn,) dS (661),

where

n. = ^(F7-Z)9).etc.

In proving this the energy was assumed to be localised in the medium in

the way imagined by Maxwell, but if we identify our closed surface with a

sphere at infinity this assumption is no longer necessary. For independently

of this assumption, the total energy in the whole of space is given by

T+W=JIJI^(Z>+7‘+2*) + ^(a> + j3>+ 7*)} daidydt

and from this we can deduce formula (661) directly. On assigning to a, 0, 7,

X, F, Z the value obtained in equations (660) for the forces from a single

electron, we find

n,=o, —^Xy,

Jn* + mlly + nil,=
47r6’»r‘

(ep)‘,

whence the flow of energy across a sphere of infinite radius is readily

found to be
2^
3 O (662).

This is Larmor's formula for the rate at which a single moving electron

radiates energy. We notice that a steady velocity (/ contributes nothing to

the radiation
;
energy is radiated away from an electron which is undergoing

acceleration but not from one in steady motion.

It must be added that the new dynamics referred to in § 620 seems to

throw doubt on this formula for emission of radiation. Many physicists now
question whether any emission of radiation is produced by the acceleration of

an electron, except under certain special conditions. Bearing this caution in

mind, we may proceed to examine some of the consequences of the formulae

just obtained.

660. If each of a cluster of electrons is so near to the point a?, y, j that

differences of retardation of time may be neglected throughout the cluster,

the radiation from the cluster is easily seen to be the same as that from a

single electron of charge E moving with components of acceleration IÎ V,

such that

EU=teu, etc.
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The condition that there shall be no radiation from such a cluster is

If this condition is not satisfied, the rate of emission of radiation is

(c£ formula (662))

^{(2ei))»+(2eK)* + (SeH')«} (663).

661. Consider next the field produced by a particle of charge E oscillating

along the axis of x with simple harmonic motion, its coordinate at any instant

being ^Cocospt. We have

— Ep*Xt cos pt
;

[Eu\ = — cos P i

and the field can be written down by substitution in formulae (660).

From formula (662) the average rate of emission of radiation is found to be

1 p* E*x* leir^E^x^^G

SC'*'" 3X*
•

where X is the wave-length of the emitted light.

A particle moving in this way is spoken of as a simple Hertzian vibrator.

Its motion was taken by Hertz to represent the oscillating flow of current in

an oscillatory discharge of a condenser. Such an oscillation formed the source

of the waves in Hertz’s original experiments (1888), and forms the source of

the waves used in modern wireless telegraphy.

662. A case of great interest is that in which the velocity of a moving

electron undergoes a very sudden change, such as would occur during a

collision with matter of any kind. Let us represent such a sudden change

by supposing that etl, ev, eW vanish except through a very small interval

surrounding the time t = 0, during which they are very great. At a point at

distance r, [eu], [ev] and [ew'] will vanish except through a small interval

of time surrounding the instant t — rja. During this short interval, the

electric and magnetic forces will be very great ;
before and after this interval

they will have the smaller values arising from the steady motion of the

electron. Thus the sudden check on the motion of the electron results in

the outward spread of a thin sheet of electric and magnetic force, the forces

being very intense but only of brief duration.

The radiation which is emitted when rapidly moving electrons impinge on

matter is generally called X-radiation or Rontgen-racliation. It was suggested

by Stokes that this consists of thin sheets or “pulses” of electric and magnetic

force of the type we have just investigated. Although there is no doubt that

this is true in a general way, yet the growth of the new dynamics already

referred to has made it clear that there is far more in the problem of

X-radiation than can be explained by the theories of Maxwell and Stokes.
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Mechanical Forces on Moving CHAROEa

663. Whether we assume Maxwell’s localisation of energy in the medium
or not, the total energy of an electromagnetic field, as we noticed in § 649,

will be T + IT, where

W=jjj^iX* + Y* + Z>)dxdydg (664),

T= + j8* + 7*) dxdydz (665),

and the integrals extend through the whole of space.

Let us suppose that, on account of the electromagnetic forces at work,

each element of charge experiences a mechanical force of components H, H, Z
per unit charge. We can find the forces S, H, Z by the methods of § 196 and

the general principle of least action.

Let us imagine a small displaced motion in which the coordinates of any

point X, y, z are displaced to x + hx,y-\- By, z + Sz, while the components of

electric polarisation are changed from f,g,h\jO /4-3/, g + Bg, h + Bh, these

new components of polarisation as well as the old satisfying relation (615).

Thus if p is the density of electricity at any point in the original motion and

p-^Bp the corresponding density in the displaced motion, we must have

cx dy dz

oBf dBg dBh

dx ^ dy ^ dz

= P>

= Bp.

Let us denote the total work performed by the mechanical forces in this

small displacement by — (cf. §551), so that

{SCr}=jljp(SSw+ HSy+ZSz)dx;dyds (666).

Then the equations of motion are contained in (cf. equation (507))

J^(ST-SW-{SU))dt^0 (667).

We have ST = -^^JJJ(aSa+ bSfi + cSy)

on applying Green’s Theorem; and on further using equation (635), this

becomes

y//h ('"'" t) ^ a)}
37—2
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d D
Let 8, ^ refer to a point fixed in space, and let A, refer to a point

Dt

moving with the moving material. Then we have the two formulae for Ac^,

Au = ~Sa!-^SiB+ ir~Sa:+ F^8a!+ w^So),
Dt dt ox oy oz

At.= 8t. +g8*+g8y + |?8^.

so that on comparison

_ a „ ...a^ a,, /du^ .at/-,

We now have

i{pv+f) = vhp + piv-\-j^if

^j;Bp + ^(pSx + B/)-Bx^

/ 3
.

a a\ . /du^
.
dv\ \

’
Si,

"
"s;) (s 5 *')

On substituting for dp/dt and Bp their values (cf. § 622)

v— {sW+a^CpW+l/pS*)}.

and simplifying, we obtain

d

dt
^{pu+f) = ^^{phx+Zf) + ^{pvZx-pvhy)-^^{p(j^z-pwhx),

whence

BT=
^
///“^^ dxdydz + terms in G, H

4- ^ JjJjP’
(pvBx - puBy) —“ (puBz — pwBx"^ dxdydz 4- . ...

Transforming by Green's Theorem, the second line in 8T becomes

I///{(af - ai)
+ •"}

(cv-bw) + pBy(a}V~-cu) + pBz(bc/— av)] dxdydsf.

On integrating with respect to the time, and transforming the first term

on integration by parts, we have

8rd« = j^d«
11
j'^^{pSx + Sf) + pSx(cr-bw) + ..

^dxdydz.
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We have from variation of equation (664),

(XS/+ YSff + ZSh) dxdydz.

Hence, freed from the integration with respect to the time, equation

(667) becomes

gJjJj^-^(pSrc + S/) + p8a7(cr-6w)+
...J

dxdydz

- jj.j
(ZS/+ YSg + Zhh) dxdydz

— jJjp(SSx + HSy + ZSz) dxdydz=0 (668).

We may not equate coefficients of the differentials, for S/, Sy, Sh are

not independent, being connected by

dS/ dSy dSh . ^ / a \ ^ / Si \

We multiply this by an undetermined multiplier a function of x, y, z,

and integrate through all space. We obtain

///'^ ^ +L !y + ai^

or, after integration by parts.

Adding this integral to the left hand of equation (668), we may equate

coefficients, and obtain

^^-Cdt-^’^^

Cdt dx^C^

= A" + ^(cv- 6 »f), etc (670).

The first equation is simply equation (639), of which we have now obtained

a proof direct from the principl* of least action (cf. § 575) ;
the second gives

us the mechanical forces acting on moving charges. It will be seen that the

forces given by formula (670) are identical with those obtained in § 629, but

they have now been obtained without any limitation as to the smallness or

steadiness of the velocities.



682 The Motion of Electrons [oh. XIX

Stresses in the Medium.

664 We can next evaluate the stresses in the medium, following the

method of § 193 and assuming the medium to be free ether.

Let X be the total o^-component of force acting on any finite region of the

medium, so that

X =s

jJJ
Updxdydz =

On substituting for pv, pw from equations (635), the last term becomes

+ ///{•^^ -1)
- ^^ -

1)}

On substituting for p from equation (615), and for djSIdt, dy/dt from

equations (636), and collecting terms, this becomes

+ 4^///[ - (i - 1) + (I - 2)]

in which Ila as in §576 denotes the a-component of the Poynting Flux.

On transforming the volume integrals in the first two lines into surface

integrals, this becomes

X^-^jl{ll(X*-Y‘-Z‘)+mXY+nXZ}d8

—^ l3‘-'if*) + ma/3 + nay} dS

~h‘% (672).

Since the last volume integral cannot be transformed into a surface integral,

it is clear that the mechanical action is not such as can be transmitted by a

system of stresses in a medium at rest.

665. On the other hand it is clear that if we suppose the medium to

possess momentum of components

11* Ily IT,

J
|* dxdydz + g jjj (7Py~~Ppw) dxdydz
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per unit volume, then equation (672) would become exactly the equation of

motion of this medium, if it is supposed to be acted on by a system of stresses

defined by

Pxx=^(,X^ - P - + a* - /8> - 7*) etc.'
OTT

,(674).

Thus the mechanical action is such as can be transmitted by a medium

in motion, the momentum per unit volume being given by formula (673).

The vector whose components arc given by formula (673) is commonly called

the **electromagnetic momentum.” We see that it is of amount equal to 1/C^

times the Poynting Flux, and in the same direction.

For an electrostatic or magnetostatic field existing alone, the electro-

magnetic momentum vanishes, and the stresses reduce to those previously

found in §§ 193 and 471,

Motion with Uniform Velocity.

656. Let us again return to the general equations, and examine the special

form they assume for a system moving with uniform velocity. This may for

convenience be supposed to be a velocity u parallel to the axis of x.

As in § 624 we may replace — ^ 2x
general equation (648)

becomes

V aV ^ dz>
*

Let us now write k for (1 — —
j

, and the equation becomes

or, if we write x' for kx,

K‘dx‘ df dz‘
— 4nr<r,

dx'- dy^ dz^
— Aijra (675).

We may conveniently speak of x', y, z as the “ contracted ” coordinates

corresponding to the original coordinates x, y, z, since if two surfaces have

the same equation, one in x\ y, z and the other in a?, y, z coordinates, the

former will be identical with the latter contracted in the ratio I/k parallel to

the axis of x.

Equation (675) is Poisson’s equation in contracted coordinates. Its

solution is

where r denotes distance measured in the contracted space.
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Hence (cf. equations (644), (645)) the values of ^ and F, 0, H are

given by
fc ^ e

(676),

so that the potentials are the same in contracted coordinates as they would be

in ordinary coordinates if the system were at rest, multiplied by the factor k.

Motion of a uniformly electrified sphere.

667 . To illustrate the method just explained, we shall examine the held

produced by a uniformly- electrified sphere of radius a, moving with velocity u.

The surface in the contracted space is a sphere of radius a, so that that in

the uncontracted space is a prolate spheroid of semi-axes a, a, and there-

fore of eccentricity ujC. To find the distribution of electricity, we imagine

the charge on the sphere to be uniformly spread between the spheres r = a

and r = a -t- e, where e is infinitesimal. The charge on the spheroid is now

seen to be uniformly spread between the spheroid itself and another similar

spheroid of semi-axes /c (a 4- c), a -I- €, a + e. Thus the distribution of electricity

in the spheroid in the uncontracted space is just what it would be if the

spheroid were a freely charged conductor, and is given by the analysis of

§§ 283, 284.

658 . The field has been discussed in detail by Searle* and Abrahamf.

The electric and magnetic energies W and T are found to be given by

W ” 8a I
Cu

K 0 -f r/

2a (c;’
^ (J - u j

while the total electromagnetic momentum G in the whole of space is given by

^ C-{-u 2)

4a I

this direction of 0 being of course that of u.

Motion of any system in equilibrium.

669. When a material system moves with any velocity u, the electric field

produced by its charges is different from the field when at rest. The difference

between these fields must shew itself in a system of forces which must act on

the moving system and in some way modify its configuration.

* Phil. Tram. A, 187 (1896), p. 165.

t Phy%. ZeitHchri/t, 6 (1904), p. 676, or Theorie der Elekirizitdt (2nd ed.), p. 165.
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Let us consider first a simple system which we shall call S in which all

the forces are electrostatic, and all the charges are supposed concentrated in

points {e.g. electrons). Let us suppose that when the system is at rest there

is equilibrium when a charge ei is at a;= a?!, y = yi, ^ 6a at a?= y = yg,

z = Z2 , and so on.

Let us compare this with a second system S' consisting of the same

electrons but moving with a uniform velocity r, and having the charges 6i

tit X y = yi^ z = Zi\ ea at y = ya, z = Z2 , etc., so that each electron

has the position in the contracted space which corresponds to its original

position in the original space. Then if F denotes the electrostatic potential

in the original system, the potentials in the moving system are (cf. equations

(676))

^ = F=^% G = 0, H = 0,

and the forces in the moving system are

dx Gdt

dx Cdx

0a; \ O / K dx*

r= - -
5
- = - #c :r- , etc.

0y 0y

We notice that the electrostatic forces in S' are Ijx times those in as

regards their a;-components, but k times those in as regards their y-com-

ponents. As a special case we notice that if the system S was in electrical

equilibrium, then S' will also be in electrical equilibrium, so that a system

which is in equilibrium when at rest can regain equilibrium after being set in

motion with velocity u by contracting in a ratio 1/k.

Electromagnetic Mass.

660. Consider a charged body, which will ultimately be identified with an

electron, moving with a uniform velocity u parallel to the axis of x. Let us

first consider the simple case in which u is so small that u^/C* may be

neglected.

The moving charge creates a magnetic field. If the charged body is

supposed to be a sphere of radius a, whose surface is uniformly electrified to

a total charge 6,
then there is no field inside the sphere, and the components

of magnetic force outside the sphere are given by

a = 0, ^ = -
ue^

7 =
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If we assume localisation of energy in the medium, then at a distance r

greater than a from the centre of the sphere there will be magnetic energy

per unit volume of amount

c® sin® 9

where 6 denotes the angle between the radius r and the axis of x,

gration, the total energy of this magnetic field is found to be

e®c;® rrfsin®^

87rC®Jjj r*
d6dif>dr =

e®

3a 0®

On inte-

.(677).

This result is of course only true provided we suppose the energy to reside

in the medium as imagined by Maxwell. In this case the energy, being

magnetic, must be supposed to be kinetic energy.

Thus if the charged body is supposed to be of mass mo, the total kinetic

energy of its forward movement will be

in which the first term arises from the ordinary mass of the body and the

second from the kinetic energy of the medium.

An analogy from hydrodynamics will illustrate the result at which we have arrived.

Suppose we have a balloon of mass m moving in air with a velocity v and displacing a

mass m! of air. If the velocity v is small compared with the velocity of propagation of

waves in air, the motion of the balloon will set up currents in the air surrounding it, such

that the velocity of these currents will be proportional to v at every point. The whole

kinetic energy of the motion will accordingly be

V®,

the term ^ wir® being contributed by the motion of the matter of the balloon itself, and the

term by the air currents outside the balloon. The value ofM is comparable with m',

the mass of air displaced—for instance if the balloon is spherical, and if the motion of the

air is irrotational, the value ofM is known to boM (cf. Lamb, Hydrodifnamica^ § 91).

661 . Strictly speaking, formula (678) is true only when u remains steady

through the motion. Any change in the value of u will be accompanied by

magnetic disturbances in the ether which spread out with velocity C from

the sphere. An examination of integral (677) will, however, shew that the

energy is concentrated round the sphere—the energy outside a sphere of

radius R is only a fraction a/R of the whole, and if R is taken to bo a large

multiple of a this may be disregarded. The time required for the energy to

readjust itself after a change of velocity is now comparable with R/C.

Thus if we exclude sudden changes in £/; and limit our attention to

giadual changes extending over periods great compared with R/C^ we may
take expression (678) to represent the kinetic energy, both for steady and

variable motion.

The problem gains all its importance from its application to the electron. For this

a is of the order of 2 x 10"*® cms. (see below, § GOG), so that all except one per cent, of the
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magnetic energy is contained within a sphere of radius x 10”“cm8. Since x 10^®,

the time of readjustment of this energy is *66 x 10"*^ seconds, an interval small enough to be

disregarded in almost all physical problems.

662. We shall now consider the same problem in a different manner,

and shall remove the restriction that ij\G is to be a small quantity. The

electron will still be supposed to move with a uniform velocity r, w which

may be of any amount. The field arising from its motion may be calculated

as explained in § 647. So long as the electron has no acceleration, the forces

X, y, Zy a, 7 fall off at infinity as 1/r®, so that the stresses defined by

equations (674) fall off as l/r\

If we now apply equation (672) to the field of the single electron, allowing

the closed surface .jSf to recede to infinity, the equation becomes

where the integral is taken through the whole of space. Here X will now

represent the a;-component of the ponderomotive force on the electron from

the field set up by its own motion through the ether.

When the electron moves with uniform velocity, the integral on the right

retains a constant value. In this case X = Y = Z = 0 ; there is no resultant

force acting on the electron from the ether.

Now suppose that the electron has not only a velocity u, v, w but also an

acceleration u, f, if. The forces X, 7, Z, a, y now contain terms in 1/r,

but these depend only on the accelerations. When the surface S recedes to

infinity in equation (672), the surface integrals will no longer vanish, but will

contain terms dependent on the squares and products of the accelerations.

If we suppose the accelerations to be so small that their squares and products

may be neglected, then equation (679) remains true even for an accelerated

electron.

We have seen that Uaj will depend on the values of u, v, ir, etc., both

at the instant t under consideration and also at preceding instants. Thus we

may in general suppose that

I

jjJ
Uxdxdijdz =fx (U, F, IF, ... etc.).

Each side of this equation represents the .^-component of electromagnetic

momentum, and equation (679) assumes the form

' 4. + }j^f* + ..•] (680).

It is clear that the force X will depend on all the accelerations and their

differential coefficients with respect to the time.
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Consider first the case in which all the accelerations are steady and so

small that their squares may be neglected. Then U, v etc. all vanish and

equation (680) reduces to

<«»'>•

In general dfxidu etc. may depend on U, v, W, but if we agree that squares

of Uf Vj w may be neglected in calculating X, then we may calculate d/x/du

etc. on the supposition that v, \v all vanish. In other words fx etc. may be

calculated as if the motion were steady.

When the motion is steady the whole electromagnetic momentum G is

clearly in the direction of the motion and its amount will depend only on c\

where c* = + f’* + \v\ Thus we may put

where G is the whole electromagnetic momentum in the whole of space, a

function of c only. On differentiation, we obtain

du G 0 do \c)*
dfx ^ (0\
0K “ c dv\cj , etc.

Now suppose the whole motion to be in the direction of Ox, so that c= U,

Ts: = The three equations such as (680) now assume the forms

X = Z=- G
G ‘

When u exists alone, k = w = 0, so that Y = Z=0, Thus the electro-

magnetic field exerts a force on the electron in the direction opposite to C.

This force is the same as would be exerted if the electron possessed an ad-

ditional mass equal to dGIdc. This is called the longitudinal electromagnetic

mass of the electron. An electron of mass twq will respond to a force in the

direction of its motion in the same way as an electron, unencumbered by an

electromagnetic field, of mass

+ («*!>•

Similarly if v exists, along the opposing force of the electromagnetic field

is —vifije). By a similar interpretation, Gjo is called the transverse electro-

magnetic mass. The electron will respond to a force transverse to its motion

in the same way as an electron, unencumbered by a magnetic field, of mass

tn, + - ,(683>
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663.

Abraham suggested in 1904 that the electron might be treated as

a rigid sphere of radius a, uniformly electrified over its surface. If so, the

longitudinal and transverse masses mj and would be given, from the

formulae of § 658, by
c* G
2a r*

C
4a

/ 2uG
\G^-u^

\ 0^
, u664.

Lorentz brought forward an alternative conception of the electron

according to which it is spherical in shape only when at rest. The electricity

is not supposed to be rigidly fixed in a spherical configuration, so that when
the electron is set in motion with a velocity u, it contracts, in accordance

with the theorem of § 659, in the ratio 1 : /c in its direction of motion and so

assumes the form of an oblate spheroid. Against this conception of the

electron Abraham has brought the objection that the original electron cannot

be simply a distribution of electric charges acted on by their own mutual

repulsions; there must be other forces at work to keep the charges from

flying apart. When these other forces arc taken into account, there is no

reason for supposing that the contracted electron would be in equilibrium, or

if it were in equilibrium, that the equilibrium would be stable. We shall

return to this point later.

The electromagnetic field of Lorentz's electron is readily calculated by the

method of § 656, for the configuration, when expressed in terms of contracted

coordinates, is spherically symmetrical.

If W is the electrostatic energy of the system of charges which constitute

the electron when at rest, it is readily found that the electromagnetic momen-
tum Q of the contracted electron moving with velocity v is

G =-- W^
3 (7»

’

SO that the longitudinal and transverse masses are

mi
3 ^i, *

I

4 W
mt

,(684).

665.

The formulae for the transverse mass can be tested experimentally.

It was shewn in § 631 that an electron in a uniform magnetic field H would

describe a path of constant curvature muCleH, where u is the velocity

perpendicular to the magnetic lines of force. When electromagnetic mass

is taken into account, m in this formula must be replaced by nio + mt, where

rrio is the mass of the electron apart from its electromagnetic mass. Experi-
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ments to determine the variation of nio + mt with the velocity were first

undertaken by Kaufmann in 1906. More recent experiments by Bucherer,

Bestelmeyer and others shew that rrio + nit varies precisely as (1 — u^jC^) ~-qik.

This is in exact agreement with the transverse mass of the Lorentz contractile

electron if nio is taken to be zero—i.e. if the mass of the electron is supposed

to be wholly electromagnetic.

666. All experiments agree in giving a value for ejm at zero velocity very

nearly equal to 1*757 x 10^ in Electromagnetic Units. Combining this with

the value for e, namely 4 803 x 10“*® in Electrostatic Units, we find for the

mass of the electron at rest

m = 9’12 X 10”“ grammes.

The mass of the electron at rest is, from formulae (684;,

4ir

If the charge e of the electron is sup[X)sed spread uniformly over the surface

of a sphere of radius a, the value of the electrostatic energy, is e72a,

so that

in agreement with formula (678). In this equation we know the values of

m, e and C7, so can deduce
a = 1*80 X 10”“ cms.

This must be the radius of the electron if its charge is spread uniformly over

the surface of a sphere. If the charge is spread uniformly through the volume

of a sphere, W= 3e®/5a, giving

4 s®

c-7s»; a = 2*16 x 10”“ cms.
oaCT®

Other distributions of charge would give other values for a but always

of the same order. We conclude that the value of a is of the order of

2x10““ cms.

The Internal Mechanics of the Electron,

667. Let us regard the electron as a contractile sphere of radius a whose

surface is uniformly charged with electricity. Then m is given by formula

(685), and the electromagnetic energy of the electron, when moving with a

velocity U, is found to be

K — + a constant .(686 ).
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Suppose an acceleration Cto operate for an instant dt. Since the longitudinal

mass is the work done by the force producing the acceleration is

m/e* u dt

which may be written as ^{mG^K)dt The increment in the electromagnetic

energy (686) is, however,

and this is not equal to the work done on the electron.

To satisfy the conservation of energy it appears that in addition to its

electromagnetic energy T the electron must have energy U of some type

unknown but ofamount

Cr= ^
a constant (687).

Then T+ constant, and the work done by external forces is

equal to the increment of T+ U.

668 If a charge e is spread over a conducting sphere of radius a, the

force per unit area on its conducting surface is

jR = 27ro'* =
e*

87ro**

The electron is not a charged conductor, but the above formula makes it

clear that the electron at rest could be held in equilibrium by the action of a

normal tension R of amount e^jSira* per unit area. Poincar^* has shewn that

the electron in its contracted state would still be in equilibrium if tensions of

this amount continued to act while the electron was in motion. Now if v is

the volume of the electron at any instant, the work done on these tensions as

the electron changes shape will be Rdv. When the electron is moving with

velocity U, its volume is ^ira^jK, so that

P _ e* _lmC*

Thus if Cr is taken to he Rv in formula (687), the conservation of energy will

be exactly satisfied.

There is no evidence as to whether these tensions do or do not exist; the

possibility of their existence suggests a mechanism by which the electron can

be held in equilibrium at all velocities, while its motion conforms to the con-

servation of energy.

* liendiconti del Circolo MaUm. di Palermo^ 21 (1906), p. 129.
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The Reaction on an Accelerated Electron,

669. The whole force acting on a moving electron is given by equation

(680), in which we have so far neglected all terms beyond those in (r, v, w,

Lorentz* has calculated the effect of the terms in i/, r, w etc., and finds that

they give rise to a force acting on the electron of components Fg., Fy, Fg

given by

= etc (688).

Lorentz also gives formulae from which the remaining terms in equation (680)

can be calculated, but these terms are of little physical interest.

The force given by formula (688) may be regarded as a frictional resistance

opposing the motion of the electron through the ether. The rate at which

the electron does work to overcome this force is

uF^ + vFy+ wF,,

so that the work done by the electron in an interval from ^ = 0 to ^ = t will be

“ i

On integrating by parts, this becomes

uer+ vr+mV^ + ^ ^ f » + iH) dt
0 O'-' Jo

The last term represents the radiation emitted by the electron as calculated

by Larmor s formula (662); the first term must represent changes in the energy

stored in the ether.

2 ^
3C»

* The Theory of Eleetrone

^

p. 251.



CHAPTER XX

THE THEORY OF RELATIVITY

Motion through the Ether.

The Michelson-Morley Experiment

670. When we have spoken of a system at rest we have so far meant, for

all practical purposes, a system at rest in our laboratories. But if we have been

right in conjecturing that all electromagnetic phenomena have their seat in

the ether, then a system at rest would most naturally be taken to mean

a system at rest in the ether. We have so far made no clear distinction

between the conceptions of rest in the ether and rest relative to the walls of

a laboratory.

The view was at one time held that a moving body drags the ether along

with it. If this were a true view the distinction just referred to would not

arise
;
a body at rest relative to the walls of a laboratory would also be

at rest in the ether. But in time it was found that this was not a true view

;

it could not be reconciled simultaneously with results of laboratory experiments

such as Fizeau’s water-tube experiment (cf. § 687 below), and with the astro-

nomical theory of the aberration of light* (cf. § 689 below). Finally it became

established that the ether, if one existed at all, could not share in the motion

of moving bodies
;

it must be stagnant, and moving bodies must simply move

through it without setting up mass-motions in it.

The earth’s velocity in its orbit is about 30 kms. a second, so that the

velocity of the earth relative to the supposed ether must at some season of the

year be at least 30 kins, a second. If an ether exists, there must be a stream

of ether flowing through every laboratory which must attain velocities at least

as great as 30 kms. a second.

Starting in 1887, Michelson and Morley conducted experiments with a view

to measuring the actual velocity of this supposed stream of ether relative to

their laboratory, or, what is the same thing, the velocity of the earth through

the ether. The principle of the experiment is easily explained. Let the

laboratory be moving with velocity u through the ether, then a ray of light

travelling against the stream of ether will move with an actual velocity G in

the ether, and so will have an apparent velocity G — u if measured relatively

* For a fuller account the reader is referred to special treatises—Larmor’s Ether and Matter

(Camb. Univ. Press, 1900) or Cunniugham’s Relativity (Camb. Uni?. Press, 1914).
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to the moving laboratory. Similarly a ray of light made to travel in the

reverse direction will have an apparent velocity C + ti. If a ray travel over

a path I and is then reflected back to its starting-point, the time taken

will be given by W
Suppose next that a ray is made to travel a distance L across the direction

of motion and back to its starting-point, the system moving with velocity u

as before. Let the whole time be then the distance travelled by the system

is ut^. The actual path of the ray through the ether consists of two equal

parts, one before reflection and one after
;
each part is the hypotenuse of a

right-angled triangle of sides L and and the time of describing each part

is Hence

i<,c=(z«+juvA

whence <. = ^(1-^) (690).

From formulae (689) and (690) it appears that the times taken by a ray of

light to travel a distance I and be reflected back, while the laboratory is in

motion through the ether, will be different according as the path of the rays

is along or across the direction of motion of the system. This time difference

admits of measurement by optical means, and from such measurements it

ought to be possible to determine u.

When the experiment was performed no time difference could be observed.

The obvious explanation would be that, at the moment of performing the

experiment, the laboratory was at rest in the ether, but this explanation was

not found to be tenable, since no time difference could be discovered at any

season of the year.

The Fitzgerald’Lorentz Contraction Hypothesis,

671. Fitzgerald in 1893 and Loren tz in 1895 suggested independently

that the reason why no time difference was observed might be because the

arm I of the apparatus which moved with velocity u longitudinally through

the ether was contracted in a ratio (1 — as a result of its motion. In

such a case the arm I would have shrunk from an initial length Iq given by

measured in the system when at rest. Equation (689), expressed in terms of

Zo, now becomes

and so agrees with formula (690).
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Thus the Fitzgerald-Lorentz contraction hypothesis would account com-
pletely for the null result of the Michelson-Morley experiment. The hypothesis

in itself is not unreasonable, for we have alreadyseen (§ 659) that an electrostatic

system set in motion with a velocity xi would only regain its equilibrium after

contracting longitudinally in exactly the ratio (1 — assumed by the

hypothesis. It is true that the arms of sandstone and pine used by Michelson

and Morley were not purely electrostatic systems. But neither is the electron

(cf. § 664), and yet Lorentz’s hypothesis that this contracts longitudinally in

exactly the same ratio is found to lejvd to a value for the electromagnetic

mass which is entirely confirmed by experiment (§ 665).

672. According to the contraction hypothesis, the Michelson-Morley

experiment failed to detect the velocity of motion through the ether because

this motion was exactly concealed by the shrinkage of the apparatus. If this

were so, the velocity ought of course to become measurable if we could in any

way measure the amount of this shrinkage.

It is at once obvious that the shrinkage could not be measured, or even

detected, by any process of direct measurement, for any material measuring-

rod would shrink in exactly the same ratio as the apparatus to be measured.

Indirect means might, however, be expected to reveal the amount of shrinkage.

673 . Lord Rayleigh* pointed out that an isotropic medium ought to

become anisotropic when shrunk, so that ordinary transparent matter ought

to be doubly refracting for a ray of light crossing it in a direction oblique to

its motion through the ether. But no trace of double refraction was found

either by Lord Rayleigh or by Bracef who repeated the experiment with

apparatus so sensitive that a fiftieth part of the expected effect would have

been detected.

Following a similar train of thought, Trouton and RankineJ tried to

detect changes in the resistance of a bar of metal as it was turned in various

directions, but found no measurable change.

These experiments do not prove either that there is no motion through the

ether, or that the Fitzgerald-Lorentz contraction does not occur. They prove

that if there is motion through an ether, and if the contraction does occur,

then the effect of this contraction is somehow veiled or compensated by some

other effect. Thus Lorentz shewed § that the null result of the experiments of

Rayleigh and Brace would be exactly accounted for on his own theory of the

constitution of the electron, on which the electrons would be contracted in

just the same ratio as the transparent matter. And Trouton and Rankine

shewed, in their original paper, that the null result of their experiment is an

inevitable consequence of the electron theory of conduction through matter

* Phil. Mag. 4 (1902), p. 678. t Ihid. 7 (1904), p. 317.

X Proc. 11. S. 81) (1908), p. 420. § Theory of Electrons, p. 217.
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(cf. § 345 a), provided the electron has the transverse and longitudinal masses

assigned to it by Lorentz (§ 664). Thus these experiments, undertaken

originally in order to find velocity through the ether, resulted finally in pro-

viding confirmation of Lorentz’s theory of the constitution of the electron.

In other experiments, the compensatory effect is still more easily dis-

covered. A charged body moving through the ether ought to set up a

magnetic field, so that every charged body in a laboratory ought to be sur-

rounded by a magnetic field proportional to ujC, Every other charged body

in the laboratory is moving across the lines of force of this magnetic field

with velocity u and so ought to be acted on by a mechanical force pro-

portional to Trouton and Noble* suspended a parallel plate condenser

by a torsion thread and looked for a couple, proportional to tending to

turn the plates parallel to the direction of motion through the ether. No such

couple was observed.

The null result of this experiment is readily explained as a consequence

of the Fitzgerald-Lorentz contraction. A shrinkage of the distance between

the plates decreases the energy of the condenser. There is therefore a

mechanical couple tending to turn the system into its position of minimum
potential energy

—

i.e, into a position in which the plates are at right angles

to the direction of motion through the ether. It is readily verified that this

couple exactly neutralises the couple of magnetic origin, which the original

experiment tried to detect. Indeed, granted the Fitzgerald-Lorentz shrinkage,

the theorem proved in § 659 shews at once that the system would be in equi-

librium in all orientations.

The Relativity-Condition.

674. These and similar experiments have one and all failed to detect

motion through an ether. They have not proved that there is no motion

through an ether, but shew that if this motion exists, its efi'ects are in every

case veiled by some other effect, and, in every case, it has proved possible to

discover this veiling effect as an effect predicted by general electromagnetic

theory.

The question arises whether there must always and of necessity be a

veiling effect in every experiment. In other words, are the electromagnetic

equations of such a nature that it is inherently impossible to detect motion

through an ether by electromagnetic means ?

It is well known that the onlinary Newtonian equations of dynamics are

of this nature. For the equations

F

Phil. Trans. A, 202 (1903), p. 165 and Proc. R. 8. 72 (1903), p. 132.
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do nob change their form when referred to axes moving with a uniform velocity

u—i,e, when x is replaced by a? — ut. Thus all phenomena governed by these

equations are the same on an earth moving with a uniform velocity u as they

would be on an earth at rest, so that it is necessarily futile to attempt to

determine the earth s velocity in space by means of such phenomena.

Systems of equations or natural laws which are such as to make it im-

possible to determine absolute motion may be said to satisfy the “Relativity-

condition.*’ The characteristic of such equations will be that they do not

change their form when referred to axes moving with a uniform velocity

relative to the axes to which they were originally referred. VVe have seen that

the Newtonian equations satisfy the relativity-condition, and the continual

failure of experiment to determine the earth’s velocity through the ether leads

us to consider whether the electromagnetic laws may not also satisfy the

rclati vity-condition.

If we simply change the electromagnetic laws by replacing xhy x — ui, it

is at once seen that a change of form results. But the hypothesis of the

Fitzgerald-Loren tz contraction has already given grounds for suspecting that

the required change may not be so simple as this. For instance, it may be

that on changing to moving axes, all lengths parallel to the a?-axis ought to

be contracted in the ratio (1 — In this case the transformation would

be from a; to a new coordinate x' defined by a?' — ac (a? — ut), where k denotes

(1 — The analysis of § 659 has already shewn that all electrostatic

phenomena conform to the relativity-condition when this transformation is

made.

This change really amounts to a change in the measurement of the unit

of length, as regards lengths parallel to the axis of x, when we change the

velocity of motion parallel to the axis of x. Following a method originated by

Einstein* we proceed to examine whether similar changes in all the units can

result in the electromagnetic laws conforming to the relativity-condition.

676. Consider first the condition that the simple phenomenon of the

transmission of a light-signal shall satisfy the relativity-condition. Imagine

an experimenter S moving with an unknown but uniform velocity, and using

coordinates x, y, z, t to record the result of his observations. If the pheno-

menon of light-transmission satisfies the relativity-condition, a signal started

from the origin at any instant i = 0 will after time t have reached points lying

on a sphere

+ = 0 (691),

where G is the velocity of light determined by the observer S.

Let a second observer S' move with a different velocity, and let him use

coordinates of, y\ z\ t' to record the result of his observations. The sphere

• Ann. d. Fhys. 17 (1905), p. 891.
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whose equation is (691) for S will have an equation expressed in terms of

y\ t* for S\ and if the relativity-condition is satisfied, this equation

must be

+ + = 0 (692),

where O' is the velocity of light determined by S\

If 8' changes his units of length or time he will change his value of O',

which is the distance light appears to him to travel in unit time. We may
without any loss of generality suppose S' to use units which make 0' equal

to 0.

We may also suppose that light will appear, both to S and to S', to travel

in straight lines with uniform velocity*. Thus for S the equation connecting

the position x, y, z of a. light-signal with the time t must be linear in x, y, z

and t The similar equation for S' will be linear in x', y ,
sf and Thus x', y', /

and i will necessarily be linear functions of x, y, z and t. And we have

already supposed that the equations of transformation from x', y', t' to x, y, z, t

must be such that equation (691) transforms into equation (692), C' being

equal to C.

Let us introduce new variables t, t' in place of t, If, these being given by

T = iCt, t'= i0( where % = V(-“ !)• Then equations (691) and (692) become

^ + y*+ + T* =s 0,

a;'* + y* + /* + T'* = 0.

The relativity-condition is satisfied if a linear transformation transforms

the one equation into the other. Since the equations of transformation are

linear this requires that

+ (x'^ + y'a + + T ») (693),

where A; is a constant.

Imagine a four-dimensional space constructed in which x, y, z, r are

orthogonal rectilinear coordinates. On account of the linearity of the equations

of transformation, of, y', z', r may also be regarded as rectilinear coordinates

in this same space, but these have not yet been required to be orthogonal.

Now 05* + y* -H 2;* + T* is the square of the distance of the point x, y, z, t from

the origin when expressed in x, y, z, r coordinates, so that, by equation (693),

k (x^ + y'* -h 2'* + t'*) must be the square of the distance of x', y', z, t from the

origin. It follows at once that x, y', z', t must be orthogonal coordinates; if

* According to Einstein’s theory of generalised relativity, to which we shall return below

(§ 702), light does not travel in straight lines in the presence of a gravitational field. The

assumption we have just made marks the parting of the ways between the old physical

theory of relativity and the new generalised theory. On the new theory the assumption just

made is strictly true only at an infinite distance from all matter; it may nevertheless be

regarded as a very accurate first approximation to the truth except in gravitational fields

enormously more intense than any of which we have experience.
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they were not orthogonal, cross products aify\ a/r etc. would enter into the

expression for the square of the distance from x\ y\ z\ r to the origin. Thus

the axes of x\ y\ t can be obtained from those of a?, y, 2^, t by a pure

rotation in the four-dimensional space.

We have already fixed the ratio of iS>'*s units of length and time by making

G* = G. If we further change the absolute values of these units, we can alter

the value of k, and we may agree to fix these absolute values so that k^l.
The change from coordinates a*, y, z, r to x\ y\ z\ t\ or conversely, is now

ejected by a pure rigid body rotation of the axes.

We may notice in passing that if the relativity-condition is satisfied as

regards the transmission of light-signals, no set of axes a?, y, z, t in the four-

dimensional space is geometrically more fundamental than any other. A
change of velocity of translation is merely effected by turning the axes about,

and no observer can claim on purely geometrical grounds that his system of

axes provides a standard set from which all other positions of the axes ought

to be measured.

676. The simplest case of rotation of the axes occurs when every point

moves parallel to one of the coordinate planes, say x, t. The formulae of trans-

formation then assume the simple forms

X —X cos ^ -r T sin

t' — T cos ^ sin ^ 1- (694).

y'=y;z=z J

To determine what physical meaning is to be assigned to 6, we notice that

x' = 0 when
j: = — T tan^ = — iCitan^ (695).

Thus a point which the experimenter S regards as moving along the axis

of X with a velocity — iC tan 0 will appear to S' to be at rest. In other words

the axes of S' move relative to those of S with a velocity — iC tan 0 along the

axis of X. Let us put
u = — iC tan 0 (696),

then the transformation (694) is that appropriate to the case in which the axes

of S' have a velocity (u, 0, 0) relative to those of S,

then K = cos 0, and the formulae of transformation (694) become

x' = K{x-ut), y' = ij, «' = «, = (697).

677. Following Einstein we have found that the transformation relations

(697) express the necessary and sufficient condition that the propagation of

light-signals shall conform to the relativity-condition. We have already
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noticed (§ 674) that the first relation x —k(x — ut) is simply an expression of

the Fitzgerald-Lorentz contraction which is necessary if the Michelson-Morley

experiment is to conform to the relativity-condition. We now have the further

information that if all experiments of light transmission are to satisfy the

relativity-condition, we must have the further relation

The transformation (697), although we have obtained it by a method due

mainly to Einstein, is commonly known as Lorentz’s transformation. For

Lorentz had shewn*, before the appearance of Einstein's paper, that precisely

the same transformation expresses the condition that the ordinary electro-

dynamical equations shall conform to the relativity-condition.

678. Before proving this, let us examine some of the purely kincmatical

properties of the Lorentz transformation expressed by equations (697).

Transforming to axes moving with a relative velocity u is equivalent, as

we have seen, to turning the axes through an angle 6 in the a?, t plane, where

6 is given by equation (696). Transforming to axes moving with a velocity u'

relative to these new axes is equivalent to turning through a further angle 6'

given by
= — i(7tan

But these last axes can be obtained from the original axes on turning

through an angle 6 + 0\ and we have

u + u'

77^’

Thus the velocity of the last set of moving axes relative to the first is

not it is cr, given by

and we notice that u is necessarily less than u + u' when both u and u' are

positive. We should only have a right to expect that u would be equal to

u + ti' if both S and S* measured their lengths, times and velocities in similar

ways, and this, under the Lorentz transformation, they do not do.

As a direct consequence of equation (698),

<’(•-¥)
'

so that if u and u' are each less than G, then u is necessarily less than C,

* Amsterdam Proc, (1904), p. 809.
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Thus no possible compounding of velocities less than C can ever give a

resultant velocity u greater than C. As a special case if u* then u^C,
regardless of the value of u\ the resultant of the velocity of light and any

other velocity is the velocity of light.

Similar analysis will give the result of superposing two velocities not in

the same direction, but the required formulae can be obtained rather more

directly from the formulae of transformation (697), as we shall now see.

679. Let a point move with velocity u, v, w relative to the axes used by

S, so that

x = Xo+ut, y = yo+vt, z = Zo'{-wt (699),

and let the velocity of the same point relative to the axes used by S' be

u\ v', w', so that

x' = X,' + y = y' + n', (700).

In these last equations, let us substitute Lorentz*s values for x\ y', t\ as

given by equations (697). We obtain

K (X-Ut) = X^ + U'k

y=y.'+

and a similar equation for z. Differentiate these three equations with respect

dx

*
. /- vu\

to t, putting~= u, etc., in accordance with equations (699), And we find

from which follows directly

(701),

u =
1 + ---

ir=:.
w'

.(702).

In these equations u, v, w may be regarded as the resultant velocity

obtained by compounding velocities u, 0, 0 and i/, v', w'.
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From equations (701) we obtain directly

uu
^ G*

'
/, vu\ (703).

These are also a necessary consequence of equations (702), for r/, r', if'

IS the velocity obtained by compounding velocities £7, F, w and — u, 0, 0.

Electromagnetic Equations.

680. Following Lorentz* and Einstein fi let us now pioceed to transform

the general electrodynamical equations of Chap. XIX (§§ 621, 622), namely

-ca-i-S’'*" <’»*)•

('«)•

to the new variables a?', y\ z\ t' connected with a?, y, z, t by relations (697).

If X is function whatever of a;, y, ar, t we have

9y dydocf
.

/?)y w 9y\'

dx~dif'^'^Wdx~'‘W C'dt')

w
9y 9y' ’

The three equations (704) and equation (706) accordingly assume the form

47r (df dy 9/3

"c ' \dt’ a«7j ay'" dz'
••

47r
pV-\-K\

(dg 9.9M fdy

'C Ut'
_

dz

lx, ante. t Ann, d. Phy$ik,

(710),
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^ “a®7j“*w o«0«7 ay'

3/ ^ ^ ^ KU df _

47r

and

If we introduce a', 7', /', defined by

«'=«. /'=/
47n4

then equations (710) and (711) may be written in the form

47r / _ .
dg\ ^ da dywr /

,
\ 0a 07

4^ ( .
dA'x a/S” aa'

c y“a»' ay'

603

,(711).

,(712).

,(713);

.(714),

.(715).

681. We still require to transform pu, pv, pw to the new coordinates.

The density p' in the new coordinates must be such that

pdx'dy'dz = pdxdydz.

Since the coordinates x\ y\ t are derived from a?, y, t by a pure

rotation in four-dimensional space, we have

dafd^dz'dV^dxdydzdr.

Thus

SO that

dxdydz dr dt' /- Uu\

dx'dy'dz ~d^~di~'‘V~o) (716).

,(717).

Combining this with equations (703), we find at once that p{u— v)=^p'(/t

pv^pv* and pW = p w'. Thus equations (7 14) and (715) become

47r/ dg'\ da! dy'

C \ dt ) dz' dx

47r/ , , dh\ 0,8' 0a'

~GV''^'^W)~dx'~d^

.(718).

(719).

On multiplying throughout by k and using relations (713), equation (709)

becomes

47rr

G U
KpU + tC

df_
di

UK
\ dx ^ ay' ^ Zzj_

which, by the use of equation (712), reduces further to

47r

ay
dy ay*
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Usinji' the relation p{u—u) = /aV just obtained, and also the relation /**/',

this becomes

w
Finally, again using relations (713), equation (712) transforms into

0a:' K va/ aW 47rO \9y' dt'j G^ 'dt’

Using the relation (720), which has just been obtained, this becomes

or, multiplying throughout by k and using equation (717),

mn
dx'

^
a/ ^ ay

682. We have now seen that if the new quantities a', 0, y\ y, h' are

defined by equations (713), then the electric equations (704) and (706), when

transformed to coordinates x\ y\ z\ t\ resume their original form exactly.

By precisely similar analysis we find that if

a' = a, X'^X

.•-.(.-Jr), ^•..(^+J»)
then the magnetic equations (705) and (707), when transformed to the new

coordinates x\ y\ z\ t\ will also resume their original form exactly.

Thus it appears that the relativity-condition will be satisfied by all

electromagnetic phenomena, if the relation between the forces as estimated

by 8 and those estimated by S' moving with a velocity (w, 0,
0) relative to 8

can be supposed to be those given by relations (713) and (722). If these

relations are found, in actual fact, to be satisfied, it will be impossible to

determine absolute motion by any electromagnetic means whatever.

683. Consider first the form assumed by the relations in free space, for

which we may take iT = /a = 1 . Here a, 6
, c become identical with a, 7 , and

a\ h\ c with a
, 0, 7'. Also /, h become the same as A’/47r, y/47r, Zj^sTr

and similarly forf\ g\ W. The two sets of equations (713) and (722) are now

seen to become identical, each reducing to



681-684] Electromagnetic Equatiom 605

If u^jC^ is neglected, k may be put equal to unity, and the forces X\Y\ Z'

are exactly those which we found in § 628 for the forces on a unit charge

moving with velocity (m, 0, 0). Similarly the forces a, 7
' are easily shewn

by the method of §572 to be precisely those which would be acting on a unit

magnetic pole moving with a velocity (m, 0, 0). Thus there is direct experi-

mental verification of these equations when is neglected.

When u^lC^ is not neglected, it is naturally impossible to obtain direct

experimental evidence of the accuracy of the equations. A complication arises

from the fact that S and S' are using different units of length in the direction

of Ox, and on allowing for this and treating the problem in the manner of

§656, it is at once found that the presence of the factors k in equations (723)

exactly represents the complication introduced by the finiteness of u^/G^.

Thus it appears, by what is not far short of absolute proof, that the

relativity-condition is satisfied by all electromagnetic phenomena.

684 The problem presented by phenomena in dielectric and magnetic

media is naturally m6re complex. Various hypotheses have been put forward

as to the relation between a\ b\ c' and a', ‘/S', y in moving magnetic media, as

also regarding the relation between f\ g\ K and X\ Y\ Z' in moving

dielectrics. Some of these hypotheses are in agreement with relations (713)

and (722), while some are not. Experiments have been conducted by various

physicists, and in particular by H. A. Wilson and A. Eichenwald, with a view

to discriminating between these rival hypotheses. In each case the victorious

hypothesis is found to be in conformity with equations (713) and (722)

above.

Wilson* moved a dielectric body through a magnetic field and found that

there was an electric polarisation (/', g\ K) set up of which the amount

agreed very closely with that demanded by equations (713). And Eichenwaldf

set a polarised dielectric in motion and found that it produced a magnetic

field similar to that demanded by equations (713). Thus there seems to be

experimental confirmation for every term in equations (713). Experiments

on moving magnetic media have not been performed, but there seems to be

little room for doubt that they would similarly confirm equations (722).

If, on the strength of this evidence, we assume equations (713) and (722)

to be fully confirmed, then we have shewn that the electromagnetic equations

conform to the relativity-condition. In other words, all experiments to

determine velocity through the ether are necessarily futile. If for the moment

we assume that we are moving through the ether with a velocity in a

direction which we call Ox, then we may consider that we are playing the

rdle of our observer S', while an imaginary observer at rest in the ether may

be supposed to be playing the rdle of our observer S, But we have seen that

* Phil, Trans, A, 204 (1904), p. 121. t Ann. d, Phys, 11 (1904), p. 421.
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all electromagnetic phenomena would be exactly the same for us as for S. If

we could deduce a velocity u through the ether for our motion, S would

necessarily deduce a velocity u for his own motion, which would be contrary

to the facts. By this argument, here put in the form of a reductio ad

absurdum, we see the impossibility of determining our velocity through the

ether.

If at any time equations (71.3) and (722) are proved to be untrue—and,

as we have seen, the remaining opportunities for proving these equations

untrue are very few—then it will become possible, in theory at least, to

determine our velocity through the ether. But for the present we shall

assume, as a working hyjx)thesis, that it is in no way possible to determine

velocity through the ether. This is commonly called the Hypothesis of Rela-

tivity. We proceed to examine some of the consequences of this hypothesis.

The Relativity Hypothesis.

685. This hypothesis commits us, generally speaking, to all the equations of

the present chapter. It does not commit us to any special physical interpreta-

tions of them. For instance, the first equation of the Lorentz transformation,

namely — ut\ may if we please be interpreted in terras of the Fitz-

gerald-Lorentz contraction-hypothesis; we may postulate a fixed ether and

the equation is then taken to shew that any length moving with a velocity

(w, 0, 0) through the ether will be contracted in the direction of the a;-axis

in the ratio \jK. Alternatively we may interpret the same equation in such

a way as not to assume a fixed ether at all. Any observer 8 measures out a

sphere which remains at rest relative to him
; to a second observer S' moving

relative to 8 with a velocity (u, 0, 0), this sphere will appear to be contracted

in the ratio l//c along Ox,

In a similar way all the other equations can be interpreted so as to have

no reference to a fixed ether : they may be taken merely as expressing relations

between quantities as measured by one observer <S and another observer 8'

moving with a velocity u relative to 8.

The kinematical relations of Einstein, namely equations (702), may, on

this interpretation, be regarded merely as laws for the composition of velocitiea

It appears that the simple laws of composition of velocities and of vector-

addition—the so-called “ parallelogram of velocities ”—are no longer true if

the hypothesis of relativity is true. The simple laws are true if u^jC^ and u'^/C*

are small, but not otherwise.

Startling though this result may appear, there is almost direct experimental

confirmation of it, as we shall soon see.
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Optical consequences of the Relativity Hypothesis.

686. The relativity hypothesis makes no claim to explain the nature of

phenomena, it merely proposes, tentatively, a general law of a restrictive

nature, which so far has appeared to dominate all known phenomena. All

explanations of phenomena which conform to the limits of this restriction arc

equally permitted by this hypothesis, but the hypothesis serves to rule out,

tentatively, all explanations which do not conform to the condition. Conse-

quently it is only in rare cases that the principle of relativity by itself enables

us to obtain a full solution of a problem. As an instance of such a case, we
have seen that it enables us to determine the electric and magnetic forces in

ponderable media. Other instances occur in optical phenomena, and to these

we now turn.

Fizeau's Water Tube Experiment

687. In Fizeau*s water tube experiment, a stream of water was made to

flow through a tube, its velocity of flow being u relative to the earth, and a

ray of light was passed through the water in the direction of its motion. To
an observer moving with the stream, the water would appear to be at rest, so

that the light would be propagated relative to this observer with a velocity u'

connected with the refractive-index v of the water by the relation u' = Cjv,

According to the classical laws of kinematics, the light ought to travel,

relative to an observer at rest on the earth, with a velocity u + u ov

^ +
w (724).

Fizeau found it possible to measure the actual velocity by an interference

method and formula (724) was not confirmed. The formula

? + “('- p)
(’26)

was found to represent the velocity accurately both for w'ater and other trans-

parent media.

As we shall now see, formula (725) is not only consistent with the theoiy

of relativity, but could also have been fully predicted by this theory. For the

velocity in question is simply that which results from compounding the

velocities u and Gjv, and the resultant velocity obtained by the relativity

formula (702) is

If u^jC^ is neglected this reduces the formula (725). In this experiment

we have very direct experimental confirmation of Einstein's formula for the

composition of velocities.
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Reflection of Lightfrom a Moving Mirror and Emissionfrom
a Moving Source.

688. According to the relativity hypothesis, the velocity of light in free

space is always equal to G. If the light be observed by an observer moving
with a velocity u, relative to the source, the velocity is still equal to C, for we
have seen in § 678 that the velocity obtained by compounding a velocity G
with any other velocity u is itself equal to G.

This consequence of the relativity hypothesis has been tested by Majorana.

He first examined the light reflected by a moving mirror and found its velocity

to be exactly equal to G independently of the velocity of the mirror*. In a

later investigationt he tested the velocity of light emitted by a rapidly-

moving source and found this to be equal to G independently of the velocity

of the source.

These experimental results are of very great importance, for it will be seen

that the Michelson-Morley experiment and the experiments of Majorana
taken in combination establish the Lorentz transformation equations (697)
as a fact of observation. The Michelson-Morley experiment shewed that the

average to-and-fro velocity of light reflected from a mirror back to the source

was the same for all directions in space. The Majorana experiments now
shew that the result is true for the separate paths before and after reflection,

so that the velocity of light, as measured by any observer, is the same for all

directions in space. We now have as an experimental fact that, independently

of the velocities of the source and observer, the wave-surface is a sphere having

the observer as centre. This is precisely the supposition from which we started

in § 675 ;
it was found to lead directly to the Lorentz transformation (697).

Aberration and the Doppler effect.

689. As in § 591, the equation of wave-propagation in free space, namely

has a solution

dt

27r= A cos ^ (JiX \-my + nz — Gt). .(726),

where Z* -h -f n® = 1, and this corresponds to the propagation of a plane wave
of light of frequency i; in a direction I, m, n. Suppose that the same ray of

light appears to the observer S^ to be of frequency v and to be propagated
in a direction l\ m\ n\ so that the solution of the wave-equation for S' will be

X = A' cos— (r«?'+ m'y + wV - Gt') (727).

Phil. Mag. 35 (1918), p. 163. t PhiL Mag. 37 (1919), p. 146.
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On substituting for x\ y, z\ ( in terms of a?, y, z, t from equations (697),

this becomes

X =il'cos^ |^r/c(a;-M0 + m'y + n'z-(7/c •

This expression must be identical with (726), so that by comparison we

obtain

{G + Vu)

C V

Aberration. Equating the first and fourth fractions in equations (72S)

we find

1+1%

This must, according to the hypothesis of relativity, be the exact formula

for astronomical aberration. Let the observer S be at rest relative to any
system of axes in uniform motion, while S' moves relative to these axes with

a velocity u along Ox. Then light which appears to S to arrive in a direction

1. m, n will appear to S' to arrive in a direction l\ m', n', where I, I' are related

by equation (729). Put I = cos U = cos <j) ;
then

cos 0' - cos A = ^ — sin* 6' .

0^1 + ^cos0'^

If ujC is small, this reduces to the ordinary formula of practical astronomy.

Doppler Effect Equating the last two fractions in equations (728), we find

v' /- t4COS0'\/_ M*\ ^

;-(*+-t;-)('-c5) ('“)•

This is the full expression for the Doppler effect. If m*/C* is neglected, the

right-hand member reduces to

1 +^COS0,

which is the Doppler factor usually assumed. If the observer is moving

directly towards the source of light with velocity w, we have cos0' = 1, and

equation (730) becomes

r uii

(731 ).
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Acceleration, Mass and Force.

690. In formulae (702) we obtained equations for the velocity r, r, w
obtained by compounding a velocity u, 0, 0 with a velocity u\ f', w*. When
the velocity if, v\ w* is so small that its square may be neglected in com-

parison with C*, these formulae reduce to

/ w* u\
u = u+ u'-

v' w= —
K

.(732).

Suppose that m, 0, 0 is the velocity relative to S of a moving particle at

an instant t = 0. Let it appear to an observer moving with a uniform

velocity u, 0, 0, to have accelerations

^ ^
dt'* W*

these being measured in the coordinates used by 8\ In formulae (732) let

us put
^ ri’ ft H ttr'

(733),
, dr'^, , dr'

then u, V, w will be the velocities, as measured by S at the end of a small

interval dt* as measured by S\

The times t, t used by S and S' are connected by equation (697), namely,

so that on differentiation with respect to t following the particle in its motion,

Thus relations (733) may be replaced by

and equations (732) become

. Idi/j
tr= - j- , dt, eta,

K at

1 dv' jy—-,-rr dt,
** dt

'

1 dvr'
,.(735).

n> 14/ 1/ n> vi/v n, u/i/

If ^ are the accelerations as measured by S, we must have
at dt dt

du ,
U = u-\- -^^dt, etc.,

whence by comparison with equations (735),

du 1 du' dv 1 dV dw
dt ic* dt' ’ dt ic* dif ’ dt

L
IC* dt'

.(736).

These formulae give the accelerations as measured by S in terms of the

accelerations as measured by an observer S' moving with the particle.
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691. Let the accelerations be supposed to originate from the action of a

force. Since the particle is supposed to be at rest relative to S' at the in-

stant t' <= 0, its equations of motion, in terms of the coordinates used by S',

will be
dxj' dr' ^ dw'

where m is the mass, as estimated by and F\ Q\ R are the components

of the force, also as estimated by S\

From these equations and equations (736), we obtain

,du n/ -dfr

and these will be the equations of motion as observed by S.

If the particle is an electron of charge e, the values of P', O', R will be

eX\ eY\ eZ\ where X', Y\ Z' are given by equations (723). Substituting

these, we find for the equations of motion of the electron as observed by S,

du „
rriK^ -j- = eX

dt

^dv
1

/-a
ndw

i{ „ U

The observer 8 will suppose the electron moving with velocity u to have

longitudinal and transverse masses rrti and mt\ and his equations of motion

for the electron will be
du ^ \

dv u \

dw („ u

By comparison with equations (738)

mi = niK*; rrit — mK

692. These are precisely Lorentz s expressions for the longitudinal and

transverse mass of a moving electron (§ 664), which we have seen to be fully

confirmed by experiment (§ 665 ). In deducing these expressions in § 664

we supposed the inertia to be produced by a magnetic field in the ether, so

that u denoted the velocity relative to the ether, but the theory of relativity

shews that u may legitimately be supposed to mean merely the velocity

relative to the observer by whom the accelerations are measured. A further

difierence between the two calculations may also be noticed. When the mass
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was regarded as arising from an ethereal magnetic field, it was possible to

estimate the radius of the electron from a knowledge of the value of m; the

relativity calculation does not make any such estimate possible.

We may notice that

du d, . dv d . . ,

dt = di dt = dt

whence it follows that the equation of motion of an electron moving with

any velocity u, v, w relative to any observer must be

= Ja)

(741).

where k is now given by

(. p’ + + jr*\ ^

"I* Ci )
(742).

To shew that these are the true equations, it is sufficient to notice that

they are invariant as regards transformations of the a?, y, axes, and reduce

to equations (738) for one special direction of these axes.

Momentum and Energy.

693. The expressions on the right of equations (741) are the components

jof force on the moving electron as they would be measured by S (cf. ^ 629,

653). If we denote these by P, Q, R, and if we regard

mteu, mKV, rriKW

as the components of momentum of the moving electron, then the equations

of motion (741) assume the form

{Force) = {rate of change of momentum) (743).

The rate at which work is done on the electron will be

Pi/’+ Qr+

P

tt = mu (/cu) + (/c y) + mTF^ (itir),

and after simple algebraic transformation this becomes

Pu+QV’\‘Rw=^^{mKC^) (744).

Thus if we suppose the energy of the electron to be m/cC* + a constant we

have the equation

{Rate of doing work) = {rate of increase of energy).



692-695] Mass, Momentum and Energy 613

In the equation,

Energy = ttikC^ + cons (745),

the additive constant is entirely at our disposal. If we take it equal to —mG\
the energy is given by

Energy = mC* (/c— 1) (746),

and this reduces to the Newtonian kinetic energy w^) when the

velocity is small compared with that of light. But it is generally more con-

venient to put the additive constant equal to zero, so that the energy is simply

7w/e(7®. This may be regarded as representing kinetic energy m(7*(/c — 1) and

intrinsic electronic energy mG\

694. Let us put

r.™c(i - - (i -

sr
then -^ = mKU, etc. and equations (741) become

jd /an
dt \du)

P\
dt

These are analogous to the classical Lagrangian equations of motion of a

particle. We must note, however, that T is not the kinetic energy, but is

equal to the kinetic energy divided by k.

Conservation of Mass, Momentum and Energy.

696. In defining the energy of an electron to be ttikG^, we have already

arranged, by definition, that conservation of energy shall hold. The total

energy of a system of electrons is Sm/cC'*, and from equation (744) it is at once

apparent that if no work is done from outside the total energy remains

constant.

As a system of electrons change their velocities under their mutual inter-

actions, the values of k for the different electrons will be continually changing.

If the total energy remains constant, it is clear from equation (745) that Sm/v

must remain constant. Thus if in future we agree to define the mass of a

moving electron as —the “transverse” mass of § 664—then it appears that

conservation of energy will imply conservation of mass.

The full principle of conservation of energy states that as energy is inter-

changed between different modes of energy the sum total of energy always

remains constant. Hence in order that the sum total of masses shall remain

constant

—

i,e. to secure complete conservation of mass—it is necessary that all

forms of energy should possess mass, and energy E of any kind whatever must
possess mass of amount EjG^

For instance suppose that a system of electrons of energy E, and therefore

of total mass equal to EjG^, radiates away energy of amount R, The
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final energy of the electrons is ^— -R, so that their final mass is — i2/C7*.

But the radiation possessing energy H must also possess mass JR/C^, so that

the total mass of electrons and radiation remains equal to ^/O*, and the total

mass is entirely conserved.

696. Our typical electron has been supposed to move with a velocity of

components tr, v, w relative to an observer 5. Let us suppose its velocity

relative to a second observer to be u\ v' w\ when 8' moves relative to 8
with a velocity u, 0, 0. Then the two sets of velocities are related by the

kinematical equations (702) and (703) of § 679.

Let us write

c^--)

(747),

so that is identical with the /c of § 679. On using the values of u\ v\ w*

given by equations (703), we find

(r-«)' + (l-|',)(r*+ii™)

SO that, on raising each side to the power —

. / U\l\
K (748),

or, again using the first of equations (703),

k'u' == kkq(u—u).

Multiplying both sides by m, and summing over all the particles in the

field,

l.mKU' =S Kq XuIKU^ UKn hmtc.

Let fix denote the total mass and total d:-momentum as observed by <3,

and let M\ fix denote the same quantities as observed by 8\ Then our

equation may be written

fix —Kq fix — UK,, M. (749).

Similarly, since 8 is moving relative to 8’ with a velocity — u,

fix = K„ fix' + UK,iM' ,(760).
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If the total energy of the system remains constant throughout any motion,

M and must remain constant, so that necessarily remain

constant. Thus conservation of energy implies conservation of momentum.

697. As a particular case, let us suppose the velocity of the axes of S
chosen so that fix = 0. Thus S' moves with the centre of gravity of the system,

and this centre of gravity moves relative to 8 with a velocity u along Oa:.

Putting fix =0 in equations (749) and (750), we find

fix = uM^

Thus the a;-momentum observed hy S is u times the total mass observed

by S. The total mass observed by S is Kq times the total mass observed by

S'. And, if we take the energy equal to MC\ the total energy observed by 8
is K times the total energy observed by S\

698. Returning to the analysis of § 696, let us suppose that the system

emits a beam of radiation along Ox. Let the energy of this beam as estimated

by S be E, so that its mass is EjC^, and let its momentum as estimated by 8
be Rx along Ox. Let accented letters denote the same quantities as estimated

by S'. Then in order that equation (749) may be true both before and after

the omission of the radiation, both mass and momentum being assumed to be

conserved, we must have

Rx = kqRx — ukoEIG\

This equation is true for all values of u. Take u equal to C, so that S'

moves with the beam of light. Then Rx' = 0, and the equation becomes

= ^ (T51).

Thus the momentum of a beam of light, as measured by any observer

whatever, is equal to (1/C) times its energy. Or, again, the momentum is

equal to C times the mass. If W is the energy of the beam per unit volume,

the momentum per unit volume will be W/C, and the flow of momentum per

unit area of cross-section will be G times this, and so equal to W. Thus the

pressure of radiation is equal to the energy per unit volume.

This result was obtained in §592c as a consequence of the hypothesis that

electric action was transmitted by an ether. It now appears that the result is

in accordance with the hypothesis of relativity, and can be deduced as a direct

consequence of this hypothesis.
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The Eherqt and Momentum of Radiation.

699. In free space the fundamental equations (613) and (614) of p. 559

assume the form
Airpu

.
1 dX 07 3/9

Cdt~dy 0^’

(752).

.(753).

Multiply these six equations by X, Y, Z, — a, — P, — y respectively and add

corresponding sides. We obtain

^ p (Zp + yF+ Z.F) + ~ ^ (Z» + r»+ + a*+ /9« + 7*)
2Gdt'

1(X«- r.x

Multiply both sides by Gl^ir and integrate throughout any closed space.

Assuming that the distribution of electric density p arises entirely from

electrons, we obtain

2e {Xv+ + y’‘ + ^’+ a’ + ;8“ + 7*)

=^JJ[i(y7-y^)+«»(ya-Z7)+7i(Zy3-ya)j dS (754).

In §693, we put

e(z+^7-^^)=P,etc.

Multiplying these relations by u, r, w and adding we find, after a further

use of equation (744),

e {Xu^- Yv + Zw) = PU’¥Qv + Rw =^^^{rtiKC%

Thus equation (754) becomes

|^[2m*(?+^j’jJ(Z»+ y‘ + Z«-H»»+ /3» + 7>) dxdyd^

= 4^//[«
(1^7-m + ...]

d«...(755).

Now let the closed space be allowed to extend to infinity, so that the

integration is through the whole of space. The surface integral on the right

of equation (755) now vanishes, so that the left-hand member must also

vanish. In other words, throughout the motion of the system of electrons,

'S.niKO* +“ + y® + Z* + o*+ ;8= + 7®) dxdydz = cons. . . .(756).
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If R is the energy radiated away from a system of electrons, we have

already had the relation

Xm/eC* + R = cons.,

whence it appears that the volume-integral in (756) must represent radiated

energy.

If we assume the radiated energy to be localised in space according to the

distribution of the integral, then the flow of energy into any closed surface

must be represented by the surface-integral on the right hand of equation

(765), and this flow is precisely that given by the Poynting Flux of § 576.

700. Again, let us multiply the six equations (752) and (753) by 0, y,

— 0, — F and add. We obtain

- i^ -^ + a» - /3> - 7») +^ (Xr+ «/9) + i (Z^ + a-y)

.^1
dy

dy\ 37
I dx dy dz)

Dividing throughout by 47r, and using equations (615) and (616), this

becomes

Integrating through a closed surface as before, this becomes

+ ^(ZZ+»y)]dS.

Using the first of equations (741), the left-hand member becomes

^ jj(Yy-Zff) dxdydz'^ (758).

If the integral is taken through the whole of space, this expression must

vanish, so that the quantity inside square brackets must remain constant.

The first term XrriKU is the j;-momentum of the electrons, so that the second

term must represent the a;-momentum of the emitted radiation. This is

identical with the formula found for the momentum in the ether in § 655 ;
it
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has now been obtained, independently of the assumption of an ether, as a

general expression for the momentum of radiation.

If we assume the momentum to be localised in space according to the

distribution of the integral, then equation (757) can be interpreted as shewing

that there is a flow of rr-momentum per unit area at any point, whose com-

ponents will be Pjey, where

Pxy=^{XY+ aff), etc.

These are precisely the quantities we obtained in § 655 to represent the

components of stress in an assumed ether. On the relativity-theory, they

appear in a much more general way as representing the flow of momentum
in space.

The Existence of an Ether.

701. Throughout the earlier chapters of this book, we treated the existence

of an ether as a working hypothesis. Maxwell and Faraday appear to have

had no doubt that the ether had a real objective existence, but no proof that

it exists outside our own minds has ever been obtained, and it seems best to

regard it merely as a working hypothesis, to be discarded if it is found to lead

to contradictory or impossible results, and to be retained if it proves to be

useful as well as self-consistent.

The considerations which have seemed to favour the hypothesis of an

objective ether are mainly the following:

(i) That light and other forms of electromagnetic action are propagated

with a uniform velocity (7, which is most naturally interpreted as a velocity of

propagation in a medium of some sort.

(ii) That the hypothesis of an objective ether explains electrical forces

with comparative simplicity as arising from systems of stresses transmitted by

the ether.

(iii) That the hypothesis of an objective ether gives a simple account

of electromagnetic energy as being the energy of a medium in a state of strain

and stress.

The force of the first consideration is very much weakened by the dis-

covery, resulting from the Michelson-Morley experiment, that the velocity of

propagation is the same for an observer moving through the supposed ether as

for one at rest. We have seen in the present chapter that this fact, whether we

assume an ether to exist or not, requires us to adopt systems of kinematics

and dynamics which are different from the old classical systems. The con-

sequences of these new systems of kinematical and dynamical laws are found
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to be confirmed by experiment. If they had not been confirmed, we should

have reached an impasse
;
the circumstance that they are confirmed provides

no definite information on the question of the existence of an ether. But the

hypothesis of an ether is weakened to this extent, that the theory of relativity

has shewn that the results in question, although possibly admitting of an ex^

planation in terms of an ether, are necessary consequences of the simpler

supposition that phenomena are the same for all observers, no matter with

what velocity they are moving. And the simplest way of all of arranging that

phenomena shall be the same for all moving observers, is to suppose that there

is no ether at all
;

all moving observers then necessarily stand on the same

footing, for there is no fixed framework by which their motion can be estimated.

The hypothesis that there is an ether may give a possible explanation of the

phenomena, but the hypothesis that there is no ether provides an equally

possible and very much simpler explanation.

If we still wish to retain the hypothesis of an ether through which light

and electromagnetic phenomena are propagated, we must adjust the properties

of this ether to agree with experiment. Now we have seen (§ 688) that, no

matter how an observer and a source of light move, the wave-surface formed

by the light emitted at any instant will be a sphere having the observer as its

centre. If the observed constant velocity of light is simply the constant velocity

of propagation through an ethereal medium, it would seem to follow that each

observer must carry a complete ether about with him. This at least robs the

ether of the greater part of its reality. We cannot quite go so far as to assert

that the ether is reduced to a subjective imagination, as a simple analogy will

shew. A number of travellers may all see what they would describe in ordinary

language as being the same rainbow. The angle of the rainbow would be the

same for each traveller, and no amount of travelling towards the rainbow would

cause it to subtend a greater angle. If the travellers compared observations

they would have to conclude that each traveller carried his own rainbow about

with him. This would not, however, prove the rainbow to be merely a sub-

jective illusion; when the lainbow disappeared for one traveller it would

disappear for all. Considerations such as we have mentioned do not prove in

strictness that light cannot be propagated through an ether; what they prove

is that if an ether exists, it must be something very different from the

absolutely objective ether imagined by Maxwell and Faraday.

The hypothesis of an ether shewed great aptitude for explaining either

electric or magnetic forces in systems at rest : a simple system of pressures

and tensions was found to account perfectly for the observed forces. On the

other hand the same explanation cannot account for both electric and

magnetic forces simultaneously. If, as is usually assumed, the electric forces

are accounted for by simple pressures and tensions, then some other ex-

planation must be found for magnetic forces, and the hypothesis of ether-
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stresses loses its principal advantage. Further it has been found that the

hypothesis of an ether at rest fails entirely to account for the forces in

systems in motion (§ 655). To account for these forces, it appears that the

ether must be supposed endowed with momentum. On the relativity-theory

also we have seen (§ 700) that the forces can be explained in terms of a flow

of momentum. The relativity-theory has thus shewn that what is essential to

the ethereal explanation is not the ether but the momentum with which it was

supposed to be endowed. It is quite easy to imagine a flow of momentum
without there being an ether to carry it, and the conception of forces and

pressures arising from a flow of momentum is one with which we have become

familiar in other branches of physics, as for example the Kinetic Theory of

Gases.

Almost similar remarks apply to the interpretation of electromagnetic

energy. Stress in the ether would account quite simply for either electric or

magnetic energy, but not for both. Usually the energy of ethereal stress is

regarded as electrostatic energy, so that kinetic energy of the ether must be

invoked to account for magnetic energy. Again the ether has to be supposed

endowed with motion, but the motion requisite to account for the magnetic

energy is something quite different from that corresponding to the momentum
required to account for electromagnetic forces. So far from the ether providing

a simple explanation of all phenomena, it is found that highly complex pro-

perties must be ascribed to it in order to account for electrical and magnetic

properties simultaneously.

If an ether existed, it would provide a fixed set of axes relative to which all

positions and velocities could be measured. To account for the result of the

Michelson-Morley experiment, it would be necessary to postulate a real

shrinkage of all bodies moving through the ether. This shrinkage could not

be detected by mechanical means, for a measuring rod would shrink in precisely

the same ratio as the body to be measured, but it could be detected by gravi-

tational means unless every gravitational field of force shrunk in just such a

way as to conceal the shrinkage of matter. For instance, if the gravitational

field did not shrink, the gcoid, or surface of mean sea-level on the earth, might

be a gravitational equipotential for some one velocity through the ether, but

could not remain an equipotential as the earth's velocity through the ether

changed from point to point of its orbit. Thus we might anticipate seasonal

and daily tidal surgings as a result of the earth’s motion through the ether.

No such events are observed. It is true that even if these occurred the

earth’s motion through the ether might not be sufficiently rapid for them to

be capable of observation, but the generalised theory of relativity, explained

in the next section, makes it clear that such events could not be observed

whatever the earth’s motion might be. There is no longer any room for

reasonable doubt that gravitational phenomena conform to the relativity

condition.
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If, then, we continue to believe in the existence of an ether wc are

compelled to believe not only that all electromagnetic phenomena are in a

conspiracy to conceal from us the speed of our motion through the ether, but

also that gravitational phenomena^ which so far as is known have nothing to

do with the ether, are parties to the same conspiracy. The simpler view seems

to be that there is no ether. If we accept this view, there is no conspiracy of

concealment for the simple reason that there is no longer anything to conceal.

Generalised Relativity.

702. In discussing the transmission of light-signals in § 675, we made the

assumption that light travelled in straight lines with uniform velocity. If

space and time were known to be uniform throughout their whole extent,

no such assumption would be needed; the uniformity of velocity and the

straightness of path would be direct consequences of the uniformity of time

and space.

The theory of relativity has however developed in such a direction that

space and time can no longer be supposed to be everywhere uniform. In the

early days of the theory it was noticed that Newton’s inverse-square law of

gravitation did not conform to the relativity-condition, and in 1915 Einstein

put forward a theory of generalised relativity according to which all gravita-

tional phenomena are the consequences merely of departures from uniformity

of time and space.

According to Einstein’s theory, the properties of both time and space in

the neighbourhood of a gravitating mass differ from those in regions far

removed from all matter. The properties of space in the latter regions can be

adequately described by the geometry of Euclid, but those in the neighbour-

hood of gravitating matter need a new geometry for their description.

In ordinary space, as described by Euclid’s geometry, parallel lines never

meet. Other geometries and other spaces can, however, be imagined. For

instance, two lines drawn upon the earth’s surface, through two points on the

earth’s equator, both running due north, and so running exactly parallel to

one another, will ultimately meet in a point—the North Pole. We see that

the geometry of a spherical surface is different from that of a plane, so much
so that almost Jill the ordinary theorems of Euclidean geometry fail when

applied to a spherical surface.

The geometry required by Einstein’s gravitational theory is much less

simple than the spherical geometry we have just used as an illustration. It is

not concerned with two-dimensional surfaces, or even with a three-dimensional

space. It is concerned with a four-dimensional continuum, of the type con-

sidered in § 675, in which three space-coordinates and one time-coordinate

are plotted parallel to four rectangular axes. In the neighbourhood of gravi-
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tating matter this four-dimensional continuum is supposed to be curved

somewhat in the way in which the earth's two-dimensional surface is curved.

A circle of diameter 1000 miles drawn round a point on the earth's surface

will not have a circumference of IOOOtt miles, as it would be if the circle were

drawn on a plane, but of only about OOTtt miles. In the same way, according

to Einstein’s geometry, the circumference of a circle of radius r drawn about

a gravitating mass is not precisely 27rr, but is less by a fraction which is pro-

portional to the mass and falls off as we recede from it.

As a consequence of the special geometry of a spherical surface, it is not

possible to draw a map on a plane surface so as to shew all the parts of the

earth’s surface simultaneously in their proper shapes and relative sizes. This

results from its not being possible to select coordinates x, y on the earth’s

surface such that the element of length ds is given by

= (759)

at all points of the surface. The simplest coordinates it is possible to select

are the ordinary d,
<f>

of spherical polar coordinates, in terms of which the

element of length on the surface of a sphere of unit radius is given by

= sin*^d</>* (760).

According to Einstein's generalised relativity, the element of length in the

four-dimensional continuum can be expressed in the form*

= + + + (761)

only in regions which are far removed from all gravitating matter. This form

for is of course analogous to expression (759) for the value of ds® on a plane

surface. As in § 675, t stands for iCt where i = ^^/(—l)-

If we replace t by its value iCt and transform from the space coordinates

X, y, z to the usual spherical polar coordinates r, 6, equation (761) assumes

the form
ds® = dr* + r*d^* -I- r» sin* ^d<^» - C*d«* (762).

Einstein's theory requires that in the neighbourhood of a gi*avitating

particle of mass m, equation (762) shall be replaced by

ds* + r» sin» - (? (l - dP . . .(763).

A particle describing a “geodesic” or most direct path—defined by

S/ds = 0—in this space, can be shewn to change its coordinates x, y, z^ t in

very approximately the same way as a particle describing an ordinary ellipse

or hyperbola in ordinary space about a mass m under a law of attractive

force 7m/r®. The agreement, however, is not quite exact, and Einstein’s theory

is found to require three phenomena which were not predicted by, and are in

In technical investigations on Belativity - d$^ is usually written for our
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fact inconsistent with, the classical Newtonian theory
;

first, the perihelia of

sill the planets ought to advance at a rate which should be easily detected in

the case of Mercury; second, light passing near to the sun ought to shew

an appreciable deflection
;
and third, the spectral lines emitted in a strong

gravitational field such as that of the sun ought to be seen shifted slightly to

the red when compared with the corresponding lines emitted in the weak
gravitational field of the earth. Of these three phenomena, the first had been

observed by Leverrier long before any explanation was forthcoming, the second

was observed as soon as it was looked for, first in the solar eclipse of 1919 and

subsequently in that of 1923, while the third is still in doubt, on account of

the extreme difficulty of the observation and the smallness of the quantity to

be measured. But the quantitative agreement in the case of the first two

phenomena is so good that no doubt is felt as to the substantial truth and

accuracy of Einstein’s theory.

In brief Einstein supposes a particle in a gravitational field to describe a

straight path through a curved space* whereas Newton had imagined it

to describe a curved path through a straight space. Newton imagined the

curvature of path to result from the action of “forces” which emanated from

the gravitating mass, and tried, although without success, to interpret these

forces as stresses transmitted by a gravitational ether. Einstein’s theory

abolishes the conception of gravitational “force” and so escapes altogether

the dilemma of having to suppose these forces either to be transmitted

through a medium or by direct action at a distance.

WeyVs Electromdgnetic Theory.

703. This dilemma of action through a medium or action at a distance

is precisely that which has led to most confusion in electromagnetic theory

(cf. § 154). If it can be avoided in gravitational theory, it would seem

reasonable to hope that an electromagnetic theory could be constructed which

should also avoid it.

This has in actual fact been attempted. Weyl in 1918, followed by Eddington

in 1921, shewed that Einstein’s geometry is far from being the most general

geometry in which the relativity-condition is satisfied. In the expression

(763) which specifies the element of length ds on Einstein’s theory, the

coefficients of the differentials dr, rc?^, r sin 6d(f> and dt are functions solely of

the position of ds in space. With certain conventions as to the meaning and

* It must always be remembered that the space in question is four-dimensional ; otherwise

the statement appears nonsensical. It would be absurd to say that the approximate semicircle

described by the earth between perihelion and aphelion is the most direct path between these two

points; it is only when the six months interval in time is taken into account that the statement

begins to appear reasonable. We can get rid of the time-interval by supposing the particle to

move with infinite velocity in which case the path becomes a straight line even in ordinary three-

dimensional space.
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method of the measurement of length we may deduce from this expression

that the length of a measuring rod would change as it was moved about from

place to place in a gravitational field, but that its length at any instant would

depend solely on its position in space. Indeed we may be even more precise,

for the coefficients of the differentials in expression (763) all depend on the

single quantity 1 — which in turn depends only on the gravitational

potential 7m/r, so that the length in question depends only on the gravi-

tational potential at the place.

In the most general geometry possible in a space of coordinates x, y, Zy r,

a measuring rod of length I moved parallel to itself through a displacement

dxy dy, iZy dr may be expected to experience a change of length dl defined by

dl = I (Fdx + Gdy + Hdz + Kdr) (764),

where Fy Gy Hy K may be the most general functions of the position of the

point. If the rod is moved from one point P to any other point Q its whole

change of length will be given by

log + Qdy+ Hdz + Kdr) (765).

In Einstein’s geometry, Iq and lj» depend only on the positions of P and Q,

so that the integrand on the right is necessarily a perfect differential. The

condition that this integrand shall be a perfect differential is expressed by

the six equations

dy dz ’ dx dr

dF_^^Q ^_K_oG
dz dx ’ dy dr

dx dy * dz dr

In Weyl’s geometry, on the other hand, the integrand on the right hand

is not in general a perfect differential, and the six quantities which constitute

* Unfortunately it is round these conyentions that the difficulties of the subject mainly centra'.

It is meaningless to speak of a measuring rod changing its length unless there is something more
absolute against which it can be measured, and the complexities of the theory, especially of

Weyl’s theory, turn on the properties of the imaginary gauges or meshes against which material

objects may be measured. It is impossible to give a full discussion in the present book. The
student who wishes to pursue the subject further may be referred to

Eddington, Space^ Time and Gravitation.

Eddington, The Mathematical Theory of Relativity.

Weyl, RauMy Zeity Materie (French Translation, TempSy Eepaccy Matilre),

It ought to be added that the brief sketch in the present book follows the exposition of Eddington

rather than that of Weyl.
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the left-hand members of eqaations (766), instead of vanishing, have values

a, h, c, d,e,fao that

dy

dz dx~^‘

dx dy

Via. i/i' j

dx

dy

d£
dr

dO
= e

0T

dz dr •'

.(767).

dG d^ IdF
dx 0 dt~^

11
d^ IdG
dy “ Cdt~ ^

dF _a'p

dy-^' dz Gdt~^

.(768).

704. If we restore its value iCt to t, and replace K by and id, le, if by

Xy F, Zy the system of equations assumes the form

dJI

dy '

dz

dG
dx

On differentiating the three equations on the left with respect to a?, y, z

and adding, we obtain

I +1+1=0 w
The seven equations (768) and (769) are formally identical with the seven

equations from which we proceeded to develop the general equations of the

electromagnetic field in § 639. Weyfs electromagnetic theory supposes that

the identity is one not only of form but also of reality; he supposes an

equation of the form

dl = kI {Fdx + Gdy -I- Udz — C'^dt) (770),

to connect the change undergone by a rod on displacement with the three

components of magnetic vector potential Fy Gy H and the electric po-

tential 'F. This equation is identical with our former equation (764) except

for the occurrence of the const^int tc which is necessary to secure that Fy Gy H
and T' shall be of the appropriate physical dimensions. The only result of

introducing this factor k is that the left-hand member of equation (765) must

bo replaced by
1

1

after this k disappears and we reach equations (768) and (769) as before. Wo
see that on Woyl’s theory the values of Fy (r, Hy ^ at any point are determined

by the rate at which a unit measuring rod changes its length as it passes

through the point.

On Weyl’s theory a material body has no permanent size associated with

it. By many this has been regarded as an objection to the theory. The
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various attempts which have been made to avoid it, while retaining the

obvious advantages of the theory, can hardly be discussed here.

706 . From equations (768) and (769) it is easy to develop the whole of

the classical electromagnetic theory.

We notice first that equations (768) are identical with the six equations

(767) which form a system symmetrical with respect to the four coordinates

X, y, T. This of course ensures that the equations satisfy the relativity

condition. The first three of this system of six equations contain only the

three coordinates x,y,z\ t is entirely absent from this set of three. From the

set of three equations from which t was absent we obtained equation (769).

From the corresponding three sets of equations from which a?, y and z in turn

are absent, it is of course possible to obtain three other equations of similar

type. These are found to be
1 0a

Cdt''

’ Gdt

0^_
dy ‘

' dz
‘

dz

dZ[

dx
.(771),

O dt dx dy I

which are simply Maxwell’s equations of current induction (cf. § 574).

On differentiating the three equations on the right of the system (768)

with respect to a;, y, 2: and adding, we find

dx^ dy dz V0a;* dy^ ' dz^ ) Cdt\dx^ dy

Precisely as in § 640, it can be shewn that F, G, H and are not uniquely

determined when the electric and magnetic forces are given. We again

suppose them to conform to the additional equation (643), namely

Vw
which was imposed on them before. This equation satisfies the relativity

condition, being symmetrical in the four coordinates a?, y, z, t; in terms of

the notation used in equation (764) it has the form

^ ^ 0^
dx'^ dy'^ dz^ dr^ ’

and so expresses that the vector (F, 0, H, K) is of zero divergence.

If we now introduce p, defined by

^ ^ dJI

dx dy ^ dz
'

dX dY dZ ^

0a;
.(774),

equation (772) assumes the form

9»qr 0iiqr 3sqr 1
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of which the solution, obtained as in § 645, is

Since our equations have all satisfied the relativity condition, these

formulae must remain true for any rotation of the axes in the a, y, t space.

Writing

*
da,’’ dy^ Odf’

we notice that in terms of the coordinates a?, y, t assumes the form

* da^ di/-

which is obviously invariant for any rotation of the axes.

Let us now take equation (775) which, in a?, y, z, t coordinates, has the

form
V,*'F = ~47rp (777),

and transform to a new set of orthogonal axes, obtained by rotating the old

axes in the a;, y, z, t space. As has just been seen the operator will be

the same in the new axes as in the old. is the component along the axis

of T of the vector
— i/’, — tG, — tif, — iK,

while p is the corresponding component of the vector

dx dy dz

Pdr' Ptr’ Pdr’P
or of the vector

u . V . w
^ G* "“^P nO' ‘^P Qy P*

where V, v, w are the components of velocity of p. Thus after transfor-

mation, equation (777) becomes

V4
® (— iliF— il2G — il^H + 1^) = — 47r ^ipQli’'‘ip^h'~^p^k + p^^

»

where Zi, k, h, h are the direction cosines of the old axis of t.

Since this equation must be true for all values of Z^, Zj, Z, and Z4 , we

deduce at once

V4«^=-47rp^ .(778),

and two similar equations. Returning to the coordinates x, y, z, t, these

assume the form
d^F d^F d^F

.
U

da? 9?“ ^ ^ (779),

and similar equations in G and H, These together with equation (775)

constitute the equations of propagation of the four potentials F, G, H,
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By direct solution of equation (779) we obtain the value of F in the form

with similar equations for 0 and //.

Using equations (779) and (7G8) we find

. u I dX 1 d-F (d^F d^F d^F'

a a dt (0^ + 0ya + 0^1

A
‘J'^C dt

_rŴ d^\
dy^ ^ dz^

)

and, by use of equation (773), this

_±(dF ^ ^_E\” dx By ^ dz ) \0r* 0y“ dz^

)

d /dG dF\ d /dF dH\^ _ dF\
__ ^

dy\dx dy) dzdy\dx dy) dz\dz dxj

= p--f (781).
dy dz

giving Maxwell's equations of magnetic force.

Differentiating this and the two similar equations with respect to x, y, z

and adding, we obtain, by the use of equation (774),

d , . d , . d , ^ dp ^
5j{,.) + jp(pr) + 3j(,»-) + jJ-0,

which is the equation of continuity (cf. § 622), shewing that electric charges

have a permanent existence.

706. Einstein s gravitational theory was accepted as soon as the phenomena

it predicted in opposition to the classical Newtonian theory were actually

observed. It is impossible for Weyl's electromagnetic theoiy to establish itself

in a similar manner since the phenomena it predicts are precisely identical

with those of the classical theory of Maxwell. As a direct observational test

is impossible, Weyls theory can only be judged by its inherent plausibility.

It may be said to be the only theory at present in the field, Maxwell’s

mechanism of stresses and strains in an ether having, for all practical purposes,

received its deathblow by the establishment of the restricted relativity

theory. In its favour may be said that it gives a consistent account of

electromagnetic phenomena on lines which, in view of the convincing experi-

mental confirmation obtained for the parallel theory of gravitation, must be

jidmitted to be in accordance with the general workings of nature. The

principal objection which can be brought against it has already been men-

tioned (§ 704).



CHAPTER XXT

THE ELECTRICAL STRUCTURE OF MATTER

707. By the end of the nineteenth century, it was generally believed that

all physical phenomena, with the possible exception of gravitation, were of

electric origin. Associated with this was the belief that matter was a purely

electrical structure. Positive and negative charges, arranged in combination

in different ways, were supposed to give rise to all the various kinds of m.atter

in the universe, changes in the positions and arrangements of these charges

being regarded as the origin of all the phenomena of physics and chemistry.

Various conjectures were made as to the actual arrangement of the positive

and negative charges in matter, but positive knowledge was only obtained

when the new experimental methods made available by the discovery of

radioactive substances were brought into action.

708. The special properties of radioactive substances originate from their

spontaneously and continuously emitting rays of various kinds. If a beam of

the emitted rays is allowed to traverse a strong magnetic field, it is found to

be split up into three distinct beams, two of which are deflected in opposite

directions, while the third passes straight on. The three types of rays in

these three beams are known as a rays, ^ rays and 7 rays respectively. We
have seen (§ 631) that a charged electric particle traversing a magnetic field

will describe a circle of radius vraCjell. The curvature of the paths of the

a rays is found to be the same as if the rays were positively charged particles,

that of the paths of the ^ rays is curved as though they were negatively

charged particles, while the absence of curvature of the paths of the 7 rays

suggests that they are not charged particles at all. The charges ran be measured

by shooting the rays into an electrometer. It is found that the a rays are

rapidly moving particles each with a positive charge ecpial to twice the charge

on an electron, and with a mass almost exactly eciual to that of the helium

atom. The rays prove simply to be negative electrons moving with velocities

comparable with that of light. The 7 rays are found to be radiation of the

same general nature as light or X-rays, but of exceedingly short wave-length.

If a thin piece of metal foil is placed in the path of a beam of a particles,

the majority of the particles pass through without their paths shewing any

appreciable deflection, but a small fraction of the total number are substantially

deflected. From experiments under varied conditions, the deflections are found

to be such as would be expected if only isolated small areas of the foil had

the power of appreciably deflecting the particles, and the number of such

areas is found to be equal to the number of atoms in the foil. Moreover the

deflections observed are precisely those which would be expected if each of
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these areas had at its centre a fixed particle which repelled the a particle

according to the law of the inverse square of the distance.

Investigations of this type led Sir E. Rutherford to put forward in 1911 a

theory of the structure of the atom, generally known as the nuclear theory,

which has stood the test of time and has now won universal acceptance.

According to this theory, an atom consists of a positively charged central

nucleus surrounded by a number of negative electrons, the charge on the

central nucleus being such that the total charge of the atom is zero.

The simplest atom is the hydrogen atom, consisting of only one electron

and the positive nucleus. If — e is the charge of an electron, that of the

positive nucleus of the.hydrogen atom is of course +e. Next in order comes

the helium atom consisting of two electrons and a positive nucleus of charge

+ 2e, This positive nucleus is found to be exactly identical with the a particles

of radium radiations.

With insignificant exceptions chemical elements are known having re-

spectively 1, 2, 3, ... electrons, and consequently nuclei of charges +c, +2e,

4-3e, ..., up to 60 electrons and a nuclear charge + 60e (Neodymium). After

this gaps appear in the sequence, which appears to end altogether at Uranium

with 92 electrons and a charge + 92e. The number which fixes the position

of an element in this sequence is called its “atomic number”; for the elements

of low atomic number, the atomic number is approximately equal to half the

atomic weight. The first few elements with their atomic numbers are as

follows:
Atomic
Number Element

Atomic
Weight Isotopes

1 Hydrogen 1008 1,2.3

2 Helium 4-00 3, 4, 5 (?)

3 Lithium 6’94 6,7

4 Beryllium 902 8 (?), 9, 10

6 Boron 10*82 10, 11

6 Carbon 12*00 12, 13

7 Nitrogen 14*01 14, 15

8 Oxygen 16 16, 17, 18

9 Fluorine 19*00 19

10 Neon 20*18 20, 21, 22

11 Sodium 2300 23

12 Magnesium 24*32 24, 25, 26

13 Aluminium 26*97 27

14 Silicon 28*06 28, 29, 30

15 Phosphorus 31*02 31

16 Sulphur 32*06 32, 33, 34

17 Chlorine 35*46 35, 37

18 Argon 39*94 36, 38, 40

19 Potassium 39*10 39, 41

20 Calcium 40*08 40, 42, 43, 44

709. As we have seen the mass of the negative electron is 9*00 x

grammes. The mass of the hydrogen atom is about 1845 times this, so that
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the nucleus has about 1844 times the mass of the electron. In the helium

atom the mass of the nucleus is about 7320 times the mass of a single electron

and so outweighs the two attendant electrons in the ratio of about 3660 to one.

As the ratio of atomic weight to number of electrons is about the same in all

elements except hydrogen, it follows that in all elements other than hydrogen

only about one part in 3660 of the total mass resides outside the central

nucleus. For most purposes we may think of the centre of gravity of an atom
as coinciding with its nucleus.

Assuming the mass of the negative electron to be wholly electromagnetic,

we have seen that its radius must be of the order of 2 x 10”^* cms. If the mass

of the nucleus also is wholly electromagnetic, its radius must be much smaller

than that of the negative electron; that of the nucleus of the hydrogen atom,

for instance, would be about 10“^® cms. There is direct evidence that the

nucleus is exceedingly small, experiments on the scattering of a rays having

shewn that a particles can pass within 2 x 10”** cms. of the centre of an

atomic nucleus, and yet be deflected in accordance with the ordinary law of

the inverse square.

These figures shew that both nuclei and electrons are very small in com-

parison with atoms. The hydrogen atom whose radius is approximately

0'53 X 10~® cms. is made up of only two constituent parts, each of radius

2 X 10”** cms. or less. Since a positive and a negative charge cannot stand in

statical equilibrium at a distance apart equal to several thousands of times

the radius of either, we must suppose that the two chjxrges maintain their

distance as a consequence of orbital motion. The negative electron does not

fall onto the positive electron for the same reason for which the earth does

not fall onto the sun. In many respects (in atom may be compared to a solar

system, the heavy positive nucleus at the centre of the atom representing the

sun and the electrons representing planets, the law of force between the

nucleus and the electrons being the same as that between sun and planets,

namely a force of attraction varying as the inverse square of the distance.

710. According to the analysis of § 650, a negative electron describing an

orbit about a nucleus must radiate energy. If E, e are the charges on the

nucleus and electron respectively, and m the mass of the electron, the ac-

celeration of the electron towards the nucleus is Eejinr^, while the acceleration

of the nucleus may be neglected in comparison, on account of its much greater

mass. From formula (663), the rate of emission of radiation per unit time is

+ = (782).

For the hydrogen atom, consisting only of one electron and a nucleus

of equal charge, we may put

E= - e — 4*803 x 10”*® el. stat. units,

r = 0*53 X 10”* cms..
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from which the rate of radiation is found to be 0*46 ergs per second. As a

result of this loss of energy, the radius of the orbit ought to decrease. When
the radius is r, the energy of the orbit is readily found to be — e*/2r, so that

the rate of decrease of energy is

dr

Putting this equal to 0*46 ergs a second, we find that — drjdt must be

equal to about 112 cnis. a second. Since the radius of the orbit initially is

only 0*53 x 10“® cins., the distance between the two constituents of the

hydrogen atom ought to vanish altogether in a fraction of a millionth of a

second.

Even in the light of common sense such a conclusion is preposterous; it

is more so in the light of exact knowledge. So far as we know all hydrogen

atoms, no matter how or where selected, are identical structures, all giving

the same spectrum and all having precisely the same radius except for a

reservation which will shortly be explained. There is not the slightest

indication of any secular change in their properties, and a change of the

rapidity of that just calculated is utterly out of the question.

The conclusion to which we are driven is not merely that a normal

hydrogen atom of the type we have been considering does not radiate as

rapidly as is predicted by equation (782), but that it does not radiate at all.

In some way the whole theory which has led to the conclusion that an

accelerated electron must radiate energy is in need of amendment.

711. This discovery, if it stood alone, would be extremely disconcerting.

In actual fact it does not stand alone; it is only one of a long series of

discoveries, each of wdiich has indicated, with very little room for doubt, that

the classical mechanics of Newton and the classical electrodynamics of Maxwell

both fail wdien applied to atomic phenomena. Since the beginning of the

present century the need has been recognised for a wholly new system of

dynamics, such as shall be applicable to phj^sical phenomena on atomic and

sub-atomic scales, and shall merge into the Newtonian and Maxwellian

dynamics in the case of larger scale phenomena. In spite of much labour,

this system of dynamics has not yet been found in its entirety. Fragments

are known with fair certainty, although it is of course impossible to feel

absolute confidence in any part of the system until the whole has been pieced

together and seen to form a consistent structure. Fortunately the parts

which are knowm with the nearest approximation to certainty are precisely

those which are neces.sary in the discussion of the subject of the present

chapter, the electrical structure of matter,

712. In discussing the motion of a dynamical system as predicted by the

classical mechanics, the usual procedure is to start from the general equations

of motion, which are differential equations of the second degree, and attempt
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in the first place to discover one or more first integrals of these equations.

In many problems, for instance, the equations of energy and of linear and
angular momentum figure as first integrals of the equations of motion. Each
time a first integral is derived from the equations of motion a constant of

integration is introduced, different values of this constant representing different

states of the dynamical system. Under the classical mechanics these constants

of integration could usually have any value we chose to assign to them, or,

if this was not possible, there was at least a finite continuous range of values

open to each constant of integration.

The distinguishing feature of the new dynamics is that there are no longer

continuous ranges of values open to the constants of integration, but only

certain definite discrete values. Generally speaking, the values available for

each constant of integration are an infinite set associated with the natural

integers 1, 2, 3, ... as, for instance, the set of values obtained by taking

integral multiples of a given constant. Thus the constants of integration

shew a sort of atomicity.

A parallel can be found in the atomicity of electricity. In the earlier

chapters of this book, we treated electric charges as being capable of con-

tinuous variation; for instance, in calculating the energy of a condenser in

§ 97 we treated the electric charge e as changing continuously and integrated

with respect to de. In actual fact we know that in charging a condenser, the

charge must move by whole electrons at a time. The procedure of treating

the charge ns capable of continuous variation was, nevertheless, legitimate so

long as we were dealing with charges of billions of electrons; our step de

could be quite insignificant in comparison with the total value of e, although

representing perhaps a million electrons. The same procedure would, how-

ever, lead to disastrous errors if it were followed in problems of atomic physics.

An atom normally is an electrically neutral structure, the total charge of the

positive nucleus and the negative electrons being zero. It is possible to

charge it positively by withdrawing one, two, three or more electrons. Thus

the atom can have a positive charge but E is restricted to having the

discrete values e, 2e, 3e, ... etc.; it may not bo regarded as capable of con-

tinuous variation.

In precisely the same way, although for reasons not clearly understood,

the constants of integration in the new dynamics are limited to definite

discrete values which may perhaps, in a similar manner, be integral multiples

of a fundamental constant. It may for instance be possible for a constant

of integration to have any one of the values 0, c, 2c, 3c, ... but no more

possible for it to have the values ^c or fc than it is possible for an atom to

carry the charges or %e.

There is a further difference between the new dynamics and the old.

Under the old dynamics a constant of integration was a true constant, and

retained its value absolutely unchanged until the conditions of the problem
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altered. The new dynamics has no knowledge of such absolute constancy.

If a constant of integration can have any one of the values c, 2c, 3c, ... and

has one of these values, say 2c, at a given instant, there is a possibility of its

value taking a jump from the value 2c to some other value. It is usual to

think of these jumps as occurring absolutely spontaneously, although this

conception is probably only a cover for our ignorance of some underlying

mechanism.

The new mechanics was originally developed by Planck and others from a

study of the phenomena of black-body radiation. In 1913 Prof. N. Bohr

applied the new system to the problem of atomic motions and was led to

a theory of the nature of these motions which gained immediate acceptance

and which has stood the test of time. This theory we shall now explain.

Bohr's Theory.

713. Let us consider the simplest case of a single electron of charge e

describing an orbit about a nucleus of charge which, on account of its

much greater mass, is treated as a fixed centre of force. In ordinary polar

coordinates the equations of motion of the electron are

OT(r-r0») = -®^ (783),

m~(r^d) = 0 (784),

Equation (784) at once yields the integral

mr^d = cons (785),

but in accordance with the principles just explained, we may not suppose all

values to be permissible for the constant on the right. We shall suppose

that it is restricted to being an integral multiple of a fundamental constant

which, to agree with an established notation, we shall denote by hl2ir. Thus

equation (785) must be written in the form

mr- 6=Thl2Tr (786),

where t is an integer. Using this value for 6 to eliminate the angle 6 from

equation (783), we obtain

.. 1 frhy eE /7 o*r\-
7^

which, on integration with respect to r, yields the integral

Utilising equation (786), this assumes the form

\m (r* + — eE— = cons. (789).
r
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which is at once seen to be the integral of energy, but again the constant on

the right must be restricted to certain definite values, just as was the case

with the right-hand member of equation (785).

714. Before proceeding to the comparatively complicated general case,

let us consider the simple problem of circular orbits. Assuming that circular

orbits are possible, these will be obtained by putting r = 0 in equation (787)

giving
.1-2 />9

.(790).
Aiir^eEm

As has been seen, the hydrogen atom consists of a single electron describing

an orbit about a nucleus of charge e, while the helium atom consists of two

electrons describing orbits about a nucleus of charge 2e. Thus on putting

E=e the foregoing analysis is applicable to a normal hydrogen atom, while

on putting E=2e it becomes applicable to a helium atom from which one

electron has been removed

—

i.e., to a positively charged helium atom of

charge e.

Thus the circular orbits in both these atoms are obtained by giving

various integral values to t in equation (790). The radii of the various

circular orbits which are possible for either atom are seen to be proportional

to the squares of the natural numbers, and so to 1, 4, 9, 16, 25, ..., while the

radii possible for the positively charged helium atom are exactly half those

which are possible for the hydrogen atom.

716. Mention has already been made of the possibility of what appear to

be spontaneous jumps taking place in the values of the constants of integra-

tion, and therefore also in the value of t in equation (790). We proceed to

discuss these changes.

Corresponding to the values of r and 0 determined by equations (786)

and (790), the negative energy W of a circular orbit is found to be given by

W I

2ir"6^E~7tl
.(791).

The values of W form a discrete series, proportional to the inverse squares

of the natural numbers. If a spontaneous change occurs in t it can only be

from a higher value of t to a lower value, since any change in the reverse

direction would lessen the value of W and so increase the energy of the

system. If Ti is greater than Xg, both t, and Xg being integral numbers, a

spontaneous jump from x = Xi to x = X2 results in the system losing energy of

amount

(m>

According to Bohr’s theory this lost energy leaves the system in the form

of radiation; indeed the theoiy supposes that the atoms we have been
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considering do not emit radiation at all except on the occasion of jumps of

the kind we have been considering.

A change in the value of t, then, results in a change in the amount of

radiant energy in the space surrounding the atom. Now Planck, from his

study of black-body radiation to which we have already referred, had concluded

that the radiant energy of an enclosure, if it changed at all, must change by

jumps. The radiation in any space or enclosure can be analysed by Fourier’s

theorem into trains of waves of different frequencies, and the energy of the

radiation can be regarded as the sum of the energies of these trains of waves.

The total energy of radiation may accordingly be thought of as the sum of

the contributions from disturbances of different frequencies. Planck’s con-

clusion was that the energy of radiation of each frequency must be an integral

multiple of a certain unit, this unit being equal to a fundamental constant h

multiplied by the frequency v of the radiation in question. Planck called this

unit a “ quantum.” Thus the quantum of energy of frequency v was equal to

hv, and the total pnergy of frequency i^, being an integral number of quanta,

was restricted to being of amount rhv where t was an integral number. It

followed that any change in the field of radiation must consist of a jump in

the energy of the radiation of a definite frequency and must be equal in

amount to an integral number of quanta of this radiation.

In view of these results of Planck, it was natural for Bohr to suppose that

when energy of the amount specified by formula (792) was set free into space,

it formed one quantum of energy. This supposition by itself suffices to de-

termine the frequency of the radiated energy. For hv, the quantum of energy,

must be equal to expression (792) in order to satisfy the principle of the

conservation of energy, and this gives the relation

where

N (V93).

27r»e*^-m
(794).

A*

Thus Bohr’s theory restricts the radiation emitted from a hydrogen atom,

or from a positively charged helium atom, to one of the frequencies specified

by formula (793) where Ta and Ti are positive integers. This gives a series

of detached frequencies, or what the spectroscopist calls a “line-spectrum,”

whereas it is easily seen that the classical system of electrodynamics would

have predicted a continuous range of frequencies or a “continuous spectrum.”

716. The spectrum of hydrogen, as observed in the light from an ordinary

vacuum tube, consists of a series of lines, the strongest of which (/f.) lies at

the red end of the spectrum while the remainder spread out,

at ever diminishing distances, towards the violet. As far back as 1885 Balmer
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had found that the frequencies of the different members of this series could

be represented, with very great precision (about one part in 200,000), by

giving to n the values 3, 4, 5, ... in the formula

-f'ih-l;) <’“)•

with i\r= 3*2902 x 10'*. It is clear that if we are free to assign this value to

the N which is defined by equation (794), then Bohr's theoretical formula

(793) will contain Balmer's observational formula as the special series of lines

obtained on taking rt - 2. We are not free to assign any arbitrary value to

the N of equation (794) since the value of every quantity which enters into

N is known. The values of e and m have already been given (§ 28); for

hydrogen E is equal to e, and the value of h can be obtained from a study of

the spectrum of black body radiation and in a variety of other ways. The

best determinations of h give

^ = 6
*62 xl0-»

and on substituting these values for A, e and wi, the value of E given by

equation (794) is found to agree, to within the errors in the determination of

e and A, with the observed value N= 3*2902 x 10'®.

It is, then, clear that N has precisely the required value in equation (793),

and that Bohr's theoretical formula (793) includes Balmer's observational

formula (795) as a special case. It was this success of Bohr's theory that

brought about its immediate acceptance by the majority of physicists. The

theory, however, requires that Balmer's series should be only one of an infinite

number. Other series are obtained by putting t, equal to 1, 3, 4, 5, ... oo in

equation (793), and, if Bohr's theory is correct, these series ought equally to

appear in the hydrogen spectrum. The majority of the lines of these series

were unknown when Bohr's theory was first published, but all the predicted

lines have been found which lie in the region of the spectrum which is acces-

sible to observation.

717. According to this theory the spectrum of positively charged helium

is the same as that of hydrogen except that E in equation (794) must be

replaced by 2e instead of by e, as for hydrogen. Or, if we denote the value

of N for hydrogen by Ns, the value of N for helium will be 4fNs and the

spectrum will be given by

V

In this formula even values for both xg and Xi give values of v which are

identical with the whole system of values of v given by equation (793) for the

hydrogen spectrum. The spectrum of ionised helium ought accordingly to

shew all the lines of the normal hydrogen spectrum and, in addition, the
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various lines which are obtained by giving odd values to Ti or Tg or both in

the above formula. This is in actual fact found to be the case, except for a

reservation which must now be explained.

In deducing formula (793) we assumed the nucleus to be so massive that

it could be treated as a fixed centre of force. In actual fact the nucleus of

the hydrogen atom has about 1844 times the mass of the negative electron,

so that this assumption leads to an error of the order of one in 1844 in the

value of N for hydrogen. For helium the ratio of the two masses is about

7300 to one, and the predicted value of N for helium is in error by about

one part in 7300. When allowance is made for these errors, the value of N
for helium is not exactly four times the value for hydrogen, and the difference

is shewn spectroscopically by the hydrogen spectrum not coinciding exactly

with the corresponding lines of the helium spectrum. By mesisuring the

distance between corresponding lines Fowler deduced the value 1836 for the

mass-ratio hydrogen nucleus and the negative electron. Allowing for the

relativity correction and other refinements Paschen subsequently amended

this to 1843*7, a value which is in excellent agreement with the values of this

ratio determined by other methods.

718. So far we have considered only circular orbits. The orbit of an

electron about a nucleus is, however, in no way restricted to being circular;

as the law of force is that of the inverse square the orbit may be elliptic,

parabolic or hyperbolic. But, just as the radius of a circular orbit is restricted

to having certain definite values, so the eccentricity of an elliptic orbit, as

well as its major axis, is restricted to having certain values.

An adequate discussion of the manner of calculating these restrictions

would carry us too far outside the scope of the present book. The following

will, however, suffice for the immediate purpose in hand.

Let <721 731 ••• he the generalised coordinates of any dynamical system,

defined as in § 548, and let jpi, ... be the corresponding momenta

defined by

= (79G).

where E is the energy expressed as a function of 7,, 72 , 73 ,
and 71 , 72 , 7s, ....

For certain dynamical systems it is possible to deduce, by ordinary mechanics,

a number of equations of motion such that only one coordinate and the

corresponding momentum, e.g.^ 71 and jpi, enter in each. As we shall at once

see, equation (784) is an equation of this type involving only the momentum
corresponding to the coordinate 6, and equation (787) is another, for it involves

only the coordinate r and the corresponding momentum mr. The solution of

such an equation will be the same as if the whole system had only the one

degree of freedom corresponding to this one coordinate, so that either the

coordinate will increase or decrease beyond limit, or will oscillate repeatedly
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between two constant extreme values. In the latter case it is found that the

proper restriction to apply to the motion of any coordinate is that given by

ipidq^-rh (797),

where the integration extends throughout a whole oscillation in the value

of g, h is the constant already defined, and r is any integral number.

For instance if 9, is the coordinate 0 in the orbit of an electron about a

nucleus, the momentum, as defined by equation (796), is p, = mr^6. Equation

(785) may accordingly be written in the form

Pi = constant,

which is of the required form, since it contains no coordinates or momenta
other than pi and q^. A complete oscillation extends from $1 = 0 to ^i = 27r,

so that equation (797) assumes the form

27rpi = tA,

or mr^ 0 = Thj^ir^

which is identical with our equation (786).

Similarly, if q. is the coordinate r of the same orbit, p^=^mr so that

equation (787) is of the required form. The first integral of this equation is

equation (788), and this may be written in the form

where W is constant, the negative energy of the orbit. This equation gives

Pa* as a quadratic function of 1/r ; it may be written in the form

where ri, are determined by

= 2 TTm,
nr.

.(798).

In the course of a complete oscillation r varies from r, to rg and then back

to r,. Thus the path of integration in equation (797) may be taken to be

twice the range from r, to ra, and the equation assumes the form

('»)•

where r is a new integer. Evaluating the integral by the transformation

1 = — cos*^ + isin®^,
r n ra

we readily obtain

^CK 9 (; ^3]** vra
' Vr,]‘.
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Elquation (799) now becomes
/

T ^ T

2 V(n^2)
“

and each side is at once seen to be equal to

T + t'

+ ^*4

The elimination of and rg from this equation and the two equations

(798) gives

27r^me'^

(jTTyT?
,(800).

We obtain all possible values for W by giving integral values to t and t.

It is at once seen that no new values are introduced beyond those already

discovered in equation (791).

By a well-known formula the eccentricity e of the orbit is given by

1
me® is/" (t + t")®

.(801),

and, since t and t are necessarily integrals, it is clear that only definite values

are permissible for the eccentricity. The semi-axes a, b of the orbit are

related by

so that equation (801) shews that h/a will be commensurable for all orbits

which can be described.

By a well-known theorem, the energy of an elliptic orbit is equal to that

of a circular orbit whose radius is equal to the seini-major-axis of the ellipse.

It follows from equation (790) that the semi-major-axis a of an elliptic orbit

is given by

47r®eAm
(802).

where n is written for while from equation (801) the eccentricit}^ i‘

given by

€®=1-- ,(803).

The orbits n = 1 (t = 1), r? = 2 (t = 1 or 2), a = 3 (t = 1, 2 or 3) and a = 4

(t = 1, 2, 3 or 4) are shewn in fig. 140*. The distance of closest approach

to the nucleus is a(l — e) which is given by

Reproduced by permission from a paper by Bohr (Nature

^

July 7, 1923).
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The expression on the right has its minimum value when t = 1 and

n = « , namely

/I X^
^ Sir^eEm *

Thus the electron never approaches the nucleus to within a distance less

than half of the radius of the smallest circular orbit.

719. Since the extension to elliptical orbits has introduced no new values

of TT, it follows that the spectrum will consist of those lines which were pre-

dicted by the simple theory of circular orbits and no others. Nevertheless

the possibility of elliptical orbits has introduced an essential difference into

the spectrum. Since an orbit of any permissible energy or can now be

described in more than one way, it follows that a fall from energy to

energy can occur in more than one way, so that the spectral line which is

produced by a fall from energy to energy may appropriately be thought

of as the superposition of a number of lines, all of which, although having

precisely the same frequency, are produced by different events.

720. It is possible to separate out these coincident lines in a variety of

ways. Perhaps the simplest is by placing the radiating atoms in a magnetic

field. Each electronic orbit is affected by the field, and different orbits, even

though of the same energy before the field was put on, will be affected in

different ways. It follows that the spectral lines which were originally

coincident will be displaced to different extents, as. is observed in the Zeeman

effect. It can be shewn that the explanation of the normal Zeeman effect

which has already been given in § 635 holda valid even w'hen the quantum-

restrictions are applied to the electronic orbits. The anomalous Zeeman
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effect presents a more complicated problem which can hardly yet be said to

have been satishictorily solved.

The placing of the radiating matter in a powerful electrostatic field also

results in a separation of the originally coincident lines, this being known as

the Stark effect. The dynamical theory just explained provides a calculation

of the separations to be expected in this case, and the predicted separations

are found to agree very closely with those actually observed.

721. But perhaps the most interesting feature of all is that there is a

slight separation even when external magnetic and electric fields are entirely

absent. In the analysis of § 713, we treated m the mass of the electron as an

absolute constant, although we already knew (§ 6G0) that the mass varies with

the velocity of motion of the electron. For circular orbits this does not matter

much ; the mass of course remains strictly constant throughout the description

of any single circular orbit, although varying slightly from one orbit to another.

But in an elliptic orbit the mass varies from one part to another of the same

orbit. When allowance is made for this, the orbit is no longer strictly ellip-

tical, and formula (800) only provides a first approximation to its energy.

When the necessary additional terms are included, it is found that the value

ofW no longer depends solely on r + t', but on t and t separately. It follows

that each of the lines which our simple theory treated as a superposition of

coincident lines must in actual fact shew a “fine-structure” of adjacent slightly

separated lines. Such “fine-structures” are easily observed in a powerful

spectroscope. The theoretical separations to be expected have been calculated

by Sommerfeld and others, and although the observed separations are so

small as to make exact measurement exceedingly difficult, there seems no

room for doubt that they agree with those predicted by theory.

The dynamical theory of these phenomena is not given in the present

book. The reader who wishes to study it is referred to the original papers of

Bohr, Sommerfeld and others, or to the authors “Dynamical Theory of

Gases.”

722. The new dynamics, as has now been seen, allots a definite size to

the atom and so provides a mechanism by which atoms have a permanent

existence, instead of radiating away all their energy and collapsing. For the

hydrogen atom the minimum energy is found by taking t + t in equation

(800), and since t cannot be zero, this requires that t = 1 and t' = 0. Thus

the orbit of minimum energy is the circular orbit of radius (cf. equation (802))

_h}
,(804).

The electrons in hydrogen atoms can describe circular orbits of radii

4, 9, 16, ... times this and a variety of non-circular orbits as well, but this

equation defines the hydrogen atom in its normal state of minimum energy.
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On inserting the numerical values already given, we find a = 0*53 x 10~* cms.,

which is in good agreement with the radius of the hydrogen atom as found in

other ways.

Dewar found the density of solid hydrogen at 13*2° absolute to be 0*0763.

Thus a cubic centimetre of hydrogen at this temperature has mass 0*0763

grammes and consists of atoms of hydrogen each of which is known to have

a mass of 1*662 x 10"“ grammes. It follows that the number of hydrogen

atoms in a cubic centimetre of solid hydrogen is 4*59 x 10“ so that the space

occupied by each is 2*18 x 10"“ cubic centimetres. This is the space that

would be occupied if the atoms were spheres arranged in cubical packing,

each being of radius 1*40 x 10“* cms. In § 150 we found that the dielectric

constant of hydrogen is the same as if the molecules were spheres of radius

0-916 X 10”® cms. A similar calculation would have suggested that the

hydrogen atom might be regarded as having a radius equal to 1 /1/2 times

this or 0*723 x 10"® cms. Neither of these calculations can lay claim to g*^eat

accuracy
;
a far more accurate determination of atomic dimensions is obta ned

from the Kinetic Theory of Gases. If the molecules of hydrogen are regarded

as spheres, the three phenomena of viscosity, conduction of heat and diffusion

agree in assigning to these spheres a radius of 0*68 x 10”® cms., while obser-

vations on the deviations from Boyle’s law suggest the slightly lower value of

0*64 X 10"® cms. Again the hydrogen atom may be supposed to have a radius

equal to 1/^/2 times that of the molecule, so that the two values of the atomic

radius are respectively 0*54 x 10~® and 0*51 x 10~* cms., in ck ’e agreement

with the value 0*53 x 10”® required by the electrical structure of the atom.

It must, however, be noticed that the Kinetic Theory requires the atom

to occupy a three-dimensional volume, whereas on Bohr’s theory the hydrogen

atom is at most a disc. If we imagine this disc, the orbit of the negative

electron, to be continually changing its orientation in space we pass naturally

to the conception of the hydrogen atom reserving for itself, or perhaps clearing

for itself, a spherical apace equal in radius to the orbit of the electron. This

conception is in accordance with the known facts of crystal structure.

723. The theory of structures of more than two constituent parts is far

less advanced, no satisfactory mechanism having yet been devised for either

the helium atom or the hydrogen molecule. A largo amount of consistent

evidence suggests that the electrons of complex aton s are arranged in shells

or rings corresponding to different quantum numbers, but the method of

arrangement has not yet been brought within the scope of mathematical

treatment.

Questions of electrical conductivity and of the optical and dispersive pro-

perties of substances are clearly subjects for treatment by the new dynamics,

but only meagre progress has so far been made. The same applies to the

problem of the nature of radiation. There is at present a divergence of
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opinion as to whether radiation is propagated in accordance with Maxwell’s

equations or in the form of “atomic” packets of energy which travel through

space without spreading out in the manner demanded by the classical electro-

magnetic theory.

The Correspondence Principle of Bohr,

724. In conclusion we may refer to a procedure which holds out some

hope of bridging the gulf between the classical electrodynamics and the new
electrodynamics of quanta.

When an electron describes a circular orbit about a nucleus, the number
of revolutions per second in this orbit, n, is equal to whence, from

equations (786) and (790),

n .(805).

The period of an elliptic orbit is known to be the same as that of a

circular orbit of the same energy, so that the same equation will give the

frequency of revolution in an elliptic orbit of total quantum number t.

The frequencies of the radiation which can be emitted on the electron

dropping from this orbit to one of lower quantum number t arc, from

equation (792),

27rVJ5^m/l 1\

»'=—A,- (806).

If the integers t and t are both large, and differ only by a small number .v,

which must of courae also be integral, the approximate value of

will be

('**'*')
^3 I

and equations (805) and (806) now shew that the possible frequencies of

radiation are given by
p = sn (807).

If the motion of the electron, describing its orbit with frequency 7i, had

been analysed by Fourier’s theorem, and the resulting radiation calculated by

the classical electrodynamics, we should have found radiations of frequencies

71
,
271 , 371

, ...,

so that according to the classical electrodynamics also, the frequencies of the

emitted radiation would be given by equation (807 ).

It accordingly appears that in the limiting case in which r and t are both

large, the old classical electrodynamics and the new quantum dynamics agree

in predicting the same frequencies for the spectrum of emitted radiation. In

this limiting case, the radius of the electron orbit is infinite, successive radii
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only differ by an infinitesimal fraction of each, and orbits of all eccentricities

are possible. Thus the electron is just on the verge of becoming a free

electron. This limiting case provides a bridge between the old mechanics

and the new; on one side of the bridge the classical electrodynamics holds

undisputed sway, but as we cross the bridge and advance into the territor^^

on the other side, the additional restrictions imposed by the quantum

dynamics become ever more important until finally they may be considered

to govern the whole situation. The exploration of the territory on the far

side of the bridge will provide work for a new generation of mathematical

physicists
;
th^ present work attempts only to bring the reader as far as the

bridge, and to make clear to him that if he crosses it he must expect to

find different conditions prevailing on the other side.
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109, 437

„ positive and negative, 8

,, theories of, 19, 20

Electrification, 5

,, at surfaces and boundaries, 18,

21, 45, 61, 194, 347

,, by friction, 1, 9

,, by induction, 16, 125, 186

,, line of zero, 88, 194

Electrokinetlc momentum, 498

Electrolytic conduction, 307

imctrornagnetlc field, general equations of, 568,

602

„ ,, Weyl's theory of the, 623

„ mass, 585, 596, 611, 613

„ momentum, 583, 615, 617, 620

„ theory of light, 3, 526, 532 ff

.

„ units, 427, 528

„ waves, 524, 525

Electrometers, 105, 107

Electromotive force, 303, 458

Electron, charge and mass of, 20, 590

,, internal mechanics of, 590

,, motion of, in conduction, 306, 307,

320, 343, 496, 549, 557,

562, 563

,, „ ,, in free space, 559 ff.

„ size of, 566, 590, 612

,, structure of, 589, 590, 596

, ,
theory ofconduction

, 306, 549, 555, 557

„ „ „ dispersion, 553, 554

Electrophorus, 17

Electropositive, electronegative, 10

Electroscope, gold-leaf, 7, 17

Electrostrlctlon, 181

Ellipsoidal analysis, 230, 244, 261

„ conductors, 246, 253

„ harmonics, 251

Elliptic cylinders, 270

., disc, 248

Energy, conservation of, 28, 32

„ flow of, 619, 617

„ localisation of, 151, 399, 415, 443, 494,

616, 576, 617, 620
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Snai^, mass of, 613

,, momentum of, 615

„ of conduotors and condensers, 83, 106

n „ light-waves, 537, 617

„ „ magnetic field, 396, 399, 415, 507

„ ,, magnetised bodies, 377. 380, 381

„ ,, systems of currents, 443

Equilibrium, points of, 59, 167

VJBqulpotentlal surfaces. 29, 47-62, 370

Equivalent stratum (Green's), 182, 361, 375

Ewlngr, 422

Expansions in harmonics, 211

,, ,, Legendre’s coefficients, 223

„ „ sines and cosines, 259

Farad (unit of capacity), 77, 530

Faraday, 3, 74, 115, 116, 126, 140, 155, 308,

402, 514, 618

Finite current sheets, 481

Fitzgerald. 594

Fizeau’s water-tube experiment, 503, 607

Flame, conducting power of, 6, 125

of energy, 519, 617

\Force, lines of, 25, 29, 43, 47-58, 62, 370

,, magnetic, 381

,, mechanical, see Mechanical force

„ tubes of, 44, 47-58, 117, 371

Fourier's theorem, 239

Franklin, 19

Fresnel, 536

Via^vanometer, 433

Oases, conduction in, 311

,,
inductive capacity of, 132, 532

,,
velocity of light in, 533

VOauBB* theorem, 33, 118, 161, 162, 370, 386

Oenerallsed coordinates, 489

,, forces, 493

„ momenta, 493

„ relativity, 598, 621

Generation of electricity, 9

„ „ heat, 320, 318

Gravitation, 620, 621, 629

V>}feen, analytical theorem of, 156

,,
equivalent stratum of, 182, 361, 375

,,
reciprocation theorem of, 92, 163

Guard-ring, 78, 106

Hagen and Rubens, 548

V/HsOl effect, 563

^Hamilton's principle, 487

^armonic potential, 224

Harmonics, biaxal, 211

,,
ellipsoidal, 251

,,
spherical, 206-223, 233-242, 243

„ tesseral, 237

„ zonal, 233

Harmonics, tables of—
harmonics ofintegral degrees, 258

Legendre’s coefficients, 219

tesseral harmonics, 240

Heat, generation of, 320, 348

Heaviside. 505

Helmholtz, stresses in dielectrics, 177

Hertzian vibrator, 578

Holtz influence machine, 18

Hurmuzescu. 525

Hydrogen atom, 631, 632, 636, 641

Hyperbolic cylinders, 267, 270

^ysteresls, magnetic, 412

Images in electrostatics, 185-201, 258, 281, 286

Impulsive forces, 493

Induction, coellicients of (electrostatics), 93, 96,

97

,, ,, ,, (circuits), 443

„ electrification by, 16, 125, 186

,, magnetic, 384

„ of currents, 452, 562

\2flductlve capacity of dielectric, 74, 115, 134,

532

,, ,, ,, crystals, 135

„ ,, ,, gases, 132, 533

,, „ ,, liquids, 76, 360

„ ,, in terms of molecular struc-

ture, 130, 134, 553

Infinite conductors, resistance in, 350

Infinity, field at, 56

Insulators and conductors, 5, 545

Intensity (electric), 24, 32, 33, 117, 121, 571,

575

„ of magnetisation, 368

Intersecting planes, 188, 206

„ spheres, 206

^vfirse square, law of, 13, 31, 37, 168, 365

Inversion, 202, 258, 286

Ion, 308

„ velocity of, 310

Ionisation, 311

Jamln, 544

Joule effect in conductors, 320

Xamerllngh Onnes, 558

Kauftnann, 590

Kelvin (Lord), 193, 199, 249, 250, 335, 365,

469

Eetteler-Helmholtz formula, 553

Elrchhoff, 198, 287

,, ’sLaws 311

„ solution of wave-equation, 522

VXfagrange'B equations, 489, 492, 493

Lamp's functions, 252
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VCaplace’f eqaatloiit 40, 42, 120, 243, 245

„ „ solution in spherioal har-

monics, 206

,, „ solution in ellipsoidal har-

monics, 251

„ „ solution in spheroidal har-

monics, 206

Limor. 553, 665, 577^ offeree, 13, 31, 37, 168, 365

,, „ between current elements, 441

Least action, 488, 517, 579

Lebedev, 538

Ugendre's coefficients, 217, 225, 231

law of induction of currents, 463

Leyden Jar, 77, 277

Llenard, 575

Uffht, electromagnetic theory of, 3, 526, 532

„ velocity of, 626, 532

,, dispersion of, 532, 553, 643

lightning conductor, 61, 479

Undemann, 556

of force (electrostatic), 25, 29, 43, 47, 62

„ „ „ (magnetic), 370

„ „ flow, 341

„ „ Induction, 386

LlouvUle, solution of wave-equation, 521

Lorents (H. A.). 553, 575, 589, 592, 594, 600, 602

Lorens (L.), 553

Hatter, structure of, 20, 130, 134; tee also

Electron and Molecule

„ imaginary magnetic, 375

Maxwell, 2, 3 et passim

„ tidfsplacement theory, 153, 510

„ i^heory of induced magnetism, 421

3, 526, 532

charge of electricity, 8, 77, 109, 437

current of electricity, 314, 433

inductive capacity, 74, 3G0

potential difference, 106, 107

resistance, 314

Mechanical action in the ether, 3, 140, 579, 618

„ >, fi dielectrics, 172

„ t> magnetic media, 415

„ force on a circuit, 439, 505

,, ,, ,, conductor, 102

„ n If dielectric, 124, 172

„ ,, ,, moving electron, 561 ff.,

579. 581. 611

,, M »t surface, 79. 178

Medium between conductors, 140, 151

Metallic media, reflection and refraction of

light in, 546, 555

„ ,, absorption in, 545

Mlchelson, 526

„ and Morley, 593, 618, 620

^ „ theory of light,

Uifeasurements

:

Maclauiln, 563

MaOlean, 525

^fagnetlc Held, 369

,, „ produced by currents, 425

„ „ energy of, 396, 416, 494, 507

,, ,, ofmoving eleotron8,514,561,573

„ matter, Poisson’s imaginary, 375

„ particle, 366

„ „ potential of, 372

„ ,, potential energy of, 377

„ „ resolution of, 372

,, „ vector-potential of, 393

„ shell, 376, 426

II II potential of, 376

II II potential energy of, 380

„ „ vector-potential of, 395

VWetlsed body, 367
^

,. „ potential of, 372

,, „ potential energy of, 381

„ I, measurement of force inside

a, 381

^Magnetism, physical facts of, 364, 408, 425

„ terrestrial, 400

y „ theories of, 3, 418, 508

Magnetostriction, 417

Magrl, 553

Majorana, 608

IS, electromagnetic, 585, 611, 613

Mirror g^alvanometer, 437

Molecular theory of dielectric action, 126, 133,

361

,, ,, „ maguetism, 3, 366, 409,

418, 421, 508

„ „ „ light propagation, 551

Molecule and Atom, structure of, 133, 168, 232,

550, 567, 630, 643

„ radiation of light from, 577, 632

Moment of a magnet, 366

Momentum, electrokinctic, 498

,, electromagnetic, 683, 615, 617, 620

„ generalised, 493

Mossottl’s theory of dielectric action, 127, 168

Moving charge, field of a, 513, 673

,, „ force on a, 560

Multiple-valued potentials, 279, 429

Muraoha, 362

Nemst and Lindemann, 556

Network of conductors, steady currents in, 311,

316, 322

,, „ ,, oscillations in, 499

Neumann's law of current induction, 453

Nichols and Hull, 538

Nicholson, 556

Oersted, 425
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Ohm (unit of resistance), 305, 630

Ohm's law, 301, 307, 309, 343

OsolUatlons in a network of conductors, 499

Oscillatory discharge of a condenser, 4G0

Parahollc cylinders, 267, 269

^E^flOiel plate condenser, 77, 115, 272, 274

^jamagnetlsm, 410, 413

Particle, magnetic, 366, 372, 377, 303

Pender, 516

\^erhieablllty, magnetic, 410

Perot and Fabry, 525

Ferrotln, 526

Physical dimensions of electric quantities, 14,

531

Picard, 505

Planck, 634, 636

Plane conductors and condensers, 69, 185, 194,

272

,, current sheets, 480, 482

,, semi infinite (electrified), 266, 273, 282

,, waves of light, 534

Poincard, 505, 591

^P^lsson's equation, 40, 121

,, imaginary magnetic matter, 375, 418

,, ttlfeory of induced magnetism, 127,

418

.Mlarisation (electrostatic), 117, 118, 126, 165,

232, 536

„ of light, 535, 543, 565

Polarising angle of light, 543

Polarity of molecules, 120

^tenUal (electrostatic), 26, 31, 121, 345

„ „ maxima and minima,

43, 167

„ (electric), 570, 625

,, (magnetic), 370, 413, 429

,, (vector), 393, 625

, , coefficients of, 93, 96, 97

V^oyntlng's theorem, 518

Pri^tical units, 530

\PfeBSure of radiation, 538, 616

Principal coordinates, 550

Pulse of electric action, 578

[^;91iadrant electrometer, 107

Quadric, stress-, 147

Quantity of electricity, 7, 8, 77, 109, 437

Quantum theory, 558

Quincke, 181, 416, 417

VlCl^lant Energy, mass of, 613, 614, 616

„ ,, momentum of, 615, 616

„ ,, nature of, 644

Vdftadlatlon of Energy, 577, 592, 617

,, pressure of, 538, 615

„ from electrons, 576, 592

Radius of atom, 642, 643

„ „ molecule, 132, 648

Rapidly alternating currents, 477, 601

Rayleigh (Lord), 358, 595

Recalescence, 412

Reciprocation theorem of Oreen, 92, 168

Reflection of light, 540, 541, 642, 546, 548

,, coefficients of metals, 548

Refraction of light, 539, 541, 643

„ „ lines of force, 123

„ „ „ „ flow, 346

Beftactive Index, 532, 553

Relativity, theory of, 593 fl.

Relaxation, time of (for a dielectric), 359

Residual discharge, 361

Resistance of a conductor, 301, 314, 355, 557

„ measurement of, 314

,, specific, 342

.. -box, 314

Resolution of a magnetic particle, 372

Retentlveness (magnetic), 412, 422

Riemann, 527

„ *8 surface, 280

Rbntgen, 514

rays, 311, 578

Rosa and Dorsey, 525

Rowland, 514, 515

„ and Nichols, 361

Russell, 4., 199

Rutherford, 630

Saturation (magnetic), 411

Saunders, 525

Schott, 575

Schuster, 403, 555

Schwarz’s transformation, 271

Screening, electric, 62, 97, 648

Searle, 584

Self-Induction, 456

Sellmeyer’s dispersion formula, 558

\jHitll, magnetic, Magnetic shell

Signals, transmission of, 332, 502

^Sjne-galvanometer, 435

Soap-hubhle, electrification of, 81

^Jlplenold, magnetic, 432

\Splenoidal vector, 158

Bommerfeld, 283

Specific heats, 556

VJilleclflc Inductive capacity, Inductive

capacity

iJiinierlcal conductors and condensers, 66, 71,

99, 100, 189, 192, 196, 226, 228,

231 264

„ bowl, 250

„ harmonics (theory), 206, 233, 243

. „ ,, (applications), 224, 401

tnilpheroldal conductor, 248
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BiAeroldal harmoiilcB, 264, 267

Btack effect, 642

Btewart, Bilfoiir, 402

Btokee, 678

vBMkee' tbeorem, 3S8

Btreieee, general theory of, 142

„ eleotroBtatio, 146, 169

„ in dieleotrios, 176

„ „ electromagnetic field, 582, 618,

619

„ „ magnetic media, 413

Bnbmarlne cable. 79, 319, 332, 351, 605

Buperpodtion of fields, 90, 191

Bnrface-electrlflcatlonin condaotors, 18, 21, 37,

45. 61, 121, 194

t, „ „ dielectrics, 126

„ bamonioB, 20d

Buceptlblllty, magnetic, 410

^*$^iigeniit galvanometer, 434

Telegraph wire, capacity of, 195

„ „ transmission of signals along,

317, 332. 502

T^graphie eqnatlon, 504

VffBrrestrlal magnetism, 400

Tesseral harmonics, 237

Thomson, J. J., 286

Time of relaxation, 369

Torsion balance, 11, 365

Transformer, theory of, 465

Trouton and Bankine, 595

Tlpowbridge and Duane, 626

V>^bes of force (electrostatic), 44, 46, 47, 117

Tubes of foroe (magnetic), 371

„ „ fiow, 341

„ „ indnotion, 386

Vnlenrsal curves, 269

Uniformly magnetised body, 373

Uniqueness of solution, 89, 163

Units, 14, 77, 305, 366, 427, 622, 528

„ ratio of electrical, 525, 528, 630

Wbctor-potentlal, 393, 438, 474, 625

Velocity of electromagnetic waves, 505, 524, 625

„ „ light, 626, 632

Volt (unit of potential), 306, 530

VJTdlto'B law, 303

Voltaic cell, 302

Voltmeter, 314

Water-tube experiment, 593, 607

Wave-propagation, equation of, 520, 525, 634,

571

„ „ in dielectrics, 524

„ ,, „ metals, 527, 645

„ „ „ crystalline media, 636

„ „ velocity of, 624, 625

Weber's theory of magnetism, 3, 418, 508

Weyl, 623

Wheatstone's bridge, 315, 316

Wlechert, 676.

Wilson, H. A., 605

Zeeman effect, 564, 641

Zonal harmonics, 233


