UNIVERSAL
LIBRARY

OU_156532

Advddall
1VSHAAINN






OSMANIA UNIVERSITY LIBRARY
Call No. /5.5 // #8 7 Accession No. 2? e A 6

Author 4\/ /( ” 7/ ﬁ
Title ;h/
This book- f11d be returned on or beforc tj date

last marke bhelow.












THE THEORY AND
APPLICATIONS OF HARMONIC
INTEGRALS



CAMBRIDGE
UNIVERSITY PRESS
LONDON: BENTLEY HOUSE

NEW YORK, TORONTO, BOMBAY
CALCUTTA, MADRAS: MACMILLAN

TOKYO: MARUZEN COMPANY LTD
All rights reserved



THE THEORY AND
APPLICATIONS OF HARMONIC
INTEGRALS

BY

W. V. D. HODGE, M.A,, F.R.S.

Lowndean Professor of Astronomy and (leometry,
and Fellow of Pembroke College,
Cumbridge

CAMBRIDGE
AT THE UNIVERSITY PRESS
1941



PRINTED IN GREAT BRITAIN



CONTENTS

page vii

6
11
13
16
17
17
21
23
28
31
34
36
36
44 .
50
51
52
54
64

68
74
78
79
87
92
100
101

107
113
117

Preface
Chapter I. RIEMANNIAN MANIFOLDS

1. Introduction

2. Manifolds of class u

3. The Riemannian metric

4. Oriontation

5. Geometry of a Riemannian manifold

Differential geometry

6. Tensors and their algebra

7. Numerical tensors. The metrical tensors

8. Parallel displacement

9. Covariant differentiation
10. Riemannian geometry
11. Geodesic coordinates

Topology
12. Polyhedral complexes
13. Complexes of class v
14. Manifolds
15. Orientation
16. Duality
17. Intersections
18. Product manifolds
Chapter 11. INTEGRALS AND THEIR PERIODS
19. Multiple integrals
20. The theorom of Stokes
21. Calculus of forms
22, Periods
23. The first theorem of de Rham
24. Proof of de Rham’s first theorem
25. De Rham’s second theorem
26. Products of integrals and intersections of cycles
Chapter 1TI. HARMONIC INTEGRALS

27. Definition of harmonic forms
28. Approximation by closed p-sets
29. Periods of harmonic integrals



vi CONTENTS

30. The existence theorem: preliminary considerations page 119
31. The existence theorem, continued 130
32. Digression on the solution of integral equations 134
33. The existence theorem, concluded 139
34. De Rham’s second theorem 143
35. The equations satisfied by a harmonic tensor 144

Chapter 1V. APPLICATIONS TO ALGEBRAIC VARIETIES

36. Algebraic varieties 148
37. Construction of the Riemannian manifold 150
38. Discussion of the metric 154
39. The affine connection and curvature tensor 159
40. Harmonic integrals on an algebraic manifold 165
41. The fundamental forms 168

42. An analysis of forms associated with an algebraic manifold 171
43. The classification of harmonic integrals on an algebraic

manifold 178
44. 'Topology of algebraic manifolds 182
45. Periods of harmonic integrals 185
46. (‘omplox paramcters 188
47. Properties of the period matrices of effective integrals 192
48. Change of metric 198
49. Some cnuwerative results . 200
50. Defectivo systems of integrals 201
51. Applications to problems in algebraic geometry 212
52. Some results for surfaces 218

Chapter V. APPLICATTONS TO THE THEORY
OF CONTINUOUS GROUPS

53. Continuous groups 226
654. Geometry of the transformation space 236
55. The transformation of tensors 240
56. Invariant integrals 242
57. The group manifold 249
58. The four main classes of simple groups 258
59. The unimodular group L, 264
60. The orthogonal group 0,,,, 272
61. The orthogonal group 0,, 275
62. The symplectic group S,, 279

63. Conclusion 280



PREFACE

The subject of this book is the study of certain integrals
defined in a type of space which is of importance in various
branches of mathematics. The space is locally the space of
classical Riemannian geometry, and in the large it is an orient-
able manifold. By considering simultaneously the local and
general properties of the space, we are led to the study of a
class of integrals in the space to which the name harmonic
integral has been given.

In its original form the book formed a section of an essay
for which the Adams Prize of 1936 was awarded, but since then
it has been revised and entirely re-written, and the subject-
matter has been enlarged by the addition of a chapter dealing
with the application of the harmonic integrals to the theory of
continuous groups.

The first chapter is concerned with the geometry of the
space in which the integrals are defined. The properties which
are required for the work of later chapters fall into two classes,
those relating to the differential geometry of the space, and
those which are topological properties. Both these subjects are
treated at length in a number of standard works, and there
seems no reason to add to the existing literature. I have there-
fore contented myself with a brief survey of the bare essentials,
but T hope that I have said enough on these topics to enable
the reader who is unacquainted with Riemannian geometry or
topology to understand the later chapters. The second chapter
deals with the properties of integrals on a manifold, and in it
I give a proof of de Rham’s theorem on the existence of an
integral with assigned periods, while the third chapter intro-
duces harmonic integrals and contains a proof of the funda-
mental existence theorem for these integrals.

The remainder of the book is concerned with the applica-
tions of the theory of harmonic integrals to other branches of
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mathematics. It is clear that applications of our theory will
be possible in any field of mathematical research in which a
Riemannian manifold plays a part. But when the differential
geometry of the manifold has special properties we are able
to go much further with our theory than in the general case.
I have not attempted to invent any manifolds in which the
conditions arc particularly favourable for the development of
the properties of harmonic integrals, and I have confined my
attention to manifolds which arise naturally in two important
branches of mathematics.

In Chapter 1v I consider the properties of harmonic integrals
in the Riemannian of an algebraic variety. It is necessary to
introduce a metric which is irrelevant in the classical theory of
varieties, but the greater part of the chapter is devoted to
deducing, from the properties of harmonic integrals, invariants
of the manifold which do not depend on the metric. Most of
the results obtained belong to the transcendental theory of
varieties, but a few geometrical results can be deduced by the
methods which we employ. But, while it is possible to explain
the results belonging to the transcendental theory without
requiring much knowledge of the theory of algebraic varieties
on the part of the reader, a considerable knowledge of algebraic
geometry is required in order to understand the significance
of the geometrical applications of our theory. Since these
applications are at present somewhat isolated, and can only
be regarded as preliminary, there does not seem to be sufficient
justification for prefacing this part of the chapter with a
lengthy account of the algebraic geometry of varieties. I have
therefore confined my account of the geometrical applications
of harmonic integrals to two paragraphs [§§51, 52] which
really form an appendix to the chapter, and are merely in-
tended to direct the attention of geometers to the possibility
of further investigations.

Chapterv considers the application of the theory of harmonic
integrals to certain problems in the theory on continuous
groups. The reader will require some slight knowledge of
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group theory in this chapter, but, following the precedent of
Chapter 1, I have begun the chapter with a brief summary of
the results which will be used. The chapter shows that our
theory provides an alternative method of considering the
invariant integrals introduced by Cartan in the topological
theory of groups. In a number of important cases the results
obtained coincide exactly with those found by Cartan. The
chapter concludes with the determination of the Betti num-
bers of the group manifolds associated with the four main
classes of simple groups. In this I follow closely the work of
Brauer and Weyl, though in places it is modified by the use of
properties of harmonic integrals.

In the earlier stages of preparing this book I had the ad-
vantage of much useful criticism from Dr J. H. C. Whitehead,
of Balliol College, Oxford, but after the outbreak of war it was
not possible for me to continue receiving the benefit of his
advice. Prof.T. A. A. Broadbent, of the Royal Naval College,
Greenwich, has read the manuscript, and has helped greatly
in reading the proofs. I wish to express my thanks to both
of these gentlemen for their great assistance, and to the staff
of the Cambridge University Press for the care which they
have taken in the printing of this book.

W. V. D. H.

Pembroke College, Cambridge
September 1940






Chapter 1
RIEMANNIAN MANIFOLDS

1-1. Introduction. The theory of harmonic integrals has
its origin in an attempt to generalise the well-known existence
theorem of Riemann for the everywhere finite integrals on a
Riemann surface. In making the generalisation, the first
necessity is to determine the nature of the n-dimensional space
which is to play the part of the Riemann surface. The space
which we obtain is called an n-dimensional Riemannian mani-
fold. A Riemannian manifold of two dimensions is not, how-
ever, the same as a Riemann surface, and, as an introduction
to the ideas with which we shall deal, we shall first consider the
difference between the two concepts. These considerations will
lead up to, and may help to elucidate, the formal definition of
Ricmannian manifolds of » dimensions which will be given
later.

Let us construct in the usual way the Riemann surface for
the algebraic equation, over the field of complex numbers,

F(z,w) =0,

which defines w as an algebraic function of the variable z.
This Riemann surface is a closed, orientable (i.e. two-sided)
surface on which we introduce certain local coordinate systems,
which we call allowable coordinate systems. In the neighbour-
hood of a place on the surface for which z = a we take as one
allowable coordinate system (o, 7), where

z—a=t=0+1iT, or z—a=1{"= (oc+ir)",

according as the place is the origin of a linear branch, or a
branch of order ». If z is infinite at the place, we replace z—a
by 271, Then (x,,%,) are allowable coordinates in the neigh-
bourhood of the place if

y =, +izy = f(t)

nmut 1
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is an analytic function of ¢ which is simple (schlicht) in the
neighbourhood of the origin. All the allowable coordinate
systems are obtained in this way, and we may call y an allow-
able complex parameter in the neighbourhood of the place.

If (z,,z,) and (zy, z;) are two allowable coordinate systems
in the neighbourhood of a place, 2] and z; are analytic func-
tions of (z,, ,), which satisfy certain equations (the Cauchy-
Riemann equations), and there exists a relation

(da1)? + (dap)* = A[(dw,)* + (da,)?]

between the differentials at a point, where A is a positive
analytic function. Thus by means of the allowable coordinate
systems we define a local geometry on the Riemann surface
which is known as conformal geometry. In this geometry,
length has no significance, but angles can be defined.

If we make a birational transformation of the fundamental
algebraicequation, we obtain a new equation and corresponding
to it a new Riemann surface. We denote the original Riemann
surface by R and the new one by R’. Thereisa (1-1) continuous
correspondence between the points of £ and R’, that is, R
and R’ are homeomorphic. The homeomorphism has, however,
some special properties. If P and P’ are corresponding points
of R and R’, and (x,,%,) and (x;,2;) are allowable local co-
ordinates valid in their neighbourhoods, the equations giving
the homeomorphism in the neighbourhoods of P and P’ are

z; = fi(xy, %) (t=1,2),
x; = fi(21, %) (1=1, 2),

where the functions are analytic. This homeomorphism is
therefore an analytic homeomorphism. Moreover,

w)+ixy = X' (2, + 1),
x + 12y = X (27 +123),
where the functions are analytic, and hence

(dy)? + (dxy)? = p[(day)? + (day)?],
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where 4 is a positive function. Thus the conformal properties
of Rand R’ are preserved in the homeomorphism. The homeo-
morphism is therefore a conformal representation of the one
surface on the other. Conversely, if two Riemann surfaces are
conformally representable on one another by an analytic
homeomorphism, the algebraic equations to which they
correspond are birationally equivalent. The surfaces can
therefore be regarded as equivalent.

1-2. The features of a Riemann surface which we wish to
emphasise are that it is a closed orientable surface carrying
certain allowable coordinate systems which specify a local
geometry, and that between equivalent Riemann surfaces
there is a homeomorphism which relates the local geometries
of the surfaces. A Riemannian manifold of two dimensions is
also a closed orientable surface, but differs from a Riemann
surface in the systems of coordinates which are allowable, and
in the local geometry.

The allowable coordinate systems on a Riemannian mani-
fold of two dimensions are characterised by the properties
(@) that there is at least one allowable system valid in the
neighbourhood of any point, and (b) that, if (x,, x,) are allow-
able coordinates in a neighbourhood N, and z; and z} are
differentiable functions of (x;,x,) in N, the necessary and
sufficient conditions that (27, x;) are allowable coordinates in
N are:

. . (%1, %3)

(i) the Jacobian 3, 7,)
is different from zero in N and

(ii) (27, 2;) do not assume the same set of values at two
distinct points of N. If the functions z;, #; have continuous
derivatives of order u, where u is a positive integer or zero,
they are said to be of class u (class w if they are analytic); and if
the equations of transformation relating any two allowable
systems of coordinates are of class u, the manifold is said to be
of class u.
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While the local geometry of a Riemann surface is conformal
geometry, the local geometry on a Riemannian manifold of
two dimensions is Riemannian geometry. We associate with
each allowable coordinate system (z,,%,) a positive definite
quadratic differential form

Eda? +2Fdx,dxy + Gdxl,

where E, F, G are functions of (z;, ,), and are of class (u—1)
if the ma.mfold is of class u. If

E'da?+ 2F'dxide, + G'dxy?

is the differential form associated with another coordinate
gystem (x,x;) valid in the same necighbourhood, the coeffi-
cients of the two expressions are connected by the equations

B2 sawn o o)
B = E(axl) +2F5 ;ax;+0(ax; ’
0z, 0%y . F( 0z, Ox, 0%, 6z2) 0z, 0%y

F=Ea 1 oxy " \ox, 0wy oxy 0x) o, oxy’

0z, 0z, 0y 8:1:3)
6:&2) 2 e e 2+G(8x2

The quadratic differential forms enable us to define in an
invariant way the length of any arc on the manifold, as in
elementary differential geometry.

Two Riemannian manifolds of two dimensions which are of
class u are equivalent if there exists a (1-1) correspondence
between their points which is given locally in terms of allowable
coordinate systems by equations of class u, and is such that
thelengths of corresponding arcs are thesame. If two Riemann-
ian manifolds of two dimensions are in (1-1) correspondence
of class u, we can always choose allowable coordinate systems
in the neighbourhoods of any pair of corresponding points so
that in these neighbourhoods corresponding points have the
same coordinates. The necessary and sufficient condition that
the manifolds should be equivalent is that in these coordinate

G’=E(
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systems the coefficients of the quadratic differential forms on
the two manifolds should be equal at corresponding points.
If the manifolds are not equivalent, it may yet happen that
in these coordinate systems the coefficients of the quadratic
differential forms are proportional at corresponding points.
In this case we say that the manifolds are conformally related
by the homeomorphism.

1-3. There is clearly a considerable difference in character
between a Riemann surface and a Riemannian manifold of
two dimensions. It is therefore worth while showing how we
can pass from the one to the other, and how we can obtain
properties of a Riemann surface from a knowledge of the
properties of a Riemannian manifold of two dimensions.
Among the allowable systems of coordinates on a Riemannian
manifold we can find a sub-set G with the property that the
equations of transformation from one coordinate system of ¢
to another are analytic. In G there is a sub-set ¢, for which
the fundamental quadratic form is given by

A (da? + da3).

If (x,,%,) and (x7,x;) are two coordinate systems of Gy valid
in the same region, it is well known that

1+ = f(2, £ 12,),
where the function is analytic. There is a sub-set &, of @, for
which the upper sign holds. The closed orientable surface which
is the Riemannian manifold, and which has G, as the set of
allowable coordinate systems, is a Riemann surface. Riemann-
ian manifolds of two dimensions which are conformally
homeomorphic define in this way equivalent Riemannian
surfaces. In a later chapter we shall see that, conversely, a
Riemann surface defines, in a unique way, an infinite set of
Riemannian manifolds of two dimensions, any two of which are
conformally homeomorphic. Certain invariants, in particular
those which we shall call harmonic integrals, of a Riemannian
manifold are unaltered when we pass from one manifold to a
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conformally homeomorphic manifold, and therefore define
invariants of a Riemann surface. While this method of ob-
taining invariants of a Riemann surface is extremely artificial
the generalisation of it enables us to obtain invariants of the
Riemannian of an algebraic variety of any number of dimen-
sions which have not as yet been obtained by other means.
But there are also other fields in which we can apply the theory
of Riemannian manifolds.

2:1. Manifolds of class u. We now define a Riemannian
manifold of dimension n. These come within the category of
manifolds of class u, as defined by Veblen and Whitehead [101f,
and the reader is referred to their tract for a more elaborate
examination of the structure of such manifolds than we give
here. We shall give only a brief description of their character.

Inorder to define any space, we begin with a set of undefined
elements which we call points, and impose certain conditions
on them. We postulate the existence of certain sub-sets, which
we call neighbourhoods, and we suppose that every point lies
in at least one neighbourhood. We call the neighbourhoods
which contain a point the neighbourhoods of the point, and
when we say that a property holds in the neighbourhood of a
point we mean that there is at least one neighbourhood of the
point in which the property holds.

The neighbourhoods with which we shall deal are also
assumed to have the properties:

(@) if any two neighbourhoods N and N’ have a point in
common, there is a neighbourhood of this point which lies in
both N and N’;

(b) if P and @ are distinct points of the set, there exist
neighbourhoods of P and @ which have no point in common.

A set of points and a set of neighbourhoods with these
properties form a space. By putting further restrictions on the
neighbourhoods we can determine different types of space.

t References given in this way relato to the list of referonces at the end of
each chapter.
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The space which we now define is called a manifold. We require
first that the points of any neighbourhood shall be in (1-1)
correspondence with the set N of points of the real number
space (zy, ..., ,) of n dimensions which satisfy the inequalities

EARY ) (¢t=1,...,m)

where ¢ is a given positive number. If (z,, ..., Z,) is any point
of N, there exists a number 6, such that all the points given by

Ixi—5i|<31 (i=l,...,n)

lie in N, and for any such §, we suppose that those points of
the space which correspond to the points of N satisfying

Ixi—ii|<81 (i=l;"')n)

form a neighbourhood.

The number # is the same for all neighbourhoods, and is
called the dimension of the manifold.

The correspondence between a neighbourhood of a manifold
and the points of the number space given by

EAR) (t=1,...,m)

defines a coordinate system in the neighbourhood. Since any
point lies in several neighbourhoods, there exist several co-
ordinate systems valid at a point. Any two which are valid at
the same point arc both valid in some neighbourhood of the
point. Let (z,,...,2,) and (23, ..., 2, ) be two coordinate systems
valid in a neighbourhood N. Then, at points of N there is a
(1-1) correspondence between the two systems of coordinates
which can be expressed by the equations

x; = fixl, .xy)  (E=1,..,n),
X = ¢4(%q, ... %) (i=1,...,n).

Such a system of equations defines a transformation of co-
ordinates. By saying that the manifold is of class u, we mean
that the neighbourhoods are so restricted that the functions
fil@y, ...,2,), g2y, ..., x,), for t=1,...,n, are of class u, and
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that, when u > 0, the equations of transformation are regular
in N, that is, that the Jacobians

%

di| %
| 0;

0x;

b

are different from zero at all points of N. The ideas of limst
point, ete. on the manifold can be defined in terms of these
coordinate systems.

It is convenient to admit further allowable coordinate
systems in a neighbourhood N. Let y,, ..., y, be real functions
of (z,...,z,) of class u, where (x,,...,%,) are coordinates of
the type already defined, and suppose that the functions are
defined at all points of N and satisfy the conditions:

(i) %‘ is different from zero in N (when % > 0); and
j

(ii) there exists no pair of points  and 2’ in N for which

yl(x) = yi(x’) (i= l: "'7”’)'

Each point of N can then be identificd by the set of values of
the functions y,, ..., y, at the point. We shall therefore admit
(%4, .-+ ¥,) as allowable coordinates in N.

We now impose two conditions on the neighbourhoods
which restrict the nature of the manifold as a whole. First,
the manifold must be finite; that is, there must be a finite
number of neighbourhoods N,,...,N, whose sum entirely
covers the manifold. Secondly, the manifold must be con-
nected; that is, the neighbourhoods NV, ..., N, cannot be divided
into sets, each non-vacuous, N, ,...,N; and N, N,
which have no point in common.

AEERERET)

2-2. A manifold, as we have defined it, can be represented
in a simple manner as a locus in Euclidean space. In an
n-dimensional number space (2, ...,z,), any set of points in
(1-1) continuous correspondence with the points interior to a
sphere of the space is called a stmplicial region of the space. We
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consider a set of points in the Euclidean space (X,,..., Xy)
which (i) lies entirely in a finite region of the space; (ii) forms
a connected set; (iii) has the property that those points of the
set which lie within a distance ¢ of any given point P of the
set are in (1-1) correspondence of class % with the points of a
simplicial region N in (z,, ...,z,), and are given by equations

X; = filwy, ... 2,) (t=1,...,N),

where the functions are of class #, and where the matrix

0X;
(2

is of rank n at all points of N. Such a set of points is said to
form a locus of class win (X, ..., X y). We now propose to show
that any manifold of class u can be represented as a locus of
class %, in a Euclidean space, where %, is any finite integer not
exceeding u.

To prove this, we consider the neighbourhoods A, ..., N,
whose sum covers the manifold. Let (%, ..., %) be a coordinate
system in N; obtained by representing IV, on

|zh|<d  (i=1,...,n)

in the number space (2, ..., 2%). We define 2nr functions ¥4, 2
of the points of the manifold as follows. The functions ¥4, 2
are zero at all points not in N;. At points of &V,

¥ = (@)=,

2 = afyl.
If s >u,, these functions, regarded as functions of allowable
coordinates valid in the neighbourhood of any point of the
manifold, are functions of class #,. A point P of the manifold
lies in at least one neighbourhood N;, and for this j, i is not

zero at P. Let P and @ be two distinct points of the manifold.
If P lies in N, and @ does not lie in N;, then

Y(P)#0, yi(Q)=0.
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If both P and @ lie in N}, and if
YiP) = yi(Q), 2UP)=7(Q),

then 2j(P) = 2§(Q).

Thus we can always find ¢, j so that either
YiP) #YUQ),

or 2(P)#24(Q).

Now let (X, ..., X,,,) be coordinates in a Euclidean space
of 2nr dimensions. Consider the locus defined by

X(j—l)n+i =y,
X(r+j—1)n+i =2,

forte=1,...,n;5=1,...,7, where the argument of the functions
on the right-hand sides is a point P which ranges over the
manifold. This locus is in (1-1) correspondence with the mani-
fold. It is easily verified that it is a locus of class u,, as defined
above. Conversely, we may show that a locus of class u, is a
manifold of class u,, the neighbourhoods being defined in the
obvious way.

A representation of a manifold of class » as a locus of class u,
in a Euclidean space will be referred to as a Euclidean repre-
sentation, and will be found useful later in proving some
general theorems. We observe that if  is finite we may take
U, = %, but if ¥ = w this is not possible (but see Whitney [13)).

2-3. At this stage we may interpolate a remark concerning
the class number ». We shall not be particularly interested in
proving our results under a minimum number of conditions
imposed on the manifold, and for the applications which we
shall make it will only be necessary to suppose that u is suffi-
ciently large for the operations which we perform. In fact, it
will appear that every result which we establish will be valid
if w > 6, and many will be valid for smaller values of u. We shall
often leave as an exercise to the reader the problem of deter-
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mining the smallest value of u for which a given result is true,
and we shall always assume, without explicit statement, that
u is large enough for our purpose.

3-1. The Riemannian metric. We now make the hypo-
thesis that the class number u of a Riemannian manifold is
greater than zero. We may therefore differentiate the equations
of transformation connecting two coordinate systems(z,, ...,,)
and (1, ..., ,) which are valid in the same neighbourhood. We
denote the differential of o;; by dx't. The equations connecting
the differentials da?, dz'® at a point are

.t oox
o't = 3 228 g,
hél axh
. oox;
d.’L'l = E ',!' (l:L‘ h.

w=10%y,
In writing equations which involve functions to which one or
more indices are attached, we shall make use of the summation
convention, by which we agree to sum over the possible values
of the indices with respect to each index which appears twice,
once at the top and once at the bottom. Thus we shall write

the above equations as
.0z
da't = = duh,
oxy,

.o
dat = —dx'™.
Ly,

Let (y, ...,,) be any coordinate system, valid in a neigh-
bourhood N of the manifold, and let dz* be the differential

1 To adhere strictly to the conventions which we adopt we should write the
coordinates of a point as («, ..., z), as is done in several works. But, since we
shall in the earlicr part of our work have to consider quadratic functions of the
coordinates, it is more convenient typographically to write the coordinates with
indices at the foot. But when we consider differentials of coordinates it is necess-
ary to adopt the conventional rules more strictly, and write the indices at the
top. In a derivative ox;/dr;’ appearing in the equation of transformation of
differentials the suffix i is to be regarded as an upper index and j as a lower
index.
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of z;. We associate with each point P of N a positive definite
quadratic differential form in the differentials da*

g:;dat da? (9:i=9;),
where we suppose that the forms associated with the different
points of N are such that the coefficients g;; are functions of
(zy, ..., ,) of class u — 1. There will be a form associated with
P for each coordinate system valid in a neighbourhood of P.
If (x,, ...,2,) and (zy, ..., z,) are two such coordinate systems,
and
gijdatdat,  gida’ida’l

are the corresponding forms at P, we require the coefficients
of the forms to be connected by the relations

, axh axk
Gis = Ink i s+
ij hk axi axj

Then it is only necessary to give the form at P for one co-
ordinate system, since the others may be obtained uniquely
by this rule. If, at every point P of a manifold of class u, we
are given a series of quadratic differential forms, one for each
coordinate system valid in a neighbourhood of P, which satisfy
the properties which we have described, we say that the
manifold carries a Riemannian metric. If

x; = z;(t) (Bo<t<ty)

is any arc on the manifold, we define its length to be

b dx;dr)
NG

The length of the arc does not depend on the coordinate
system used. Two manifolds of class u, each carrying a
Riemannian metric, are regarded as equivalent if (i) there is
a (1-1) correspondence between their points which is given
locally in terms of allowable coordinate systems by equations
of class , and (ii) corresponding arcs are of the same length.
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3:2. In the applications which can be made of the theory
of harmonic integrals there are two ways in which the metric
can arise. In the first case, the metric is an integral part of
the problem, and is completely defined by it. In the other case,
the metric is not defined as part of the data, and in attaching
a metric to the manifold a certain amount of latitude is pos-
sible. The choice may be completely free, or it may be limited
but still allow a certain amount of freedom. If we are given a
Euclidean representation of the manifold in the space
(X4, ..., Xy) by equations

X =fi®y.n2) (=1, N),

where the functions are of class u, we shall sometimes find it
convenient to introduce the metric by means of the Euclidean

distance elcment
ds? =dX%+...+dX%.

By ‘““the metric defined by the Kuclidean distance element”
we mean the metric given by the equation

gijdxidal = ( o dx‘) .
h=1\0%;

If the metric is once given, and we then construct a Euclidean
representation of the manifold, it is of course clear that the
given metric will in general be different from that defined by
the Euclidean distance element. The problem of finding a
Euclidean representation with the property that the metric
defined by the Kuclidean distance element coincides with an
assigned metric is one which has as yet been solved only in
special cases.

A case which is of some importance is that in which the
manifold is defined as an analytic locus in Euclidean space. In
this case, the coefficients of the form giving the metric defined
by the Euclidean distance element are analytic.

4-1. Orientation. A manifold of class u, carrying a
Riemannian metric, may be called a Riemannian manifold,
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and the term Riemannian manifold is used in this sense by
M. Morse(7]. In the theory which we are going to develop one
other property of the space is essential, and we shall define a
Riemannian manifold as a space satisfying the conditions of
§§2 and 3, and the further condition that it is orientable. The
property of orientability is defined as follows.

If (z,,...,2,) and (a1, ...,2,) are two allowable coordinate
systems on a manifold, both valid in a neighbourhood N, we
have imposed the condition that the Jacobian

oz
0x;

should be different from zero at all points of N. Since this
Jacobian is a continuous function of the points of N, it has
the same sign at all points of N. If the sign is positive, we say
that the coordinate systems (x,,...,,) and (xy,...,2,) are
“like” in N, and if it is negative we say that they are “unlike .
Clearly, if (zy, ..., 2,) and (z1, ..., ,) are unlike, (z,, ..., %,) and
(g -oey @y _q, —y,) are like.

Now consider the set of all the allowable coordinate systems
on the manifold. Let there be a sub-set of these with the
properties:

(i) every point of the manifold lies in the domain of at least
one of the systems of the sub-set;

(ii) if two systems of the sub-set are valid in the same
neighbourhood N, they are like in N.

We then say that the manifold is orientable. An orientable
manifold associated with a set of like coordinate systems is
called an oriented manifold, and clearly one orientable manifold
defines two oriented manifolds. 1f no sub-set of allowable
coordinate systems satisfying (i) and (ii) exists, the manifold
is not orientable.

Let NV, ..., N, be a set of neighbourhoods covering an oriented
manifold. We can find a coordinate system (i, ..., 27 ) valid in
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N; which is like the systems of the sub-set used to orient the
manifold, and then, if N, and N}, have points in common,

2t
oxk

is positive at these points. Conversely, if coordinate systems
(#i, ..., %) can be found in the neighbourhoods N; (j=1,...,7)
such that

oxl

Ak
oxk

is positive at any point common to N, and N, the manifold is
orientable. Thus, to determine whether a manifold is orientable
or not, we have only to consider coordinate systems valid in
a finite number of neighbourhoods whose sum covers the
manifold.

4-2, Consider some examples. If (0, ¢) are polar coordinates
on a sphere in space of three dimensions, the manifold can be
covered by the two neighbourhoods given by

0<l<im+d (),
m—-d<0<nm (AR
We may take as coordinates in NN,
x; = tan 10 cos @, xi = —tan}0sing,
and as coordinates in NN,
2% = cot $0 cos ¢, 2% = cot 40 sin .
Then at points common to N, and N,,

dehad)  dahad) [ohad) .
Bt at) ~ 000,)| 20, 9) ~ PN E0>0

and hence the sphere is orientable.
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On the other hand, if we consider the real projective plane
(z,9,2), we can cover it by three neighbourhoods N,, N,, N,
where N, is given by

lylz| <2, |2/z]|<2; x}=ylx, 2} =z/x;
N, is given by
l2fy| <2, |aly|<2; af=zly, o} = 2ly;
N, is given by
|z/z]| <2, |ylz]<2; o} =z, 23 = y/.
Each pair of these neighbourhoods has two regions in common;
in one of these the Jacobian of transformation is positive and

in the other it is negative. It follows easily from this that the
projective plane is not an orientable manifold.

5. Geometry of a Riemannian manifold. We have now
completed the definition of a Riemannian manifold. To sum up
this definition, a space is a Riemannian manifold of class w if

(i) it is a manifold of class u;
(ii) it carries a Riemannian metric;
(iii) it is an orientable manifold.

Inorder to develop the theory of integrals, and, in particular,
of harmonic integrals, on a Riemannian manifold, a knowledge
of the geometry of the manifold is necessary. This geometry
falls into two parts. The first consists of the local properties,
and is, in fact, the study of the geometry defined by the metric,
that is, Riemannian geometry. The second consists of the
geometry in the large, that is, the combinatorial topology of
the manifold. Both these topics are treated in several excellent
textbooks, to which the reader may refer, but for convenience
we give a brief résumé of the theories, in so far as our require-
mentsdemand, so that the reader may have the essential results
before him. Complete proofs of each result stated would make
the account unduly long, and since they are available in other
places to which references are made, they are omitted from the
following sections.
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DIFFERENTIAL GEOMETRY

In this section we are concerned with the local geometry on
a Riemannian manifold M. In practice, we find that we are
only concerned with properties at a point P and at points in
the neighbourhood of P. We may therefore confine our atten-
tion to a neighbourhood N, and without any loss of generality
we may assume that the neighbourhoods in which any of the
allowable coordinate systems which we introduce are valid
contain . The results obtained in this section will be found
more fully treated in the works of Eisenhart 41 and Veblen 1,
and elsewhere.

6-1. Tensors and their algebra. We have already
spoken about differentials at a point. The differentials dz?, ...,
dx™ are arbitrary and independent numbers. When a change
of coordinate system x—z’ is effected, they are replaced by
dx'l, ..., dx'", defined by the non-singular linear transformation

i O0xp .o

da'i = éx_j da, (1)
where the partial derivatives are evaluated at P. The object
at P, which consists of the association of a set of numbers
(da?, ..., dx™) with each allowable coordinate system at P, with
the law of transformation (1) is called a contravariant vector
at P. The numbers of the set used to define the vector in any
coordinate system are the components of the vector in this
coordinate system. The use of the differential symbol is
irrelevant, and it is not at all necessary to think of the com-
ponents of a contravariant vector as the differentials of a set of
functions. We write the components of a contravariant vector
as (£, ...,£") and we denote it by its generic component £°.
The index is written at the top in order to distinguish contra-
variant vectors from covariant vectors which we are about to
define, and the fact that the differentials of the coordinates
are components of a contravariant vector is our reason for
writing the differential of z; as da®.

HHI 2
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A covariant vector at P is defined as a object given by com-
ponents (7, ...,%,) associated with each coordinate system,
with the transformation law

the partial derivatives having their values at P. If &, 9, are,
respectively, contravariant and covariant vectors at P, we
have

£ = ‘gh a"’”"

= 3}’f "
= ghﬂh’
where 8% = 0 if h#k, and 0% = 1. The object £y, is called a

scalar invariant, since it is independent of the coordinate
gystem.

6-2. The vectors which we have defined are special cases
of a large class of geometric invariants called tensors, which
we now define. A tensor is an object (associated with a point P)
given by n”+? components

P 9se+da (pjs=1,...,m)

.. 1p
in the coordinate system (x,,...,«,), with the property that
its components T',],:::::i:: in any other coordinate system
(%1, ..., ;) are given by

o | !

viaoda | 0% . 89: 8x,,p 8x &Liq 9

ﬂ Tiadp = a ’ 1 .. a,,a a 3 S ( )
x| x i, ax,,l iz,

where W is an integer. The tensor is generally represented by
its generic component. The lower indices are called covariant
indices, and the upper indices contravariant indices. W is the
weight of the tensor, and (p+q) is its rank. If there are no
contravariant indices we speak of the tensor as a covariant
tensor, and if there are no covariant indices the tensor is said
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to be a contravariant tensor. If W = 0, the tensor is said to
be absolute, and if p = g = 0 it is scalar. Two tensors with the
same number of indices of each type, and with the same weight,
are said to be ltke. If the components of a tensor are all zero
in one system of coordinates, the law of transformation shows
that they are zero in every system of coordinates, and the
tensor is then called a zero tensor.

From the law of transformation we also see that if 7'} jj{; is
symmetric or skew-symmetric in ¢,, i, (or in j,, j,), T’{:‘ljj:{:: iy
also symmetric or skew-symmetric in ¢,, 3, (or in j,, j;). The
most important case of this occurs when the tensor is a co-
variant tensor or a contravariant tensor, and when it is sym-
metric, or skew-symmetric, in each pair of indices. We then
say that the tensor is a symmetric tensor, or a skew-symmetric
tensor. From the definition of the Riemannian metric

g jdridal
it follows that g;; is an absolute symmetric covariant tensor.

We call it the (covariant) metrical tensor. g;dx’dz/ is an
absolute scalar.

6-3. Certain algebraic operations on tensors are permissible.

1. Addition of tensors. If T,’,:jjjj{:, S?;::::{: are like tensors,
at a point, a tensor which is like to each can be obtained by
adding corresponding components in the same coordinate
system. This follows at once from the linear nature of the law
of transformation. The sum is denoted by

Tds+ Shis

II. Multiplication of tensors. T%:--%, 873+ are two tensors
at a point of weights W, and W, respectively, given by their
components in the coordinate system (z, ..., z,). Let

Jreidots _ mpiveedq Qigtr..dq+s
RL,...i,,+, = Ti,. ip St,,+,...t,+,--

We can define a tensor of weight W, + W, by saying that its
components in the coordinate system (z,,...,z,) are the

2-2
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numbers R{; f:‘:; (s Js=1,...,m). If we now determine its

components in the coordinate system (3, ..., 2,), we have
’.'fx---jq«t
B3
L W W ’ "
_a'_x‘ . bv Sbw+| wbg ,afﬂl ?.xf‘ﬁ" ?xh a‘f’? ks
! (l‘ dp 1. Apty ’ .
0x; oz 0w}, | Omy 0,

— T’jl fq S’J']i‘l"'jtrll

Tpt1etpte’

Thus the tensor B! 'jj{;t: is determined uniquely by the tensors

T4 and S} ¥, independently of the coordinate system.
It is ca,lled the product of the two tensors.

III. Contraction of tensors. Let T ¥ be a tensor of weight
W, given by its componentsin the coordma.te system (25, ..., %,).
Replace ¢,, j; by k, and apply the summation convention.

Write

b’jl Jq— T.’h 74—1kj« Jq 1
Cheelpay wlpa ki tp—y

We define a tensor S’iijj_'{:i: of weight W by giving the com-
ponents the above values in the coordinate system (z, ..., z,).
For convenience we consider the case in which» = pand s = ¢,
but the following argument is valid in all cases. When we make
a transformation of coordinates we obtain the new components

i e S W R W
p-1 axj 1eeelp—t axil axl a,’ljb aqu .
| o WTb,...n, ox,, 0%, , 0%, Ox;  0%; o,
IREC -ax axuﬂ Oy, axb 5qu ' 3xbp
= T gy

The tensor S f;‘; is therefore defined uniquely by the
process which we have described, from Tj""j We describe
the process by which we pass from 7' "‘ tO S " j“‘ as con-
traction. Since we may give r and s a,ny va,lues, 1t follows
that from T{:;_‘_’{: we can obtain pg tensors by contraction.

By repeating the process, further tensors may be obtained.
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Given any finite number of tensors, by repeated application
of the rules for the addition, multiplication and contraction
of tensors we obtain other tensors. If in this way we arrive at
a zero tensor we have a tensor equation connecting the tensors,
which holds in all coordinate systems.

7-1. Numerical tensors. The metrical tensors. Cer-
tain particular tensors which are of frequent occurrence may
be noted here.

(i) Let o
be a number which is zero unless 1., ...,%, and j,,...,j, are
derangements of the same p distinct integers lying between 1
and n, and which is + 1 when 4y, ..., 7, is an even derangement
of ji,...,Jp, and is —1 when it is an odd derangement. We
define a tensor of weight zero at a point by taking its com-
ponents in the coordinate system (z, ..., z,) to be

Jreedp jl-"-ih
Ai‘...'i,,, - é\i‘...z,,'
Its components 4'%)"i in another coordinate system are
’ ’
prived _ gty 0%y O%ay 0% 0z,
Teendp V... yoce ’
1eete v Oah T 0xy, 0, 0%y,
’ ’
N ox;  Oxj
= AL 7
ox; 0w
’ !’
_a_:fj_p ax r
’ ¢ ’
oxy  0x;

freeed;
=03
Thus there is a unique tensor whose components in any
coordinate system satisfy the equations
At = ol
We denote this tensor by

Juenedp
oy,
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(i) By a similar argument we prove by direct calculation
that there is a skew-symmetric tensor, which we denote by
€;,...iy of weight —1, whose components in any coordinate
system satisfy the equations

1...n
€iyevin = 04y 0w

(iii) Similarly, we show that there is a skew-symmetric
tensor 1% of weight + 1 whose components in any coordinate
system satisfy the equations

el = 8;".:""",

?

A tensor of weight + 1 is called a tensor density.

7-2. The coefficients of the differential form
gijdatdat

are components of an absolute symmetric covariant tensor,
which we have called the covariant metrical tensor. In any
coordinate system we can solve the equations

gt 9jr = a};’

for the unknowns g%, since | g,; | # 0, the quadratic form being
definite. Clearly

g'l:j —_ g?i i

We define ¢/ in this way for each coordinate system. We now
define a tensor i by the condition that in the particular
coordinate system (,, ..., z,) we have

ki = g4,
From the invariance of tensor equations we have
137 ! 3
h 9k = %
in any other coordinate system. Hence

hlii = grﬁ
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in every coordinate system. We denote the tensor k% by g%,
and call it the contravariant metrical tensor.

Finally, if 9=194,
, , 0z, | ®
we have 9 =191 = | gnl B_x’f
ox; |2
= —a;; g,

and hence g is a scalar of weight 2. Similarly, \jg is a tensor
density.

8-1. Parallel displacement. The tensors which we have
discussed are located at a definite point of our manifold, and
form a vector space, which we call the tangent space, at the
point. A (1-1) correspondence between the tensors at a point
P and the tensors at a point P’ is called a parallelism if

(i) absolute scalars at P correspond to equal absolute
scalars at P’;

(ii) when S7::1, Ti-%, ... are tensors at P, and S,

737 .. are the (like) corresponding tensors at P’, then

Treealyr *°
the tensor obtained by performing any series of operations of
addition, multiplication, and contraction on S}, T%:::j::,

corresponds to the tensor obtained by performing the same
series of operations on §'§; "}, Tk

In differential geometry it is necessary to establish a
parallelism between the tangent spaces at any two points P
and P’ of the manifold. It is not necessary that this parallelism
should be unique, and we shall see that the parallelism which
we introduce depends not only on P and P’, but also on the
choice of an arc on the manifold joining P and P’.

In a suitable coordinate system, let P be the point (Zy, ...,%,)
and P’ be (%, + €Y, ...,Z, +¢e"t). We shall be chiefly concerned
with values of ¢t which tend to zero, and in the equations which
follow terms in ¢ of the second or higher orders are of no
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importance. Let £ be an absolute contravariant vector at P,
and denote the parallel vector at P’ by £!+d£%. Let us con-
sider the case in which d! is given by an equation of the form

dg = — LiyEievt 4 0(1),

where L}, depends only on P (in the given coordinate system).
Neglecting terms of the second and higher order in ¢, and
writing €'t = x%, we say that the equation

g + L3, 818k = 0

defines the infinitesimal parallel displacement of the vector
£i at P corresponding to the displacement 8.

We now consider a change of coordinate system. In the
following equations a partial derivative enclosed in brackets
denotes the value of that derivative at P, and a partial deriva-
tive enclosed in brackets with a suffix denotes the value of
the derivative at the point indicated by the suffix. Let P have
coordinates (¥, ..., 7,) in the new coordinate system, and let
P’ have coordinates (&}, ..., %,). Then

T, = xy(x' +et)

’

=T+ ( ax‘) €lt+ O(¢2)

0x;

= Z;+¢€'%,
. [oxh\ .
where €' = ( x—‘) e+ O(t).
0x;
The new components of £+ d&¢ are

g’ = (v (1)

J
’ 2.
ox; 0%x;

= (£ +dg) [(5@) + (ai;."ax_,c) €kt + O(tz)]

R AV “ax;.) .
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Hence, if df't = — LiL g'e'%t + O(t2),

) e[l (o) e

The object at P which consists of the association of a set of
numbers Lf, with each allowable coordinate system having the
law of transformation

ou; ,; 0% Oxy,  0%x;

J = J 7 T T
D oy = Likag, oz, + 3,00, 3)

is called an affine connection. It will be observed that in order
to define an affine connection, the manifold must be of class
two at least. We now suppose that an affine connection is
given at each point of the manifold, the components being
functions of class (u—2)

Let @ be any other point of the manifold and let

o= wf()  (0<t<l)
be an arc C joining P to Q. The differential equation

d§‘ d.vk

kg’

has a unique solution &f reducing to £ at ¢ = 0. Let £ be the
value of this solution at ¢ = 1. We say that the vector £ at Q
is the parallel displacement with respect to C of the vector
& at P. It is unaltered by a transformation of the coordinate
system.

8:2. So far we have only considered contravariant vectors.
Let us now consider the scalar ¢ at P of weight W. We define
the infinitesimal parallel displagement of ¢ to P’ as ¢ +dg,
where

d¢ = WPLL ekt + O(t2),

But it is necessary to show that this definition is independent



26 RIEMANNIAN MANIFOLDS (1, 82

of the coordinate system. For any transformation of co-
ordinates we have

¢/+d¢l

0x;

= ( o, W) ,(¢+d¢)
Ve oo

=( ’7””., "')[ W(ajg )(%J) 'kt]¢[1+ W Li,ekt] + 0()

o0x;
=¢'[1+ (ax o | szgx) ”“t]+0(t2)

0’ 0}, O,
= ¢'+ W' Liie'kt + O(82).
This proves that the definition is independent of the coordinate

system. We now define parallel displacement of a scalar along
the arc C by means of the differential equation

.

; day

d
W woLy .

dt

8-3. The definitions of the infinitesimal parallel displace-
ment of a contravariant vector and of a scalar of weight W
enable us to fix uniquely a parallelism between the tensors at
P and at P’. If 9, is an absolute covariant vector, and & is
an absolute contravariant vector, 5,£! is an absolute scalar.
Hence the parallel displacement is given by

0 = d(n;£%) = 7,dEi +Eidy, + O(t?)
= (dn;— LEmee’t) £+ O(%),
and since this is to be true for all vectors £ we must have
dy; = LEmeit+ O(t2)
as the equation defining the infinitesimal parallel displacement

of 5;. Next, let Tj:jj:f: be any tensor of weight W at P. The
infinitesimal parallel displacement T%:J+dT 7 is found
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as follows. Let 7,);, ..., 7(,; be any ¢ absolute covariant vectors
and £, ..., &, be any p absolute contravariant vectors. Then

T2 3 W, - e, £y - &y
is a scalar of weight W. By the condition (ii) for parallelism

we must have

Freeed 3 3
0 = d(T3 8wy, TarigEdy - o)

— W Ly ekt T%} i Ny, -+ "I(q)qu(Lf) e Epy+ O(t3).

But ey = LEnone't+ O(t2),
and dgy = — Li, Bl eft+ O(t).
Hence
q . o .
0= [dT{-::::,-:+ 3 Therdrsko o Liett
r=1

» .
Y ]" .................. Jq k a
- ZlTi,...i._.kim...i,,Li.ae t
o=

— W L, T;:‘.:.'.'ziZ] Nwj, - Narigbth -~ Ey + OF).

Since this is to hold whatever the vectors gy, ..., N &y - > £
are, we obtain as the equation for parallel displacement of a
tensor
qa . p o
ATy lei::::?r:t."..’.'f::::?: Lz 8wt = XT3yl L 62
=

Tioalp =
— WL dxs T} Je = 0. (4)

Conversely, if the infinitesimal parallel displacement of a
tensor is defined by this equation, the correspondence between
the vectors at P and at P’ is a parallelism. When the affine
connection is defined throughout the manifold, we define the
parallel displacement of a tensor along any arc C by means of
a differential equation, as in the special case of a contravariant
vector.

There are more general ways of defining parallel displace-
ment, but we shall not have occasion to consider them.
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9-1. Covariant differentiation. We suppose that an
affine connection is given at all points of the manifold, the
components in any coordinate system being of class (u—2).
Up to the present, we have considered tensors defined at a
point, and parallel displacements. We have now to consider
a field of tensors, that is, a set of tensors associated with the
points of a region of the manifold, the components of the terms
being functions of class v (0 <v < u) of the points of the mani-
fold. For example, the metrical tensor g;; belongs to a tensor
field of clasy (u—1).

Let us consider a tensor field Tf;,‘j_‘{l‘j of weight W. The law
of transformation (2) holds at all points where the field is
defined. If we differentiate this equation with respect to xj
we obtain

w 1y ... e / Y
azm B ,g T o ax(,l ox,, 0z, 0x;  0xj,
= ) - e AT A AL e A
oxj, | ox] oz, oOx i, O, 0wy O, T 0my,
w2 ' - /
+W Ouy “_a, Ti _a% by ...by ?f"t ax”r oj, axiq
am 0x; 0y, Oa; -~ U oy T o), 8.1:,,' 8qu
" . 2
+ axi g: Tb, ................... by af”‘h axﬂv -1 0 Le )
ax; & Uyeeilly -1 C Ay F1eeaUp ax:l av ax;c
’
y ax(,.m axap ax 8x]q
S
8310,,-,8I .o aa,b 837:,,"
oy |V '
N ?x? & & pbuebi-scrinety 0%, 0%, O ax,, .
o [ a b
ox;| ;" » ax 8::: ax,, azrb, .
a-'x,-r a:l‘d ax,, X ax]q

Ay
0x,0x, 0%}, Oxy, aa',,q

The derivative is not a tensor, since the equations of trans-
formation contain partial derivatives of the second order. By
equation (3), and the equation obtained from it by inter-
changing the dashed and undashed letters, we can eliminate
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the second derivatives and obtain an equation which involves
the components of the affine connection in the two coordinate
systems. On reducing the equation so obtained, we get

§ Nae J ’

1']1 Ja a:_v_'_’ Tbl by ax"l a;_tfll' ,U_Q_'(_" al,jl ?iEJ—q

Genlprk = o @ueeliprC ox;, ‘ax;p 0x}; 0y, T owy

where
3 = +Tp .’I wdracd g
Tz: ’lpyk axk + 24 T e r 1'“!1L
Freveereneennnnnenns Jq ] )
24 T . welg_1Clsqree z,,Ll,lc_ IVT - thk’ (5)

and T"% 3 is similarly defined.

Thus, by means of the affine connection we can deduce
from the partial derivative of a tensor another tensor, of the
same weight but with one more covariant index. This we call
the covariant derivative of the tensor. It will be noted that if P
is the point (%,,...,%,) and P’ is (T, + 0z, ...,Z, +d0x"), the
infinitesimal parallel displacement to P’ of the tensor 7' ’;:j_'_'f: at
P belonging to a tensor field is

Th 3Py — Thde, Sak.

'I‘

We prove immediately that

7 «d 1 YJ Jyeeed
[T . q+b " 'lp k= T3 !,,ak+Sl: l:ak’
and

(T lSi e = Thole Sy + Tl sin i,

9-2. Provided that the class number v is sufficiently high,
we can repeat the process of forming the covariant derivative
of a tensor in a tensor field. But in general the second co-
variant derivative is not symmetrical in the indices which
denote differentiation. This can be verified by direct calcula-
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tion. We omit the details of the calculation, which is quite
straightforward, and merely state the formula:

>_. 1} "'z,':;;;;:;"" o= 2Tl Q5 — W2 Bl
where 20% = Ljj— L,
aLi, oL: .
and :s( — a :.q rl+ La 1 :lt LZS (6)
8

From the equation (3) we prove that 2% is an absolute tensor.
We subtract from (3) the equation formed by permuting b
and c¢. The resulting equation gives the law of transformation
of 2F,, which is that of a tensor.

Again, Bi, is also an absolute tensor. To prove this, take
T {:f”j to be an absolute contravariant vector §. Since

) . ok
glw,l - glahs + 2glxk‘Qsl
is a tensor, so is £*Bl,,. We therefore have the transformation

law

ox; ox,, ox,
g Bamn axl ax“ a,;’

Since this holds for all vectors &, we have
0 0y, 0, O,
ox, ox, 0, 81

that is, Bf, is a tensor of weight zero. We call it the curvature
tensor.

f) 4
g a a B(:alz guBasl =

B bmn

rsl

9-3. Direct calculation shows that the covariant derivatives
of the numerical tensors are zero. Consider, for example,
€,...4,» We have

n

A
Cirviipp b = — Eﬂ, Y% PR L1.k+€ ..l,‘Lik =0.

The results for €** and 81::::%:’, are proved similarly.



1, 10-1] RIEMANNIAN GEOMETRY 31

10-1. Riemannian geometry. Riemannian geometry is
defined by the properties:

(i) there exists a fundamental metrical tensor field;
(ii) the affine connection is symmetric in the two lower
indices;
(iii) the length {9476}
of any absolute contravariant vector is unaltered by infini-
testimal parallel displacement.

We have defined Q% as the skew-symmetric part of the
affine connection. We denote the symmetric part by I', so that

Lk = Ik + Q%
In Riemannian geometry we have
LE = Ik,
From the invariance of the length of £ we have
9i(x+ 8x) (§:+dE) (E) + dEl) = g,;£€,

where g;;(x+0x) denotes the value of g;; at (2 + 02, ...,
x, +0x"), and '
dgt = — Lj, £ oxF.

Hence aagxl ~9ai Ik —ia ij:] g§igidak = 0,

thatl iS, g'('j)kgb g’ 61/‘" = 0.

Since this holds for all vectors £!, and for all displacements,
ag.. .
Gijoe = ax: —Yuj 4= Jia i = 0.

Solving this equation, we obtain

dg .8g Kk oy
1 —_ e aJ al jk
Fi = 39" 0y, + 8.76 oz, |

The components of affine connection in Riemannian geometry
are called Christoffel symbols.
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10-2. From the equations
gijgjk = 311;, Gizu = 0, 311;,1 =0,

we have g, gk =0,
hence 9,495 9% = 9%, 85
= gis,l = 0.

. 0 ,
Again ¢, = 8*2%6-2911&

o Ty -are]
= .(/[.(Iajp("kgﬁ‘FJmFu g9 —2I'y]
=g, k— 25,
=0,
and, similarly, (v/9),r = 0.
From this last equation, which we write as
Q;/!!_«/ I, =o,

we deduce that in Riemannian geometry

. 0

"= B, {log \Jg}.
i o

oy, _ari _,

Hence =

ox, o, ’
and, since we have, by definition,
Ok =0,

the last two terms in the formula for the interchange of the
order of covariant differentiation are absent.

10-3. There are certain identities satisfied by the curvature
tensor which we must now prove.
(i) For all affine connections
Bijk = — Biyy-
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(ii) For all symmetric affine connections the formula (6)

leads at once to
-B?jk' + B;lki + Bz” = 0.

(iii) In Riemannian space it is convenient to introduce a
covariant tensor of rank four, which we call the Riemann-
Christoffel tensor:

Rijir = 9ia Bifa-

Clearly, Bijiy = — By,
and Bija+ By + By = 0.
Since Fijosst = U = Gijotes
we have i Biat + 9ia B = 0,
and therefore Rjiy+ By = 0.

Now add the two equations
Rijiy+ Ry + Ryyp, = 0,
Bjipa+ Bjpgi + By, = 0.
We get (B + Bjpgi) + (Bygjpe+ Byy) = 0,
and, by the identities already obtained, we have
(Byeus + Brjis) + (Rpgjpe + By = 0,
and 2B+ Ry + 2Ryp + Ry = 05
and therefore By = By
10-4. In §3-1 we defined the length of an arc in Riemannian
space. Consider an arc C, and express the coordinates of points
on it as functions of the distance s measured from a fixed
point of C. At each point of C therg is defined a contravariant
vector &f, called the tangent wvector, whose components are
given by
gz - %
=5

HHI 3
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The arc C is called a geodesic if the tangent vector satisfies
the equation
gt

+F§k§’§k =0.

It can be proved that through any point P of the space there
passes a unique geodesic whose tangent at P is any assigned
contravariant vector, and that there exists a neighbourhood
of P with the property that each point @ of this neighbour-
hood can be joined to P by a unique geodesic lying entirely
in the neighbourhood. The length of this geodesic is called the
geodesic distance between P and @, and the locus of points at
a constant geodesic distance from P is called a geodesic sphere.

11. Geodesic coordinates. The affine connection is not
a tensor. We have seen that if the components of a tensor
vanish in one system of coordinates they vanish in every
system of coordinates. This is not the case for the affine
connection.

Given the components of affine connection in the coordinate
system (2, ..., ,), equation (3) shows that in order to find a
coordinate system (zi,...,2,) in which Lj; =0 we have to
solve the equations

Ax; ., O
oc; 0w, ~ L% oz,
The necessary and sufficient condition that there should exist
a coordinate system in which the components of affine con-
nection vanish is that these equations should be completely
integrable. The conditions for this are found to be

Ly, = Lg; = Ty,
and B}, = 0.

The first condition is satisfied in Riemannian geometry, but
in general the second is not. When it is satisfied the Riemann-
ian geometry is said to be flat, and it can be shown that the
geometry is equivalent to ordinary Euclidean geometry.
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The local geometry of a Riemannian manifold is not, how-
ever, flat, so we cannot find a coordinate system in which the
components of affine connection vanish at the points of a
neighbourhood. But, let us consider the transformation of
coordinates

T = xt“‘ii‘*‘%?.:a (Tji)z (2 —%;) (T — Ty,
i
Equation (3) shows that in the coordinate system (xj, ..., z;)

the components of affine connection vanish at the origin of
coordinates. Now make a further linear transformation

J
of the coordinates, so that

n
2 945(0) xix; = X ().

i,j=1 t=1
In the coordinate system (z7, ...,z,) the components of affine
connection vanish at the origin, and at the origin we have

" ” . . 3g"
gu=1, gi;=00#J), a.vl}z =0

A coordinate system with these two properties is called a
geodesic coordinate system at the point which is the origin of
the coordinates. The use of geodesic coordinate systems is
convenient since, when we are performing calculations, the
equations which we obtain are simpler than in the case when
general coordinate systems arc used. The following facts, which
hold when we deal with geodesic coordinates, will be of con-
siderable use in later chapters:

(i) the first covariant derivative of a tensor is equal to the
ordinary derivative at the origin of geodesic coordinates;

(ii) at the origin of geodesic coordinates

R 1( P gy gy _3__2-‘111._).

ikl = 3 0x;0m, Ox;0x, Ow;01, 0x;0%,
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TOPOLOGY

In the following paragraphs we give a brief account of the
more important topological properties of Riemannian mani-
folds, which will frequently be used in later chapters. The
proofs of the theorems which will be stated can be found in
standard treatises on topology, and it is unnecessary to repeat
them here. The reader is therefore referred to the standard
works, such as those of Lefschetz 5], Seifert and Threlfall(s),
or Alexandroff and Hopf(1). In the account which follows,
explicit reference to these works will not be made; but in the
case of certain results not proved in these books, references
will be given to the original papers in which the theorems are
proved.

12-1. Polyhedral complexes. In the Euclidean space
&, (x4, ...,%,), consider p+1 independent points F,..., F,.
If P, has coordinates (2%, ..., zF), the matrix

0 0
] ... = 1
1 1
z ... x 1
xp ... aP 1

is of rank p + 1. The set of points given by

X; = )thf (7/ = l, '”)T)’
where A>0 (k=0,...,p)
and /\0+...+Ap =1,

forms a rectilinear p-simplex, or a rectilinear simplex of p
dimensions, which we denote by (£, ... B,). If we replace the
inequalities

A, >0
by AIc 2 0:

the set of points obtained is called the closure of (F;...F,),
and the difference is the boundary of the simplex. The boundary
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. 1\ . . .
therefore consists of (?: __:_'1) simplexes of dimension k, for

k=0,..p-1.
We now consider a finite set of rectilinear simplexes in &,,
of dimensions 0, ..., n, having the properties:

(i) no two simplexes of the set have a point in common;

(i) every simplex lying on the boundary of a simplex of
the set belongs to the set.

Such a set of simplexes forms a polyhedral complex of n
dimensions. Thus the simplexes forming the faces, edges, and
vertices of a tetrahedron form a polyhedral complex of two
dimensions.

If (£ ... B,) is any p-simplex of the set, it can equally well
be denoted by (7, ... F;)), where (i, ..., ,) is any derangement
of the numbers (0, ...,p). These derangements fall into two
classes, those which are obtained from (0, ...,p) by an even
permutation forming one class, and those obtained by an odd
permutation forming the other. Any derangement is obtained
from another of the same class by an even permutation, and
from a derangement of the other class by an odd permutation.
We now define an oriented simplex from (£, ... P,) by associating
with it one of the classes of derangements of the suffixes, and
we denote the oriented simplex by P, ... P, (without the
brackets), where (i, ...,%,) is a derangement of the associated
class. The oriented simplex obtained by associating with
(£y... B,)) the other class of derangements is denoted by
B, ... B, where (jo, ...,j,) is an appropriate derangement of
(0, ..., p), but we also denote it by —F; ... P,

If we orient (in an arbitrary manner) all the simplexes of a
complex, we obtain an oriented complex. We introduce the
ideas with which we shall deal by considering certain pro-
perties of an oriented polyhedral complex.

12-2. We denote the oriented p-simplexes of the poly-
hedral complex K by Ej (i=1,...,a,), forp = 0,...,n.
We take the oriented p-simplexes K, (i=1,...,a,) as the
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free generators of an additive group. The general member of
the group can be written as

- ;
G, = a; B,

where a; is any integer (and we make use of the summation
convention). C, is called a p-chain.

Consider the p-chain Ei, equal to the oriented simplex
P, ... P,. We define the boundary of this to be the (p—1)-

chain
)

. l .
1'1(E;)) = Cp-—l = 'ZU( - 1)] })io soe })1'1_. P'i1+. oo 'l)'ip’
] =
and it can be verified at once that this boundary does not
depend on the particular derangement (i ... i,,) chosen within
the class of derangements which orient the p-simplex. The
boundary of —PF, ... P, is —C, ;. The boundary can be

written as .
F(E;;) = (11\77;: E;;_l,

where i =-1,00rl,

and the summation with respect to j is from j = 1toj = a,_;.
The number (,7; is thus defined for all 4, j (1<i<ay;
1<j<a,_ ), and for all values of p (1<p<n). We write the
relation between E% and its boundary chain as

E;) _'>(p)77; Ei)—‘l'

These relations, fori =1, ...,a,, form the incidence relations for

the p-simplexes of K, and the matrix
oM = (75

is called the pth incidence matriz. 1f
C, = a, E},

is any p-chain, we define its boundary as

Cp1 = i 1 By
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Now
P,... -—>Z (1Y F,.

p

P':H-l i 'P":p

lj‘

p .
—>J'—Z (—1)7 (:k;o(—l)kp P‘"—lPlkn 1} IP"H'l'“PtP

+ ¥ (=1}P...P, P._..P, P ...P,-P]

k=j+1 Y—1" Y+1* Ue—1" k+1
= 0.
Hence @i B = o (oW BE 5 = 0,
that is, @M - -M =0, (7)

and, in general, if C, is any chain,

F(C

») —> 0.

12-3. A p-chain whose boundary is zero is called a p-cycle.
The result which we have just established tells us that the
boundary of any (p+ 1)-chain is a p-cycle, or else zero. But
the converse result, that every p-cycle is the boundary of a
(p+ 1)-chain, is not generally true. We therefore distinguish
the cycles which are boundaries by calling them bounding
cycles. If C, is a bounding cycle, we say that it is homologous
to zero, and write

C,~0.
If C, and C}, are two p-chains such that
C,—C,~0,
we write C, ~ 0.

In order to determine the p-chains of K which are p-cycles,
and to find which of the cycles are bounding cycles, we make a
change of base for the groups of (p + 1)-chains, p-chains, and
(p—1)-chains. By using (7), and an elementary result in
matrix algebra, we can show that new bases

Chai=1,.,0,,), Ch(i=1,..,a,), Ck_i(k=1,...,a, ;)
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can be found so that the incidence relations can be written in
the following form (in which the summation convention does

not apply):

h1—>d; sz G=1...,Pp11)
Chi1—>0 (C=pprtl.xpu);
C,~0 U=1 ""pp+l)’ } (8)
Coriitise; 0% 1 (J=1,...,0p);
Ci >0 (G=pp+Pprrt Ly

In these equations, p, is the rank of (,m and e, >e,> ... >¢,,
are its invariant factors; while p,,,,d,, ...,d, ,, are s1mllarly
related to (,.,m. If I, is any p-cycle of K,

fe ) 1j a,: 1
i=1 Jj=ppt+pp1t1
where a;,b; are integers. If I, is the boundary of a chain

a}_, ¢,Ci .y, then
1
fpi1 Pp+1 . %p .
Zod Ci=Ya;C} + ¥y b0
i=1 j=pptppirtl
and hence b;=0 (j=pp+pptl..;xp)
and a;=0 (modd;) (j=1,...,Pp1)
Conversely, if b;=0 (j=p,+ppat+1,...;2)

and a;=cid; (j=1,...,Pp41)s

. Ppi1 .
I', is the boundary of .2‘,1 ¢;Chir-
1=

The p-cycles of K form an additive group G,, which is a
sub-group of the additive group of p-chains. The group ¢, has
a sub-group @, consisting of the boundary p-cycles, and the
result which we have established shows that the factor group
H = G,/G,is genera,ted by R, = a,,—p,— pp1 free generators,
corresponding to €%, (j=p,+ppu+1,...,%,), and 0, gener-
ators of finite order correspondlng to the cycles Ch(j=1,...,0,)
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where d, ...,d,, are the invariant factors of ,,,m which are
greater than unity.

The group H is the direct sum of an infinite Abelian group
H, having R, free generators, and a finite Abelian group H,
generated by 0, generators of orders d,, .++, dp,. The group H,
is called the Betts group of K, and R, is the pth Betti number
of K. The group H, is called the pth torsion group of K, and
dy, ..., dy, are called the pth torsion coefficients of K.

Any cycle I', which can be written as

Pp+1

Fp = Eaio;)
1

is either a bounding cycle, or else there exists an integer
A>1 such that
AL, ~0.

In the latter case we say that I') is a divisor of zero, and we say
that I', is homologous to zero with division, writing

I',~0.
If I', and I}, are two p-chains such that
r,—I,~0,

we say that they are homologous to each other with division,

and write
r,~ r;,.

12-4. Before leaving polyhedral complexes, we describe an
operation on a complex K, known as regular sub-division.
This consists in breaking up the simplexes of K into smaller
simplexes, according to definite rules.

We define the process by induction on the dimension of the
simplexes of K. In a 1-simplex (P, P,) take a point @, and then
replace (P, P,) by the 1-simplexes (£, @), (@F;) and the 0-simplex
Q. This gives a regular sub-division of (F, P,), and we can there-
fore form the regular sub-divisions of all the 1-simplexes of K.
We now suppose that the process of regularly sub-dividing sim-
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plexes of dimension less than p has been defined, and that the
g-simplexes of K have been so sub-divided, forg=1,...,p—1.
Consider a p-simplex E?, and in it take a point P%,. This point
P can be joined to any simplex of the sub-divided boundary
of E}, by a rectilinear simplex, and the sum of the simplexes
so obtained, together with the 0-simplex P?, exactly covers E5.
This gives the required sub-division of £}. If we sub-divide
each p-simplex of K in this way, we carry our process to the
stage at which cach simplex of dimension less than p+1 has
been sub-divided. By continuing the induction we arrive at a
stage at which all the simplexes of K are sub-divided. The new
set of rectilinear simplexes forms a complex K’ which is a
regular sub-division of K. Each simplex of X is clearly covered
by a set of simplexes of K'.

The simplexes of K’ can be oriented in any way we please.
It is sometimes convenient, however, to impose a condition on
the method of orienting the ncw simplexes. Consider any
p-simplex (@,...@,) of K’'. This may lie on a p-simplex
(£ ... B,)of K. Inthis case, one (p — 1)-simplex on its boundary
lies on a (p—1)-simplex of the boundary of (... F,). Let
these (p — 1)-simplexes be (¢, ... @), (¥}, ... F},). Then @ is
the new vertex introduced into (£, ... £,) in forming its regular
sub-division. We fix the orientation of (¢, ... @,) inductively
as follows.

(i) If p = 1, and the orientation of (F, P,) is given by £F, P,
(§ = + 1), the orientation of the new 1-simplexes are given by
EBQ, EQP.

(ii) We now suppose that the orientations of the (p—1)-
simplexes of K’ which lie on (p — 1)-simplexes of K have been
fixed, and that the oriented simplexes formed from (@;, ... @),
(B, ... B,) are £Q; ... Q;,, 7D}, ... B, (§,m = % 1). Then, if the
oriented p-simplex of K is {F; ... P, the oriented p-simplex
of K" is £98Q;, ... @5,

We can describe this process of orienting (@,... @,) as
follows. We suppose the vertices are arranged so that



I, 12-5] POLYHEDRAL COMPLEXES 43
E=9=+1. (@...Q,) and (F... ) lie in a p-space of the
Euclidean space &,. We may suppose this space to be given by

Zpi1=0,...,2, = 0.

If P, has coordinates (z%,...,2%) and @, has coordinates
(y%,...,y¥), condition (ii) is equivalent to saying that the
determinants

!w{ ale 1|a 11/1" ey o1
| alr l! ‘1/ oyl

have the same sign.

A p-simplex of K’ may, on the other hand, lie on a simplex
of K of dimension greater than p. In this case, no restriction
on the orientations of the p-simplex of K’ isimposed at present.

We shall adhere to this convention for orienting the sim-
plexes of a regular sub-division. Its main advantage is that it
simplifies the statement of some theorems.

12-5. We can now carry through the investigations made
in §§12-2, 12-3, for the complex K’'. By purely algebraic
reasoning certain relations between the properties of K and
the properties of K’ can be obtained. The two following are of
importance in the sequel:

(i) If the incidence relation

a; B}y b 1,
holds in K, and in it we replace K}, by the chain-sum (with
cocfficients + 1) of the (p+ 1)-simplexes of K’ which lie on
E .., and if we similarly replace £ by the chain-sum of the

p .
p-simplexes of K’ on Ej, the incidence relation holds in K'.

(ii) The pth Betti number of K’ is equal to the pth Betti
number of K, and the pth torsion coefficients of K’ are equal
to the pth torsion coefficients of K. Thus the pth Betti group
and torsion group of K’ are isomorphic with the pth Betti
group and torsion group of K.
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13-1. Complexes of class v. The algebraic theory of
complexes described in the preceding paragraphs does not
depend in any essential respect on the fact that a p-simplex is
a rectilinear simplex lying in a Euclidean space of p dimen-
sions. Indeed, we could equally well apply it to any set of
objects in (1-1) correspondence with the simplexes of a com-
plex. In this paragraph we consider a generalisation which is
required in order to apply the theory to manifolds.

Consider arectilinear p-simplex (&, ... B,), and let (u,, ..., u,)
be a set of coordinates (e.g. cartesian coordinates) in the
p-space in which it lies, valid in a region containing the
simplex. Let fi(u,, ...,u,) (i=1,...,N) be functions of
(%y, ..., u,) of class v in a region containing the simplex. Then,
in the Euclidean space (z,, ..., Zy), consider the locus defined
by the equations

2 = filug, .. %) (¢=1,...,N),
for all values of the parameters (x,, ..., %,) in the simplex. We
call this locus a p-simplex of class v. The simplex is said to be
non-singular if

(i) the correspondence between its points and the points
of (Py... P,) is (1-1) without exception; and
o;
ou;

]

(ii) when »> 0, the Jacobian matrix ( ) is of rank p at all

points of (Fy... B,).

Otherwise the simplex is said to be singular.

A complex of class v is a finite set of simplexes of class v,
such that the simplexes on the boundary of any simplex of the
set belongs to the set. The complex is non-singular if its sim-
plexes are all non-singular, and if no two simplexes have a
point in common. It is clear that the notions of orientation,
chains, and so on, can be carried over directly to complexes of
class v, and the results of §§ 12-2-12-5 can be applied.

13-2. When the class v of a simplex is greater than zero, it
is often convenient to define its orientation by means of para-
meters used to represent it. An oriented simplex E,, of class
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v, is defined as the image of an oriented rectilinear simplex, say,
F,...P,. Let (u,, ...,u,) be cartesian coordinates in the linear
space containing F;... P, and let the coordinates of P, be
(u¥, ..., uk). If the determinant

0 0
1wy ...

1w . W)

is positive, we say that (u,,...,u,) are parameters in K, con-
cordant with the orientation of K,. If the determinant is
negative, the parameters (u,, ..., u,) are concordant with the
orientation of — &, and (—wu,,u,,...,u,) are parameters
concordant with the orientation of &,.

Now consider any other set of parameters in E,, given by

;&i,-=17,,;(u1,...,up) (7:= 1,...,p),

where the functions %, ..., %, do not take the same set of
values at two different points of (£ ... £},)), and the Jacobian
o

_t

Ou;
tha’t the parameters (u,,...,%,) are concordant with the
orientation of ), if either (i) the parameters (u,...,u,) are
concordant with the orientation of E, and the Jacobian is
positive, or (i) the parameters (u,, ..., %,) are not concordant
with the orientation and the Jacobian is negative. It is easily
verified that this method of orienting the simplex by means of
a set of concordant parameters is completely equivalent to the
method of orienting it by an arrangement of the vertices.
While the latter method is more convenient for the purely
combinatorial theory of complexes, the use of parameters has
certain advantages in the applications with which we shall deal

in later chapters.

is different from zero at all points of the simplex. We say

13-3. We now consider a non-singular complex K of class v.
A complex K of class 7 is said to lie on K if the point-set
formed by the points of its simplexes is contained in the point-
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set formed by the points of the simplexes of K. A chain C,, is
said to lie on K if it is a chain of a complex lying on K. The
fundamental theorem concerning chains and complexes which
lie on a given complex K, of class v, is known as the Deformation
Theorem. This theorem can be stated as follows. If ), is any
chain of a complex K’ of class v’ lying on K, there exists a
complex K", obtained from K’ by repeated regular sub-
division, and a complex K on K, having K" as a sub-complex,
with the propertiest:

(i) The class of K is equal to the smaller of v,v';

(i) if Cp,—>Chy (in K')
and if €}, €} _, are the chains of K" obtained from (7, C,_,
by the sub-division, there exist chains D,,,,, D, of K, such that

D,,,—~>Cp—C,+D,  (inK),

2
and D,~C, —Cp_y  (in K),
where C,, C,,_, are chains of K, and
C,—~>Cpy (in K);

(iii) if ¢,_, = 0, then D, = 0, C,_; = 0;

(iv) if C),_, is a eycle of K, then D), = 0and C,_, = (7,_;.
C;, is said to be deformed into C, over D,,, and C;,_, deformed
into C,_, over D,,.

A cycle is thus deformed into a cycle, and a bounding cycle
into a bounding cycle. It should be noted, however, that the
process of deformation is not uniquely defined. Suppose that
(’, is a cycle, and that by two different deformations, over

p
D,,, and d,,,, we arrive at cycles C, and c, of K. Then

»
Dp+1 —lpp1 > Cp— Op
in some complex on K. Apply the deformation theorem to
D,.,—d,,. By (iv), we deduce that
Cp~cy (in K).
t The standard proofs of this theorem only deal with the case » =v" =0.

The refinement of the theorem stated in (i) is easily proved. It is of importance
in applications.
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We can now extend the notion of homologous cycles, pre-
viously defined only for cycles of the complex K, to any pair of
p-cycles lying on K. Two cycles I, I", on K are said to be
homologous if I',— I';,, or a sub-division of it, bounds a chain
on K. If we deform I', and I}, over D,,,, and D, ,, into cycles
4, and 4, of K, we have, from the deformation theorem,

Ay~ Ty~ I~ A

»?
and hence, using the deformation theorem,
a4,~4,
in K. Conversely, if a4,~4, (in K),
Iy~A4,~4,~1,

We extend, similarly, the notion of homology with division,

13-4. The deductions which can be made from the deforma-
tion theorem enable us to obtain certain invariants of the
space whose points are the points of the simplexes of a complex
K of class v. If two p-cycles I', and I, on K, both of class
v, <, are homologous, I', — I';, is the boundary of a chain of
class v, on K. We denote the set of cycles of class », homologous
to 1, by {I',},, or {I',},, where ", is any cycle of class v,
homologous to /7,. The sets of homologous p-cycles of class v,
form an additive group, the law of composition being given by

{Pp}v. +{F;2}ul = {Fp +F1’J}v,'

The deformation theorem tells us that in any set of homo-
logous cycles there are cycles belonging to the complex K, and
that two cycles of K belong to the same set {I',},, of homologous
cycles if and only if they are homologous in K. It follows that
the group which we have defined is isomorphic with the direct
sum of the pth Betti group and the pth torsion group of K.
The Betti number R, and the torsion coefficients d,, ~--:do,,,
are therefore characters of the space.

The group formed by the sets {I,},, of homologous cycles is,
therefore, independent of v,. But it is important, in view of the
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applications which we shall later make to the theory of in-
tegrals, to observe that we can confine our attention to chains
and cycles of a given class v,. We call the group formed by the
sets {I,} the pth homology group of the space whose points are
the points of the simplexes of K.

Certain immediate corollaries may be mentioned. If K, is
any non-singular complex of class v; lying on K, such that K
is a complex lying on K,, we could determine the homology
groups of our space either by K or by K,. Consequently the
Betti numbers and the torsion coefficients of K, are equal to
those of K. Again, if we have two spaces S; and S, which can
each be covered by a non-singular complex and which are in
(1-1) correspondence of class «>0, they have isomorphic
homology groups. Two spaces in (1-1) correspondence of class
v are said to be homeomorphic (of class v), and our conclusion
is that the homology groups of homeomorphic spaces are the
same. Characters of a space which are invariant under homeo-
morphism are called topological invariants of the space.

13-5. We must now consider some special complexes which
we shall need in what follows. If /1, is any sphere of n dimen-
sions, we can easily construct a non-singular complex K lying
on f,, with the property that every point of H, lies on K.
We find that the following properties hold:

(i) every g-simplex (g<n) of K lies on the boundary of
an n-simplex of K;

(i) if the n-simplexes of K are suitably oriented, their
chain-sum (with coefficients + 1) is a cycle;

(iii) the Betti numbers of K are given by
Ry=R,=1; B,=0 (0<p<n);
(iv) there are no zero divisors, of any dimension.

These properties do not characterise a sphere, but in our
topological investigations we do not require any other pro-
perties of a sphere, and we may therefore use the term “‘sphere
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to denote any complex with the properties (i), (ii), (iii) and (iv).
If the complex is of class v, the sphere is said to be of class v.

Next, let us consider a complex K consisting of an n-simplex
and the simplexes on its boundary. Let L denote the complex
formed by the simplexes of K of dimension less than ». Now
make any sub-division K' of K. The complex L is replaced
by a complex L', which can be defined as follows. Let I",,_; be
the boundary of the chain-sum of the n-simplexes of K', and
let I',_, be the chain obtained from I',_, by reducing the
coefficients modulo 2. The complex L’ consists of the simplexes
whichhave unit coefficients in I, _;, and the simplexes on their
boundaries. The following results hold:

(i) every g-simplex (g <n) of K’ lies on the boundary of
an n-simplex;
(ii) the n-simplexes of K can be so oriented that their

chain-sum is a chain I", whose boundary is I",_;;

(iii) L’ is a sphere I1,_;;
(iv) K’ has the Betti numbers

By=1; R,=0 (O<p<n);
(v) there are no zero divisors, of any dimensions.

If K' is any complex, and L’ the sub-complex of K’ defined
as above, we say that K'— L' is an n-cell if the properties
(i), ..., (v) are satisfied. The chain I, is then called an oriented
n-cell. A simplex is thus a cell.

The importance of the concept of a cell lies in the following
fact. Let A be any non-singular complex, and suppose the
simplexes of K are grouped together in such a way that each
group forms a cell, and the set of cells has the properties that
(i) no two cells have a point in common; (ii) the boundary of any
cell is made up of cells of the set. The set of cells then forms a
cornplex K, of cells, and the analysis of §12-2 can be applied
to K,. If we now consider any cycle I, on K, we can deform it
into a cycle of K, and if we then consider the part of this cycle
which lies on a cell of K, it can be shown that we can deform

HHI 4
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I, into a cycle of K,. Thus we can apply all the results which
we have already obtained to complexes of cells. This is of
importance in our investigations of the topology of manifolds.

14. Manifolds. The object of this summary is to find the
topological characters of a Riemannian manifold which will be
used in later chapters, and the purpose of §§ 12 and 13 has been
to provide the means of doing this. The connection between
the ideas discussed in these paragraphs and a Riemannian
manifold is provided by the theorem usually called the
Covering Theorem. This theorem states that, given any mani-
fold of class u, there exists a complex K of class v, for any
given v (0 <v<u), with the property that every point of M
lies on one and only one simplex of K, and every simplex of
K lies on M. This important theorem was first proved, for
algebraic manifolds only, by van der Waerden(11]l. Later, his
proof was extended to cover the case of analytic varieties by
Lefschetz and Whitehead (6], and an alternative proof, valid
for analytic varieties, was given by Brown and Koopman[2].
The proof of the theorem for manifolds of class » is given by
Cairns(3]. The reader is also referred to a recent paper by
Whitehead on the covering theorem (12). The complex K is not,
of course, unique, but the results stated in § 13-4 show that
any covering complex K will serve to determine the homology
groups of M.

It should be pointed out that the topological properties of
a manifold are introduced on account of their importance in
the theory of multiple integrals on the manifold. The field
over which a p-fold integral is to be evaluated is, indeed, a
p-chain. The definition which we shall give of the value of an
integral over a chain will be valid if the chain is of class one,
but in order to perform certain operations it is convenient to
confine our attention to chains of class fwo at least. Of special
importance is the problem of finding the relation between the
values of an integral over two homologous cycles, and in this
connection we make use of the result, pointed out above, that
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if I, and I', are two cycles of class v which are homologous,
I', — I', is the boundary of a chain of class v.

The situation is as follows. On a manifold of class %, the
operations which we have to perform on chains of class v (v < u)
can all be described in terms of chains of class v, and, if v> 2,
they are therefore permissible in our investigations on in-
tegrals. The topological characters of the manifold do not,
however, depend on the class number », and consequently it
will not be necessary, in the remainder of this summary, to
specify the classes of the simplexes with which we deal.

A complex K which covers a Riemannian manifold M has
certain properties not possessed by general complexes, and we
now go on to describe those special properties which will be
used in later chapters. We shall first see that the n-simplexes
can be so oriented that their chain sum is a cycle I',, and that
any n-cycle on K is equal to AI',, where A is an integer. We
shall then introduce a dual complex, and show that an im-
portant duality relation holds for K. ¥rom this we shall go on
to define the intersection of two cycles on a manifold, and
obtain some new topological invariants of the manifold.
Finally, we introduce the notion of the product of two mani-
folds, and state, without proof, certain formulae which will be
of frequent use in the theory of integrals.

15. Orientation. We observe that, if K is any complex
covering a Riemannian manifold M, every p-simplex (p <n)
of K lies on the boundary of an n-simplex, and that every
(n—1)-simplex of K lies on the boundary of two n-simplexes.
By replacing K by a complex obtained by repeated regular
sub-division, if necessary, we may suppose that each n-simplex
of K lies in the domain of at least one set of local coordinates
on M, that is, in a neighbourhood of M. Now M is orientable,
and we can therefore find coordinate systems

(2, ..., 21) (t=1,...,a,),
each belonging to the class of coordinate systems which

orient M, such that E? lies in the neighbourhood in which
4-2
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(i, ...,2%) is a local coordinate system. We saw in § 13-2 how
we could orient a simplex by means of a set of parameters; we
therefore orient E? by the parametric system (i, ...,2%). We
shall always assume that the n-simplexesare oriented according
to this rule.

Suppose that E¢_, lies on the boundary of EJ, and EX. Then

@i =0 (r %j:k)’
and a simple theorem in calculus shows that

M+ @E = 0.
an
Hence I, =3 E,~0.
i=1

Now suppose that '), = a; B}

is any other n-cycle of K. Then I"), —a, I, is a cycle in which at
least one of the n-simplexes of K does not appear. It can be
shown that if this cycle is not zero the manifold M is not con-
nected (§2-1). But a Riemannian manifold is connected. Hence

ry=ar,,
and the nth Betti number of K is equal to one.

16-1. Duality. Let K be any complex covering a Riemann-
ian manifold M. We can construct a complex K’ by regular
sub-division of K. To do this, we have to introduce a new
vertex (0-simplex) into each simplex of K. Let P}, denote the
vertex introduced in the simplex £},. By the sub-division, any
simplex E? is replaced by a chain of K', formed from simplexes
of K’ which lie on Ej. Now it can easily be seen that any
p-simplex of K’ on E, is of the form

9Py . Pry Py (p=11),

where EZ-i is on the boundary of Ei,...,Ej*-i is on the
boundary of Ejf. E is therefore replaced by a chain

SqPp... Py P,
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where the summation is over all the p-simplexes of K’ which
lie on E}, each having coefficient +1. By convention, the
orientation of the simplexes involved is fixed by the orientation
of Ei.

We now consider any (n—p)-simplex of K’ which can be

written in the form o )
EP PPy ... Py E=4=1),

where EJ is on the boundary of E;frn ..., B{*is on the boundary
of Eit!i. The orientation of this simplex is not fixed by our
convention, except when p = n. We now fix the orientation

as follows.
§P§°... Pirt Pz P"““ .Pf;‘

is an n-simplex of K’ whose orientation has been fixed. We
orient the (n — p)-simplex so that

&l =1.

It can be shown that the orientation of this (n — p)-simplex is
determined by the orientation of £/, and does not depend on
the particular p-simplex of K’ chosen on E,.
We now consider the (n— p)-chain of K':
E¥ = Z§P’ Pl”“ P,

~p

summed over all such (n — p)-simplexes of K’ whose first vertex
is Pj. The manifold M has the property that, whatever
covering complex K we choose, B}’ t is an (n— p)-cell. The
unoriented cell consists of simplexes of K’ which all have
P% as a vertex. I}, is the dual of the simplex £,

16-2. It is not difficult to show that the set of dual cells

E¥, (G=1,..,a, p=0,...,n) form a complex K* which

t It would be more correct to denote the dual cell by E_,,, but for typo-

graphical reasons we prefer 'n‘_,. The reader will later notice other slight
departures from the strictly logical notation made for similar reasons. As a
consequence, we shall occasionally have to introduce the summation sign % to

sum over equal indices placed in the same position.
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covers M. We call it the dual complex of K. The incidence
relations of K* are

i %i i
E1L}-p—>(n—p)7lj 11’7%—17—1,
where m-pM* = (— 1)p+1(p+1)"l':

7’ denoting the transpose of y.
The pth Betti number of K* is

% __ ok __ % __ %
Rp—ap pp pp+1

= %yp—p~ Pp—p+1~ Pu-p

=R

n—p?
and the pth torsion coefficients of K* are given by the in-
variant factors of (,,,m*, i.e. of (,_,m. Hence the pth torsion
coefficients of K* are equal to the (n—p— 1)th torsion cocffi-
cients of K.

We have already seen that a complex K* of cells which
covers M will serve to determine the homology groups of M
as well as a complex K of simplexes. Hence the pth Betti
number of M is equal to R, and to B} = R,_,, and the pth
torsion coefficients of M are equal to the invariant factors of
(p+1M; and to those of (, m* = (—1)*7(,_,m’. Hence,

(i) the pth and (n— p)th Betti numbers of M are equal;

(ii) the pthand (n — p— 1)th torsion coefficients of M are the
same.

These two results constitute the Duality Theorem of Poin-
caré. We can further prove that the torsion coefficients of
dimension 0, n— 1, n are all unity.

17-1. Intersections. The introduction of the dual com-
plex K* on a manifold M enables us to develop the idea of the
intersection of two cycles. We first consider the intersection of
a chain or cycle of K with a chain or cycle of K*, and then pass
on to use the results so obtained to define the intersection of
cycles on M.
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Let Ei be any p-simplex of the complex K, and E}’ a
g-cell of the dual complex K*. It can be seen that if p+¢g<n,
E} and E} have no point in common. We then write

E. E¥ =o0.
If p+q = n, the cells have no point in common unless ¢ = j,
in which case they meet in P;. We write

B, EF =0 (i#)),
and i E¥ = Pj,.
If p+g>n, E} and E} either have no point in common or
meet in a number of simplexes of the form

+ P Pheoy PP
of K'. The orientation of such a (p+g—n)-simplex has not
been fixed as yet by our conventions. We now fix. it as
follows. There exist simplexes

Pk . Pcas pi_ Phoes | pi

n—q—1 n—q-1-
and gP_ Phraty . Py P ... Pt
ot n—q* n—g+lcFptf o+l

of K’ lying on E} and K}, respectively, and an n-simplex
k Kn-q.-1 i Fon—y 1 kp-y Ptk k
CPy ... Py P Py PP PPt Pyt

of K’, whose orientations have all been fixed by our conven-
tions. If we orient the (p + g —n)-simplex by writing it as

7) Ken—q+ fep — T
gncl)w—ql)nn—; 1‘1 P;np—lleu

it can be shown that this orientation depends only on the
orientation of Ef, E¥. We now write

0 *j N Jj Fen— kp—1 DI
B\ E¥ = Sgpg Pi_, Pty .. Pl PE,

summed over the simplexes common to E:, E}. It can be
shown that E..E} is a (p+q—n)-cell, or else zero.

The oriented cell E%.E} is defined as the intersection of
E} and E}. From the definition, it follows that

(—EL).E¥ = — B . EY = .. (- EY).
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Let C, = a; E},
and C* = b, E¥

be chains of K and K*, respectively. We define the intersection
C, . C¥ by the formula

C

V2

* " %]
CF = ab; B . EX.

This is a (p+¢—n)-chain of K’. By simple calculations we

can show that if
C,—~>C,y, C’*—>Cq 1s

then C,.Cx->C,.Ck  +(-1)r4C,_,.Cq.

In particular, if C, and C7 are cycles, C,, . (7 is a cycle. More-
over, if

C,~0,
say Cp1—>AC,
and C¥—0,
then Cpys- O3 > (=1 AC,. CF,
that is C,.Ci~0.

A gimilar result holds when
C,~0, C;~0.
It follows that if C,~ (), (inK),
and Cr~ Oy  (in K¥),
then C,.Ci~C,.C¥ (in K').

17-2. We are now in a position to define the intersection of
any two cycles I', and I, on the manifold M. Practically
nothing can be said a,bout the set of points common to two
cycles I'), and I'), but in any case we are not concerned with this
set of points. We can, however, define an invariant of the sets
{I'y} and {I'} of cycles homologous to I', and I';, having
most of the properties which we commonly associate with
intersections.
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In {I',} there exists a cycle C, of K, and in {I'}} there exists
a cycle CF of K*. The cycle C, is determined to within a
bounding cycle of K, and C} is determined to within a bounding
cycle of K*. The cycle C,.Cy of K’ is therefore determined
by {I',} and {I';} to within a bounding cycle of K’. Thus {I',}
and {I';} determine, by means of the complexes K and K*, a
set of homologous cycles {C,.C7}, of dimension p+gq—n.
A theorem analogous to the deformation theorem can then be
proved to show that the set of cycles {C, . C7} is independent
of K and K*. Any cycle of this set is then defined to be the
intersection of /', and I', and is denoted by I, . [',.

It should be observed that this definition of intersection
coincides with our intuitive notion of an intersection in
several important cases. If I', and I', are written as chain-
sums of simplexes

— )

pp - a’iep

P — i
and r, =b;f,,

and if the simplexes e, f7 either have no points in common, or
meet in an (p+q—mn)-cell, which we denote by e} .fi (with
a suitable orientation), then the chain

iofi
ab; e, . fi

is a cycle of the set {I', . I';}. Of particular importance in later
chapters is the case in which M is the Riemannian of an
algebraic variety V,, of m complex dimensions. The dimension
of M is 2m. An algebraic variety of dimension 7 on V,, defines
a 2r-cycle I';, on M. Let A and B be two algebraic varieties
on ¥, of dimensions a and b, determining cycles I, I'y, on M,
and suppose that the geometrical intersection of 4 and B is
a variety of dimension a +b—m (counted with proper multi-
plicity). This intersection defines a cycle I'y,,;_» on M. We
can show that

I 12a A ‘2b ~t T 2Aa+b—m)*



58 RIEMANNTAN MANIFOLDS [1,17-3

17-3. The intersections of cycles on M have the following
properties:

(1) (@l +bIy).Iy~al', . T, +bI, . I';
(ii) Ir,.(al,+bl)~al, . I')+bl,.I';
(iii) if r,~o, or I',~0,

then r,.r,~o;
(iv) r,.ry~(=1)e»a-ar I,

We can extend the notion of the intersection of two cycles,
and define the intersection of three or more cycles. Let
I, I',, I, be three cycles on M. We define the triple inter-
section to be

r,.r,.r.~a{@,.nr).r,.
It can then be shown that
r,r,r.~r,{€,.r,).

17-4. When we consider the intersection of two cycles I,

and I',, where p+gq =n, we obtain certain numerical in-

variants of the cycles. We first return to the considerations
of §17-1, and consider chains of K of dimension p and chains
of K* of dimension n—p.

If C, = a; B

is a p-chain of K, and

1%k _ hE T
(’n—p - bi bn—p

is an (n — p)-chain of K*, then
Y & i
(/;, . (Jz_p = .Llaibi P;,.
iz

We now define the intersection number (or Kronecker index) of
C, and C}_ ), to be

(Cp . Cz—p) = 'S’:,la/ibi.
1=

We observe that (EL.B¥ ) = 6},
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that is, in matrix notation,

H (El E:j—n | = Ia,'
We consider the change of base for the chains of K of dimension

(p+l)s y (p_l)’ .
Chin=o K Fm—v

Ci = piK,
027—1 = Y;Ep v

used to obtain the canonical forms (8) for the incidence
relations for the chains of K. We now make the changes of
base, _

Crlpin =77 PER s

X, =prER,

C:_ —ath;l:__p —1»
for the chains of K*, where

a*a’ = Iaph’ p*p, = Ia,-’ Y*Y' = Iapﬂ'

We obtain the incidence relations (in which we do not use the
summation convention),

(G p>(—D7e¢ ('*f”,,““ (t=1,..0,pp);

p—-1

O3>0 (G=pp+ 12, 4);
Crt,—>(—1p1d,Cx, | (1,=l,...,pp+1),
Crt,—>0 (C=Ppsat 1y Ppr1tPp)
Crt,—~>0 (i=pp+1+p,,+l,...,ap).
Ao, (Ch.C3 )] - B (BS. BYL,) |8
_pL,p
=1,.
Now Il = Cppivtertt (i=1,...,R))

form a set of R, p-cycles of K, no linear combination of which
is homologous to zero, and

®i . (*Ppritppti ) —
ry = gtrnter (t=1,...,R,_,)
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form a set of R,_, (n —p)-cycles of K*, no linear combination
of which is homologous to zcro. The results just found show that
(i) (I TR || = g,
(i) if [,~0, ([, .T%,)=0 (=1,.,R8,);
(i) if I ,~0, (FL.T%_,)=0 (i=1,..,R,);
(iv) if I,~0, I'*_,~0, then (I,.T*_,)=0

17-5. We can now define the intersection number (I, . I',,_,)
of two cycles I', and I',,_,, on M. If we deform I, into a cycle
Cp of K, we ha.ve

Ppin
= .El a;Ch+ Z b, I,
.

The method of obtaining ¢, from I}, is not unique, but all
cycles of K obtained by deforma.tlon flom I',, are homologous
in K. Hence the numbers b, ..., by, are umquely determined,

and we have
Iy

I'y~ ¥ b,
i=1

In the same way, if the cycle I',_, is deformed into the cycle

" n—p
Cx_, of K*,
13k ”H‘ip O*i ’ %t
CL—-I)= 24 ’n p+ Zbrn ”
i=PllH+]

where b3, ..., b5, _, arc uniquely determined, and

r,_ ,~ }_‘ b rx

n—p-*
We define the intersection number (I, . I',_,,) by the equation
Rp
(F ‘I‘H—p) (Cp . Cr—p) = z:lbtb{

As it is proved that the definition of the intersection of two
cycles is independent of the covering complexes K and K*,
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80 it can also be proved that the intersection number does not
depend on K or K*. Moreover,

(I . I p) = (=1)P=(L, . T).

17-6. The cycles I'; (i=1,...,R,) have the property that
any p-cycle on M is related to them by a homology with

division, of the form
' i
I'y~a;I',

where the coefficients a; are integers. Any set of R, p-cycles of
M with this property form a fundamental base for the p-cycles
of M. Tt is easily verified that the cycles 4, (i=1, ..., R,) form
a fundamental base if and only if

A, ~ail’

] n’
where (a}) is a unimodular matrix of integers.
A set of eycles I')} (i =1, ..., R,) is said to form a base for the
p-cycles of M if ' o
I'y~ajl,
where () is a non-singular matrix of integers (not necessarily
unimodular). If I, is any p-cycle of M,

r, NaLF,’,
Since | ok | 15 ~ 5T,
where Biod. = | o | 8%,
we have Ia}:lrpwa’iﬂjlvg’

a relation which we can write in the form
I'y~b; I

where the coefficients b; are rational numbers. When we are
concerned only with homology with division, we may introduce
the idea of rational multiples of a cycle, and if 4,, is any cycle
in this generalised sense, there exists an integer A such that
A4, is a cycle according to our original definition.
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The cycles I'x* , form a fundamental base for the (n—p)-
cycles of M, and a set of cycles 4;_, (i=1,...,R,_,) forms a
base for the (n — p)-cycles if and only if

A~y L,

where (y}) is a non-singular matrix of integers. The base is
fundamental when (y}) is unimodular.

Now (A;t) . Afn-—p) = a;'t(lel)l . Pﬂp)ﬁ’
that is (4}, 4,_,)| = alg, ¥’
= ay’.

This is a non-singular matrix. It follows easily that if A%
(¢t=1,...,R,) is any base for the p-cycles of M, the (n—p)-
cycles 4% _, (i=1,...,R,_,) form a base for the (n —p)-cycles
of M if and only if

is a non-singular matrix.
If 45 (i=1, ..., R,) is a base for the p-cycles on M, and I', is
any p-cycle of M, _
Al ~ a; 43,

where A,a,, ...,ap are integers. Let 43_, (i=1,...,R,_,) be
a base for the (» — p)-cycles of M. Then

M, Ai) = ay(, 45_)  (i=1,.., By_yp):

Since the matrix || (45, . 43_,,) || is non-singular, these equations
are sufficient to determine the ratiosof A:@,:...:ap when the
intersection numbers (I, . 4% _,) are given, and it follows that
the necessary and sufficient condition that I', ~ 0 is that

([, A ) =0  (i=1,..,R,,),

where 4;_,, (i=1,...,R,_,) is a base for the (n— p)-cycles.
We shall often find it convenient to choose bases 4%,
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(¢#=1,...,B,; p=0,...,n) once and for all for the cycles of M.
We then get a set of intersection matrices

a,=[[(45. 45 )| (p=0,...,n),

where a, = (-1lp-ra,

17-7. In the investigations on the properties of algebraic
varieties which we shall make in Chapter 1v, we shall find the
case in which the dimension » of the manifold M is even, say
n = 2m, of particular importance. In this case, when we
consider a base 4%, (i=1, ..., R, for the m-cycles, the inter-
section matrix .

m = ” (A;n . Azn) H
satisfies the equation
am = ("' l)m am

If we make a change of base, given by
Zm ~ P1

the intersection matrix is transformed into
a, =pa,p’.

There are two cases to consider. Case (a): m odd. Then a,, is
skew. But it is non-singular. Therefore R,, must be even.
We can easily show that a fundamental base can be chosen so
that
a, = 0 Lg.)-
(1, 0

Case (b): m even. Then a,, is symmetrical. In this case we can
choose p so that @,, is a diagonal matrix. The matrix p is not
uniquely defined by this property. But it is a well-known
theorem in algebra that, whatever p is chosen to reduce a,,
to diagonal form, the number of elements on the diagonal of
the reduced forms which are positive is always the same. This
number is called the signature of a,,. It is a topological in-
variant of the manifold.
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18-1. Product manifolds. Let S, and S, be two sets of
elements. From these we can define a new set, whose elements
are obtained by associating any element of S; with any element
of S,. We denote this new set by S, x S, and call it the product
of S; by S,.

Let x; = fi(uy, ..., %,) (¢=1,...,,N)
be any p-simplex of class v; in the space (zy, ..., Zy), and let
T = ¢4(vy, -, V) (¢=1,...,N")

be a g-simplex in the space (1, ..., 2}y), of class v,. The product
of the two sets of points can be represented in the space
(y, .-+ Xy X1, ..., Zy-) by means of the equations

x’i=f'i(u15“"up) (li:lr--',N)7
x; = gvy,...,0,) (i=1,...,N’).

It can be shown that this product is a (p + ¢)-cell, whose class
is the smaller of v, and v,. The cells on the boundary of this
(p +q)-cell are either the products of the p-simplex by the
simplexes on the boundary of the g-simplex, or the products
of the simplexcs on the boundary of the p-simplex by the
q-simplex, or else the products of simplexes on the boundary

of each.
If we orient the p-simplex and the g-simplex, and denote the

oriented simplexes by E,, E;, we have incidence relations
T
E 1] - 771: “p-1s
4 ’y
E,—~ B

Using a suitable convention to orient the product of the sim-
plexes, it can be shown that

E,x Ey—>n, B x Bp+ (=12 G E, x By ;.
18:2. Let M, be a manifold of », dimensions, covered by a

complex K, which lies in the space (z,, ..., zy,), and let M, be
a manifold of n, dimensions, covered by a complex K,, which
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lies in the space (¥, ...,Yy,). The product M, x M, is & mani-
fold of (m,+n,) dimensions, which can be represented as a
locus in (zy, ..., Zy,; Y1, ---»Yn,)- 1t is covered by the complex
K, x K,, whose cells are the products of simplexes of K, by
simplexes of K, The incidence relations for the complex
K, x K, can be determined from the incidence relations of
K, and K,.
If C, is a p-chain of M,
Op = ai E;:”
and if D, is a g-chain of M,,
D,=b,F}

q’
we define the product chain ¢, x D, to be
C,x D, =ab;E},x Fj.

By algebraic calculation we can show that if C, and D, are
cycles, so is C, x D, and that, if I'} (i=1,..., R,) is a base for
the p-cycles of My, and A} (i=1, ..., 8,) is a base for the g-cycles
of M,, the cycles

ixAi_, (@=1,..,R,;j=1,...,8 ,;p=0,...,7)
form a base for the r-cycles of M; x M,. The rth Betti number
of M, x M, is therefore
r
) Rp Sr

pn=10

—p*

The intersection theory on M, x M, follows from the formula
Bl x Fi . Effx F¥ = (—1)—pXna-9) BL E¥ex Fi F¥,
From this we obtain the equation

Tyx A, Tyx Ay (= 2% T, T Ay A

18:3. The case which will be of most frequent use in applica-
tions is that in which M, and M, are manifolds of » dimensions
of class u, which are in (1-1) correspondence of class . We then
suppose that, in the correspondence, K, corresponds to K,.

HHI 5
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Without loss of generality, we may suppose that M; and M,
lie in spaces (,,...,%y) and (¥, ...,yy) of N dimensions and
that the correspondence is given by the equations z; = y;
(i=1,...,N).

The product manifold M, x M, is then represented as a locus
of 2n dimensions in (2, ..., Zy; Yy, ..., Yy). On it there is a set
of points defined by the equations

xi—_—yi (i=l,...,N),

which is the image of class u of M, or M,. It is therefore a cycle,
which we call the diagonal cycle on M; x M,, and which we
denote by I'. Further, in this set of points there is a cycle v,
which is the image of a cycle I, of M;. It is important to find
homologies for I" and vy, on M, x M,, which express them in
terms of a base for the cycles of M; x M,. The following formulae
can be proved.

Let I'} (i=1,...,R)) be a basc for the p-cycles of M
(p=0,...,m), and let 4 be the cycle of M which corresponds
to I'f in the homeomorphism which connects M, and M,. We
denote the intersection matrix ||(I;.I;_,)|l by a,, and the
matrix whose element in the ¢th row and jth column is
(1 L. I3, p_g) by ay(I,). Then, on M; x M,,

n . .
I's Y iy x4, _,, (9)
p=0
and Vp A %‘,/\?j([;;) sz+q—n x A;.I—Q’ (10)
where €, = (a,)7, (11)

and AYL,)) = (= 1n-an-part a (I).a51, . (12)
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Chapter 11
INTEGRALS AND THEIR PERIODS

In this chapter we study those properties of multiple in-
tegrals on a manifold which lead up to the introduction of
harmonic integrals. Our starting-point is the classical defini-
tion of a p-fold integral, -

f Adut...du?,
2

of a continuous function 4 = 4(u,, ..., u,) of p variables,
defined over a domain & of the number space (u,,...,uy),
as given, for instance, by Goursatii]. Goursat’s definition does
not take explicit account of the orientation of a domain of
integration, although ideas of orientation are implicit in the
development of the theory, and our first task is therefore to
pass from Goursat’s definition to the notion of integration over
an oriented p-cell.

19-1. Multiple integrals. We begin with the case in
which the domain & of Goursat's definition is a p-simplex in the
space (%y, ..., %,). When we regard this as an unoriented simplex
we denote it by &, and when we have assigned an orientation
we denote the oriented simplex by K,. Goursat provides a
definition of

Adul...du?.
Sp
The orientation of the simplex selects one of the two classes of
like parametric systems which are valid in &, and the definition
of the integral over K, depends on whether (u,....,u,) is a
parametric system concordant with the orientation of K,
or not. If (uy,...,u,) is concordant with the orientation, we
make the definition

Adul...du? =| Adu'...duP,

Ep &
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and, if it is not, our definition is

Adul...du? =—| Adul...duP.
Ep &p

Thus Adul...du? =—| Adul...duP.
—Ep o

We now make a transformation of class v > 1 which is (1-1)
without exception, transforming &, into a simplex &, of the
number space (%, ..., %,), given by the equations

:ﬁi = ai(uli ...,u,,) (;‘= 1’ ceey P),

u; = Uy, ...y W,,) (i=1,...,p),
where J = Ouy ‘
a"’f‘

is different from zero at all points of & » The oriented simplex
E, on &, defines uniquely an oriented simplex E on (“’ We
consider the case in which (u,, ..., u,) is concorda.nt w1t,h the
orientation of E,. By the theorem proved by Goursat,

Adut...du? =f" A|J | dut...duP,
&p &p

where | J | denotes the absolute value of ./, and

Ay, ...y Up) = AUy, .0y 0y).

Hence f Adut...du? = 7][ A|J|dut...duP,

Ep JEp
where 9 = +1, or — 1, according as (u,, ..., ,) is concordant
with the orlenta.tlon of E 1 OT not. But (4,, ..., %,)is concordant
with the orientation of E,, or not, according as J is positive
or negative, and hence we must have

Adut...du =| AJdut...duw?

Ep Ep

in both cases. Similar reasoning holds good when (u,, ..., %))
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is not concordant with the orientation of E,, and we have, in
all cases,

fAdu‘...dup=f AJdat ... dav.
Ep E,

19-2. We now define a p-fold integral in a simplicial region
D of an n-dimensional space, or of an n-dimensional manifold.
Let (z,,...,%,) be a coordinate system valid in D, and let
A,,...;, be a continuous function of (zy,...,,) in D, for values

of the indices i,, ...,7, equal to 1,...,n. We say that a p-fold
integral in D is given by the expression

f A, dob...do

(where the summations are from 1 to n) in the coordinate
system (zy,...,%,). Let E, be an oriented p-simplex, of class
one at least, in D, given by the differentiable equations

xi:xi(ul,...,up) (i=17-'-:n)’

where (u,,...,u,) are parameters of K, concordant with its
orientation, giving E, as the image of an oriented p-simplex
E} in the p-space (u, ..., u,). The simplex £, need not be non-
singular. The value of the integral over E, is denoted by

f A, pdxt . dxt
1oy
EP

and is defined by the equation

j 4y, i dat . da = f Aél...ipm)- dul ... du?,
Ey E, o(uy, ..., up)
where Ai o, =A; {z1(w), ..., 2, (w)}.

The value of the integral over E, is independent of the
parametric system (u,,...,u,) chosen on E,. If (4,,...,u,) is
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any other allowable parametric system in E,, we have, by
§19-1,

oz, z;)
oo 0@, )
JAI-P_.,-, o u )du ... du?
£, Lo oeer Uy
g W) Oy, ) oy
) e g w,) o(u u
i, (g, +eny 2p) O(Uy, ..., Up)
_ (X s ..., X,
#, o(ty, ..., )
where A,y = Ay fe@), oz, @),

and E—';, is the p-simplex in (u,, ..., %,) corresponding to K,,.
The value of the integral over any p-simplex depends on
the coefficients 4; _ ;,, and on the Jacobians

(@i - Xy,)

0(uy, ...,_u,,) ’

It will be observed, however, that the value of the integral
does not depend on the individual coefficients, but depends
only on the combinations '+ 4, ;, of the coefficients having
the same suffixes written in different orders, the positive sign
being attached to the terms whose suffixes are even derange-
ments of a certain order, and the negative sign to the remaining
terms. There is therefore no loss of generality if we impose the
condition that the coefficients are skew-symmetric in the
suffixes, that is,

A -4

Breeela—1Tata 10 To—1T8T0 Freeslp T1eeela—1TbTat1+eTo—1Ta To41.00Tp°

AR

The coefficient of
0wy, ..., %)

in the integral in (uy,...,u,) which defines the value of our
integral over E, is therefore p!4; ,,and it is convenient,
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in order to avoid complications arising from numerical
coefficients, to write all multiple integrals in the form

LTI' A, dzh ... da, (1)

where the coefficients are skew-symmetric. This convention
will be adhered to throughout.

19-3. The definition of a p-fold integral in a simplicial
region D refers to a particular coordinate system (xy,...,%,,)
in D. Let (3, ...,x,) be any other coordinate system valid in
D, obtained from (z,, ...,z,) by a transformation of class one
at least. Let

L) (A, da L (2)

be a p-fold integral defined in D), relative to the coordinate
system (1, ..., z,). We seck necessary and sufficient conditions
that the value of this integral over every p-simplex £, of D
should be equal to the value of (1) over E,. The necessary and
sufficient condition is that

| @) i, ,,S ,
"t Oty .y y,) a(ul,. ,u )
for all substitutions
x; = xy(Uy, ..., w,), ¥ = xfr(u), ..., (w)} = xi(uy, ..., u,)
(t=1,...,m),

where Z,-l_,_,-p =4, {xl W)y oony 2, ()},

A:1 p A:]...i,.{xl yeeer & n(u)}’
In particular, if K, satisfies

x;, = constant (s=p+1,...,n),

we may take u, = j, (r=1,...,p).

We then have the conditions

p! A a(xil, ceey :I:i?_)

=A4. . —
Jreeudp T1eeelp a(x;l’ ..',xlp) ’
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which may be written in the form

A A4, . Oxy, O,
Jreedp 1peep 8:6; ax;”

since 4, ;, is skew-symmetric in the suffixes. This relation
must hold for all (53, ...,7,)-
Conversely, suppose this relation holds for all (jy, ..., Jp)-
Then, for all substitutions,
@y = Ty, o uy); G = 2Ty (), o, T (U)} = T, - W)
G=1,...,n),

in which the functions x;(%,, ..., ,) are differentiable, we have

’ ’ ’ ’
1g @) g 0 0,
p!7 P Oy, ey ) betp Quy T 0wy,

’ o
_ g Om, Omy0m, O,
Jreeodp ax;l s ax;" aul cee aup
_ g Omy, Om,
Jreedo Quy T Ouy,

and it follows that the integrals (1) and (2) have the same
values over every p-simplex K, in D.

The relation connecting the coefficients A; ;. 4j,..j, 18
one already discussed in connection with the theory of tensors.
We therefore conclude that in order to define a p-fold integral
in a simplicial domain D, of class one at least, we require an
absolute skew-symmetric covariant tensor field of rank p,
where the components are continuous functions in D. The
tensor field defines, in each coordinate system, a p-fold integral
in D, and the set of integrals so obtained, one in each coordinate
system, has the property that all integrals of the set have the
same values over any p-simplex E, of D. We say that the
integrals of the set are equivalent, and that the different
integrals of the set give the representations, in the different
coordinate systems, of the same integral in D.
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19-4. We can now define an integral in any region R of a
manifold M, where R need not be simplicial, and may be the
whole manifold. The region R can be covered by a finite
number of neighbourhoods of M, say, N,,...,N,. If P is any
point of R which lies in N, ..., N;, but not in the remaining
N;, there is a neighbourhood of P which lies in N, ..., N;,, E.
We denote such a neighbourhood by Nj,(P). An integral
defined in N;(j<s) defines an integral in Nj(P). Suppose,
now, that we have a series of integrals, one defined in each ;.
If the integrals in N;, ..., N; all define the same integral in
N, (P), for every point P of R, we say that the integrals in
N,, ..., N, define an integral in R. It is easily verificd that this
definition docs not depend on the set of neighbourhoods of
M chosen to cover E.

A skew-symmetric covariant tensor of rank p in a space of
n dimensions is always zero if p is greater than ». Hence, on
an n-dimensional manifold we have to consider integrals of
multiplicity p, where 1 <p <n. It is convenient to introduce,
in addition, integrals of multiplicity zero. An 0-fold integral
is defined by means of a single function on the manifold. An
0-simplex is simply a point, and we define the value of the

integral ff(x) over the 0-simplex P by the equality

[ o =1y

In our investigations of the properties of integrals on a
manifold, it is convenient to regard the functions which appear
as functions of the points of the manifold rather than of the
local coordinates, so that the same function is denoted by the
same symbol whatever coordinate system is used. A trans-
formation of a tensor field is then a transformation of one set
of functions of the points of a manifold into another set of
functions of the points of the manifold.

20-1. The theorem of Stokes. In order to define a
multiple integral on a manifold of class », we require an abso-



11, 20-2] THE THEOREM OF STOKES 75

lute skew-symmetric covariant tensor field, whose components
are continuous functions of the local parameters. In the
remainder of this chapter it will be necessary to assume that
the components of the tensor field possess a certain number
of continuous derivatives. We shall not always state the
class v of the components explicitly, but it is to be understood
that v (<u) is sufficiently high for our results to have a
meaning. If we say that an integral is regular in a region R,
we imply that the integral is defined at all points of R, and
that its coefficients are of class two at least at every point of E.

We have so far defined the value of an integral only for
oriented simplexes. It is easy to pass to the definition of the
value of a p-fold integral on a manifold over any p-chain of
the manifold. Let

1 . ]
J‘E" Ah---ip dxt ... dxt

be a p-fold integral on a manifold M, and let

0)’) = ai EL
be a p-chain on M, of class one at least. We define the value of

the integral over C, by the equality
. . 1 . .
f l'A,-_“.L- dat ... date = Zaif — A, o dxh .. datr.
L pl e : apl
Cp K

From the definition and properties of a multiple integral
given by Goursat, we obtain the property that the value of
a multiple integral taken over a p-chain is unaltered by sub-

division of the chain.

20-2. The theorem of Green has been proved by Goursat
for simple integrals in space of two dimensions, and for double
integrals in space of three dimensions. The same methods
enable us to prove it for (p—1)-fold integrals in a number
space of p dimensions; we obtain the result that

i‘, (=11 P dut ... dut—dut*! ... du?,
i=1
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evaluated over the exterior boundary of the domain 2, is
equal to
Z ’dul . duP.
gi=1 Uy
Take 2 to be a s1mp]ex & », and orient it so that the coordinate
system (uy, ..., u,) is concordant with the orientation. If we
denote the orlented cell by E, and its oriented boundary by
F(K,), the theorem can be wrltten

Y4
f > (= 1)-1P.dul ... dui—tduit! ... du?
F(kp) =1
= Z 1dul L du?.
By 1=10%;

Since F(-E,) = —F(E,),

this result is true whether the coordinate system is con-
cordant with the orientation of the cell or not.
Now consider a general simplex E, of our n-space, given by

Z; = XUy, .oy Upy) (¢=1,...,n),

where (u,, ..., u%,) is a pa,ra,metri(, system concordant with the
orientation, and (u,, ...,u,) vary in a simplex /), which we
suppose oriented by these parameters. Then consider the

integral 1 .
J‘(jl)——-—.—l-ﬁ Ail...l‘p—) dxh i da:'lp—l,

evaluated over the boundary F(E,) of E,,. It is equal to

J‘ 1 Z 0@y -5 ¥, )
A )(2 —-1)!,5 DUy, ey Ug_g, Uy, ey W)

xdul...dw tdui 't .. du?
1 ZJ
=.f (p— 1)1 Z (=D

a a(xl - ’xl -
woip—a v —2= . ]dul...dul’
a(ul,... ;i ,,u,“,...,up)
J‘ 1 n 9 oy, ) ... 5 %i,)

Lo, 2T T T g1 .
f(p—-l) = laxk ireeiip_ a(ul"”’up) dul...du?,
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since, by a familiar theorem,

2(—1)7—1 o i"h o)

0y Uy, - Uj_yy Ujiys +evs Up) ’
If we wrlte
P ey O
Bi,...i,, = k%—-‘l( —-1) ax_ikAi....ik_,iH,...i,’
f ‘I“Bt i Oy -, ) 1‘")dul .duP
E;p! v Oy, s Up)
1 - g" ._aA a(_w_})dul dup’

E, (p=1)1Z 02, = O(uy, ..., up)
and hence

f LB, ., dah...dai f LA, et e
Epp' F(F)(p 1)'

From the form of this result it is clear that it does not depend
on the particular simplex E, considered, or on the particular
rectilinear cell Ej, associated with it. Moreover, the result

extends at once to any chain, and we have
1

J\ "1)1'.B,il_”ipdx'i‘,..d(l,‘ip=J~ (p )Ah ’Lp ‘dxi‘..-dxi""‘.
Cpt” F(Cyp)

} 4
This theorem is the Theorem of Stokes, in its most general form;
it holds for 1<p<n. If we make a change of coordinate

system, writing

Z; =TTy, ..., Ty) (t=1,...,n),

the integral f lr)'Ah iy, A ... date—

. i Fip—1
becomes f(p— 1! A, .4, dz" .. dT,
d (-1 4,
an r§1( - ) éé@, welp—1Trdaes
» 0 ox; 0x;_, 0% ox; _
= z(—l)r_l“:— Faeed, ,l_—‘h"' __j'—' ":ﬁ"...'—#
—1 0% PLOF; 0T, _ 0%y, OF,

p 0 ox; Ox
| S o g
kél( 1) axjk Afl-.-u-x Jkt1ee-dp ax ax >

since the terms involving second derivatives ca.ncel.
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This verifies that the relation between the (p—1)-fold
integral and the p-fold integral is invariant under change of
coordinate system, a result which is obvious geometrically.

21. Calculus of forms. In order to express properties
of integrals, and relations between integrals, in a convenient
manner, it is desirable to develop a calculus of the expressions
which appear as the integrands of our integrals. Following
Cartan, we call an expression such as

LA dan . da

! T1eelp
a p-form, and denote it by A, or, if we wish to stress its multi-
plicity p, or the set of variables in which it is expressed, or
both, we denote it by A, or A(x), or A, (). Different forms are
denoted by different letters 4, B, ..., or by indices A3, ete.

If A= YA . dei. dai
D

) “Teedp

is any p-form, the (p+ 1)-form obtained from it by Stokes’
theorem is denoted by A4, and we call it the derived form, or
the exterior derivative, of A. Thus Stokes’ theorem is expressed

by the equation
f A= J 4,
F(Cpy1) Cp i1

We now develop a calculus of forms.

I. Two forms of the same multiplicity can be added.

It = L4, det ... da
b: ’
1 . .
and B=—B,; ,dx*..dx>,
p! 1eeelp
1 ) )
then A + B = —'“! [A‘ip--ip + B'l:.-..ip] dxh oo dxl’.

p
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II. We define the product 4, x B, of two forms

1 , .
Ap = 2‘)‘! Ai:---ip dxh eee dw”
and B = LB . dgi.. dui

q Treealy
ql

as follows:

(1) lfp+q>n, Aprq——-O;
(ii) if p+g<n, A, x B, is the (p +q)-form
1 ' ‘
(p+9q)! Ci....ipy 42" ... daire,
h C VoL iy kg 4 B
where iprg = gy g1 O Tpsg Direcip Dhiye.dige

From these definitions the following results come im-
mediately:

(i) dp+(B,+0(,) = (4,+ B,)+C, = 4,+ B, +(,.
(ii) 4,+ B, =B,+4,.
(iii) A, x(B,+C) = A,x B,+4,%xC,
(iv) 4, x(B;xC,) =(4,xB)xC,=A,x B,xC,.

(v) 4,x B, =(-1)»MB,xA,
(Vl) (Ap X Bq).c = (Ap)a: X Bq + ( - 1)1) Ap X (Bq).t'
(vii) (A.z:).z: =0.

The first five of these identities require no restrictions on the
coefficients of the forms, the sixth requires that the coefficients
be of class one, and the last requires the coefficients to be of
class two.

22-1. Periods. So far, we have only used certain local
properties of the manifold on which the integrals are given. We
now consider any absolute manifold M of class u, which is
orientable, i.e. a Riemannian manifold of class u. We do not
at present make any use of the Riemannian metric, but, as
we pointed out in § 3, we can always impose on a manifold of
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class u, which satisfies the other properties of a Riemannian
manifold, a Riemannian metric of a finite class v<u—1, so no
greater degree of generality is achieved by omitting the metric.

We now wish to consider properties of integrals in relation
to the manifold as a whole. We shall assume that the forms
which we consider are regular.

The theorem of Stokes expresses the integral of a p-form A
over a bounding-cycle I" as the integral of the derived form 4,
over a chain whose boundary is I". From it we deduce that if

the derived form is identically zero, the value of f A over any
bounding-cycle is zero. Now consider a fundamental base
T (=1,...,R,)

for the p-cycles of the manifold M. Let I', be any p-cycle of
" M, satisfying the homology
r,~AT%,
where the coefficients A; are integers. Then, for a suitable
integer A # 0, there exists a (p + 1)-chain Cp+1 such that
Cya—> AL, = AN T,

Hence, if A4,=0,
we have A=
ATy AT
that is, Z Al A
=1 I
Let us write f A = vt

Let 7y, , be any bounding-cycle of (p—1) dimensions of M.
The p-chain which it bounds is not uniquely defined, but if
C, and ('}, are two chains having 7, as boundary, we have

Cp—Cp—0,
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that is, C, — C,, is a cycle, given, say, by the homology
Cp—Cp~ N T,

Hence J A= A+N0.

It follows that the integral of a p-form whose exterior
derivative is identically zero defines a “functional” of the
bounding (p — 1)-cycles of M, unique save for a linear function

A 0

of certain constants w?, with integral coefficients A;. These
constants are periods of the integral on, or with respect to, the
cycles I';,. If I', is any p-cycle such that
1 va /\i Ir Ii),
then the period of the integral on the cycle I, is
A = Ai (l)i.
PP

The period is always zero on a bounding-cycle or a divisor of
zero.

22:2. Forms whose exterior derivatives are zero will be
called closed forms, and in place of

A, =0,
we shall usually write A—0.

A closed form of multiplicity zero is therefore a constant, and
any form of multiplicity » is closed. It is to be remembered
that it is only in connection with closed forms that we can
speak of periods.

A special case of a closed form suggests itself at once. Let
B be any regular (p— 1)-form and let

A = B,.
Then A—>0,

HHI 6
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For such forms, the periods of the integrals are all zero.
For, let us consider any p-chain C,. Then

f A= f B.
C, F(C’p)

Hence, if C, is a cycle, . A=0,
P

and so A=0 (t=1,...,R),).

r
Forms which are the exterior derivatives of other forms are
called null forms. If A is a null form, we write

A~0,

and if 4 and B are two forms of the same multiplicity which
differ by a null form, we write

A~B

and speak of them as homologous forms. Homologous closed
forms have the same periods and null forms have all their
periods zero. We shall see later that the converse of these
results holds, that is, that if two closed forms have the same
periods they are homologous, and that if a closed form has all
its periods zero it is null.

22:3. Let M’ be a manifold homeomorphic with M, and
denote any object on M’ by the same symbol as the corre-
sponding object on M, with, however, a “prime” attached.
Construct the product manifold M x M’. The topology of this
has been discussed in § 18, and we adopt here the same notation
as in that paragraph.

Let 4, be any p-form, and B, a g-form, both regular on M.
We can construct from these certain forms on M x M'. At any
point P x Q' of M x M’ we can obtain a coordinate system
(45 -..» 3 Y1 ---»Yn) by combining the coordinate system
(%4, ..., ®,) at P on M with the coordinate system (y5, ...,¥,)
at Q' on M’. We can define a p-form on M x M’ by the condition
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that in the coordinate system (z,,...,%,; ¥1,...,¥,) at Px Q'
it is represented by

1 .
%’—!Ai....ip dx® ... dxi’,

where this expression also represents the form 4, on M in the
coordinate system (z,, ..., z,).

We denote this form on M x M’ by A4,,. Similarly, from the
form B, on M’ we define a form B; on M x M'. The product
of these forms is a (p+g)-form 4, x By on M x M'.

We first show how to evaluate the integral of 4,, x B; over
a (p+q)-cell on M x M’ which is the product of an r-simplex
E, of M by an s-simplex E; of M', where p+¢q =r+s. We
suppose that £, K, are so small that we can find coordinates
(24, ..., x,) on M and (yy, ..., ¥,) on M', such that E, lies in the
locus

Zy1=0,...,2, =0,
and F; lies in Ysr1 =0, .0 yp = 0.

In these coordinates let

1 . .
‘AIJ = ‘p_!Ail”.ip dxh cee dxlp’
’ 1 ’ 73, 1y,
Bq = é—‘ B’l'x---‘l'q d?/ L dy 9.

In the coordinate system (z,,...,2,; ¥1,...,¥») on M x M’ we

have

11 , . o y
ATI X B’l = p“‘ aAfx--.ip le-.-jquh M dx% dy M. dy ]q,

the summations being from 1 to #. To evaluate the integral
of this form over E, x E, we put

dartl= .. =da" =0, dystl'=..=dy'"=0.
If p#7, g +#s, this reduces 4, x By to zero. Hence

J- A,x B, = 0.
E,xE,
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On the other hand if p = r, ¢ = s, we have

4 —_ ’ 1 ’1 ’,
f 'A”XB"—f Ay B dat .. da? dyt .. dy'?
Epx K, Epx Ey
1...p
—_ 4
=| 4, xf , B,
By E,

= A x B..

From the definition of the product of two chains we deduce
immediately that if p+¢q = r +s,

[ 4, da'...devx j By dy...dy"
Ep E,

J’ A, x By =0 (p#r,q#3),
CyxC,

~

and A xB’=J A,xf B,
fC’pxC’; o o Vgt

= 4, x B,

Cp Cy
The most important case of the foregoing result occurs when
A, and B, are both closed. Then

(A, x By), = (A,),x Byt (= 1) 4, % (By), = 0.

The product form is thus closed, and we can speak of its
periods. If I, I’y are two cycles of M, where p+q =r+s,
I',x I'yis a cycle of M x M’, and we have

f ,Apr’q=0 (p#r,q+#9),
Iyx I',

and f A, x B, = f 4, x B,.
Ipx T, r, r,

22-4. We now consider the case in which 4, and B, are
closed, and p+¢q = n. Let
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be a fundamental base for the r-cycles of M, for r=0,...,n.
A base for the n-cycles of M x M’ is given by

rixrji_,. (=1,..,R,;j=1,...,R, ,;r=0,...,n).

We denote the periods of the integral of 4, on the cycles
I' of the base for the p-cycles of M by «,

W= r;,A’"
and we denote the periods of the integral of B,_, on the cycles
I'i _, by vi. The periods of

n—p

on the base for the n-cycles of M x M’ are therefore known at
once by our formulae.
Let I' be the diagonal cycle on M x M’ given (§18-3) by

n
I'~ Y e I'tx I7)_,.
r=0
Then

‘ rA" xB,_,= r,}i‘:,jegj r;‘xr{{_,A" x B;,_, = ehotvi,
Now any point of P is expressible in the form P x P’, in the
notation which we are using, and we can choose the local
coordinate systems (y, ...,z,) and (zy, ...,%,) on M and M’ so
that I" is given in the coordinate system (zy, ..., %,; 23, ..., ;)
on M x M’ by the equations
x; =% (t=1,...,n).

1t follows that

A xB,_ =| A4,xB,_
f]‘ I)x v fM pX p

and we obtain the formula

— P . iyi
fMAp X B,_, = €0V,
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The matrix €? is the transpose of the inverse of the intersection
matrix || (I' . T5_,) ||

The applications of this result are of frequent occurrence
in the sequel, and we shall refer to the above equation as the
bilinear relation connecting the periods of the two integrals.
If we have to consider a number of closed p-forms

A1, ..., 45
and a number of closed (n —p) forms
B. ... B, _,

we shall find it convenient to write the st bilinear relations in
the following matrix form. If

. i
0l = iA,,,
IP

and il = f , Bup
r_,

the matrices w and v are called period matrices. The st bilinear
relations are all contained in the matrix equation

Ai x B?
P n—p
M

= WeY’,

v’ indicating the transpose of the matrix v.
In place of the fundamental bases

ry @=1,..,R)); r,_, (G=1,...,R, )
for the p-cycles and (n —p)-cycles we can consider new bases,
not necessarily fundamental, given by
AL = ail (G=1,...,R,)
and Ai_, =bilh . (i=1,..,R, ),
where a, b are non-singular matrices of integers. The period
matrices of the integrals for the new bases are

w, = wa’, v, =vb,
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and the bilinear equations can be written as

\UMA’ x Bi_, || = w,0Pv],
where a’'6’b = e”.
Now the intersection matrix of the new bases is
al[(I,. I |,

and hence 07 is the transpose of the inverse of the intersection
matrix || (45.45_,)| of the cycles 4% and A4%_,. Thus the
bilinear relations hold whatever base we take for the period
cycles, fundamental or not.

22-5. More generally, let 4, B, be two closed forms on M,
such that p + ¢ = r <n. Then, as before, we show that

>

| 4B, L,‘Ap x B,

where y? is the image of I'" on the diagonal cycle of M x M'.
If we refer to § 18-3 we see that

'}’,’-‘ ~ E /\7} (F:'L) F;':»H—u X 1‘;L 8*
8

Hence A, x B, = ), Ao (I'ﬁ)f A, x B,

r rixry

r

= 3G (1"')f 4, xJ B,
Y Ty
The values of the cocfficients A9 (I’ﬁ) are given by formula
(12) of § 18-3.

We can extend this method to find the periods of the product
of three or more closed forms.

23-1. The first theorem of de Rham. In discussing the
period properties of the integrals of closed forms, we have
tacitly assumed the existence of a closed p-form whose
integral has a period different from zero on some p-cycle of
our manifold. The justification of this assumption is contained
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in the first of two theorems due to de Rhami(2), we shall
refer to these theorems as de Rham’s first theorem and de
Rham’s second theorem, respectively. At the moment we are
concerned only with de Rham’s first theorem, the statement
of which is as follows:

If I (i=1,...,R,) i8 any base for the p-cycles of a manifold
M, and v¢ (i=1,...,R,)) are R, arbitrary real numbers, there
exists a p-form ¢ with the properties:

(i) @ vs regular and closed on M ; and
(ii) ,«¢: v (@=1,..,R)).

The proof of the thecorem which we give is essentially that
given by de Rham, but for the sake of clarity we begin with
some preliminary considerations which deal with an algebraic
approximation to de Rham’s theorem.

23-2. p-sets. Let K be a complex covering our manifold 2.
We denote its p-simplexes by K (i=1,...,R,), and its in-
cidence matrices by (,n, as usual. If ¢ is any p-form on M, the
value of the integral of ¢ over K, is a real number, which we
denote by e We shall say that the integral is represented by
the set of numbers (e;,, ..., e5r). Any set (e, ..., e5r), where e}', is
a real number, is called a p-set.

The (p+1)-set (e}, ..., e3n7) which represents the integral
of the derived form ¢, can be determined at once. For,

i —
ep+1 - P ¢x
Ko

F(kp41)

= (1)+1)?7;: e;.)'
This (p + 1)-set (e,,,;, ..., €3#1}) is called the derived set of the
set (ep, ...,ep). If a; %, is any (p+ 1)-cycle, we have
@511 = GipraTlieh
= 0.
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We now show that, conversely, if (e}, 4, ..., e57#) isa (p+1)-
set such that .
aie;)+1 =0

for all sets of integers a; for which a; K%, is a (p+ 1)-cycle,
then this (p + 1)-set is a derived set. In order to do this we have
to solve the equations

_ i
€pi1 = (0l €h (3)

for the unknowns ef,. The necessary and sufficient condition
that the equations (3) have a solution is that

bie;+1 = 0
for all numbers b; satisfying

bi(p+1)77;: =0 (.7 =1,.., “p)- (4)

Since the matrix (,,,m is a matrix of integers, we need only
consider integral values of b;. Now (4) is the condition to be
satisfied in order that b; K., should be a (p+ 1)-cycle. From
our hypothesis it follows that the conditions necessary for the
existence of a solution of (3) are satisfied. The result follows
at once.

A derived p-set has the further property that its derived
(p+ 1)-set is zero. For, if

G i
€p = (p)"’.’i €p—1>
- ik
then p+0M5 € = W5 k€1
=0,

by equation (7), § 12-2 of Chapter I.

The converse result, that a p-set whose derived set is zero
is necessarily a derived set, is not generally true. A p-set
whose derived (p + 1)-set is zero is called a closed p-set.

23-3. We now consider certain properties of a closed p-set
(eh, ...,ex). If a, B} is any p-cycle which is homologous to
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zero with division, there exist integers A,b,,...,b,,,,, such
that _
by 05 = A9 (A#0).

Then a;el, = A1, 056
= 0.

It follows that if a; B}, b; E}, are two p-cycles of K homologous
to each other with division, we have

(ai—bi) ({;:, = 0,
that is, a;el, = bel.

We call the number a;¢%, the period of the p-set over the cycle
a; B}, and our result means that the periods of a closed p-set
over p-cycles of K which are homologous with division are
equal.

A derived p-set is a closed set, and the result proved in
§23-2 shows that the necessary and sufficient conditions that
a p-set should be a derived set are that it should be closed and
have all its periods zero.

The theorem for p-sets analogous to de Rham’s theorem for
integrals states that if I, (i=1,...,R,) is a base for the
p-cycles of K, and v, (i=1,...,R,) are R, arbitrary real
numbers, there exists a p-set (e, ...,e5?) which is closed and
has the period »' on I'} (i=1,...,R,). We now prove this
result. The equations which we have to solve are

(p+l)/’7'J€ 8;1 =0 (=1,..., a"p+1)’ (5)
ajel, = vt (t=1,...,R), (6)
where I't = a} B,
We prove that the equations (5) and (6) have a solution by
showing that the equations (5), (6) and the equations

(n—p+1)7];'”e§) = 0 (1:‘_‘ 1; ceey ap—-l)! (7)
. e 4 .o .
that is, jz(pp]{e;, =0 (t=1,..,a,,),
=1

have a unique solution,
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The a,,,+ R, +a,_, equations (5), (6) and (7) are not all
independent, in general. There are exactly p,,,, independent
equations (5), and p, independent equations (7), where p,, is
the rank of the matrix ,n. We have therefore at most

Por1tBy+p, =a,
linear equations to solve. The equations have a unique solu-
tion if the rank of the matrix of coefficients of the unknowns
e}, is equal to a,,.

We have seen that the rank of the matrix of coefficients
cannot exceed «,. If the rank is less than a,, the equations
(5), (7) and

aid, =0  (i=1,..,R) (6)’

have a solution in which the ¢ are integers, not all zero.
Suppose such a solution (e}, ..., €%) exists.

Since the p-set (e}, ..., e%r) satisfies (5) and (6)’, it is closed
and has all its periods zero. It is therefore a derived set. Hence
there is a (p — 1)-set (e},_;, ..., e52-1) such that

e;.) = (p)"’}l;ezl-—l'
Multiply the equations (7) by €_;, and apply the summation
convention. We have

@ . ..
j_zle;)—-l (,;)771'% =0,
. ap
that is '21(6?")2 =0,
j=

But the numbers €/, arc integers, not all of which are zero.
Hence we have a contradiction, and our assumption, that the
matrix of coefficients of ¢/, in (5), (6) and (7) was of rank less
than a,, was false.

The rank of the matrix of cocfficients is therefore exactly
a,, and equations (5), (6) and (7) have a solution, whatever
values we give to »!. When we are only concerned with equa-
tions (5) and (6), we see that any solution of (5) and (6) is
obtained by adding to the solution just found a solution of
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(5) and (6)". Thus the most general closed p-set which has
assigned periods on R, independent p-cycles of K is obtained
by adding a derived set to a particular set having the required
properties.

24-1. Proof of de Rham'’s first theorem. We are now
in a position to prove de Rham’s first theorem. Since the
period with respect to a cycle I', of the integral of a closed
p-form on a manifold M is unaltered when I') is replaced by
a homologous cycle, we may without loss of genera,lity assume
that the base I}, (i =1, ..., R)) for the p-cycles of M is formed by
cycles of a complex K which covers M. In order to find a
regular closed form ¢ whose integral has the period v* on I'},

we first construct a closed set (e, ..., €2?) which has the period

vion I'; (i=1,...,R,). We then try to construct the regular
closed form ¢ so that

d¢=ef, (i=1,...,0,).
This is done by constructing regular p-forms
Py o=1,..., a,; p=0,...,n)
with the properties:

(li) ('—' 1)1) }-I‘Pp x = (n- p)”j Pp +1°
Suppose, indeed, that we have such a set of forms P%. Then, if
(ep, .-, €5%) is any p-set, we associate with it the p- form

$ = Xeh P
i=1

ap L
Then ¢I = ‘\_‘,8;, P;J..E

i=1
e d . %3 Dj
_ ] J
= _E_: (= 1P g npf* Pt

ap 41

= 2(p+1)"71e Pp+1
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is the form associated with the derived (p + 1)-set. If the given
p-set is closed, ¢ is closed. Further, if I'y = a; Ej is any
p-cycle,

S ¢ P

1

xp
¢ =3 a;
ry j=1

Bl i=
%p 2p A
=% Xa;e0]
i=1j=1
= a;¢},
and hence the period of the integral of ¢ on the cycle I') is
equal to the period of the closed p-set on I,

The proof of de Rham’s first theorem is therefore reduced
to the proof of the existence of the forms P}, with the properties
(i) and (ii). It may be pointed out that the relation between
the additive group of p-chains of K, and the additive group of
p-forms a, P}, (where the coefficients @; are real numbers), is
that of a group-pair. Any p-chain C,, and any p-form a, P},
determine a real number, viz.

Jon
Cp
with the properties:
(@) f (a; P, +b; Ph) = J aiP}',+J‘ b; P,
Cp Cp Cp
and (b) f a; P =f aiP§,+J. a; Pi.
Cp+C, Cyp c,

The problem with which we are concerned therefore deals with
a special case of the wider theory of group-pairs, which is of
importance in topology. For an account of this theory, see
Whitney (31.

24-2. As an aid to establishing the existence of the forms
P, we first prove a lemma. In the number space (zy,...,%,)
the set of points given by

|z;| <1 (t=1,...,n)
is called a box. We denote it by B,. The lemma states:



94 INTEGRALS AND THEIR PERIODS  [II, 24-2

Let P be a p-form (p> 1) which is regular in a region of a
number space (z,, ..., ,) containing the box B, and which 18 zero
outside the box. If P has the properties:

(i) P 18 closed;
(ii) if p = m, P=o,
Ba

then there exists a (p—1)-form Q, which is regular in the same
region and vanishes outside B,, such that

Q, = P.

Moreover, if P depends on a parameter t and has the properties:

(@) the rth derivatives of the coefficients of P with respect to
t are continuous functions;

(b) P 8 zero when |t|>k;
then @ can be chosen to satisfy (a) and (b).

It is worth while pointing out the reason for the condition
(ii) which is imposed when p = n. If C, is any p-chain whose
boundary lies on the boundary F(B,) of B, C, is homologous

to a chain on F(B,) when p is less than ». Since P is closed, it
follows that

P =0.
Cn
Butif p = »n,C, = B, is a chain whose boundary lies on F(B,,),
and C, is not homologous to a chain on F(B,). We cannot
therefore deduce from the fact that P is closed that

(.-
Cn

and condition (ii) is necessary to ensure this result.

We prove our lemma by induction on », the dimension of
the number space. If n = 1, we have only one case to consider,
namely p =1 = n. B, is given by

|z]<1.



II, 24-2] PROOF OF DE RHAM’'S FIRST THEOREM 95

If P is a 1-form satisfying (i) and (ii), and

o]

@ is regular and vanishes outside B;, on account of (ii).
Further,
Q,=P.

The form  therefore fulfils the conditions of our lemma.
Moreover, if P depends on a parametert and satisfies the supple-
mentary conditions (@) and (b), @ also satisfies these conditions.

We therefore assume that our lemma has been established
for space of less than n dimensions, and show that this implies
its truth for a space of n dimensions. We consider first the

case p = n. Let
P =Ad ... dx"

and write Pl = Adat... den 1,

Let [x,] denote the box of (n— 1) dimensions which is the
section of B, by z, = constant, and write

P! = f(z,), f * fan) da® = F(z,).
[&nl -1

We can construct an (n — 1)-form of @, which is independent
of z,,, with the properties:

(1) @' is regular in a region of our space containing B,;
(2) @'iszero outside [x,]in the (n—1)-space z,, = constant;
(3) Q=1
[n]
Then, if we regard the (n — 1)-form
P fla) x @*

as a form in [«,] containing the parameter z,, it follows from
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the hypothesis of induction that there exists an (n— 2)-form
@Q? with the properties:

(1) @?is regular in our region;

(2) @2iszero outside [, ] in the (n — 1)-space x,, = constant;
(3) Q2= P'—f(g,)x @ in [z,];

(4) when regarded as a form in the n-space, @2 is regular and

vanishes outside B,,.

This last property follows from the supplementary con-
ditions.
We now regard @2 as a form in the n-space. We have
[Q%xda"], = P—f(x,) x Q' x dx™
= P+ (= 1)"[F(@,) x @'
If, now, we define the form ¢ by the equation

Q = @ xdx"+ (= 1)1 F(z,) x @,

() satisfies all the requirements of our lemma. If P contains
a parameter ¢ and satisfies the supplementary conditions (a)
and (b), Q also satisfies (@) and (b), provided @' and @ satisfy
the condition relating to the parameter ¢.

We now come to the case p <n. Let P! be the form obtained
by putting dz* = 0 in P. We write

P = P4+ P2xdz.

The form P!is closed in [z,], and, if p = n—1,

where 1" is the boundary of one of the cells into which [z,]
divides A. From our induction hypothesis, using the supple-
mentary conditions, we know that there exists a form Q!
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which is regular in the region containing B, and is zero outside
B,, such that
Q= Pt

when dz* = 0. Thus we can write

QL = P+ P3xdx”,
and hence P— QL = (P2— P%) xda".
Since P — @} is closed, P%— P? must be closed, when regarded
as a formin [x,]. It also vanishes outside [x,] in x, = constant.
Hence there exists a form @2, which is regular in our region and
vanishes outside B,, such that

Q= P:—p3

in [z,]. Hence, in the n-space,

[Q2xda], = P @}
and so Q= Q'+ Q% xdx"
is a (p — 1)-form satisfying the requirements of our lemma. If
P depends on a parameter ¢ and satisfies the supplementary
conditions (@) and (b), it is easily scen that @ also satisfies
conditions (@) and (b), provided @! and @* are chosen to
satisfy these conditions.

24-3. We now return to our manifold M of » dimensions,
with a covering complex K. In order to construct the forms
P;',, we construct a series of domains on M. Each of these
domains is in (1-1) continuous correspondence of class v with
a box B,, and if v is at least three any regular form in the box
will correspond to a regular form in the domain.

If E is any simplex of K, the region of M which is covered
by £ and the simplexes of K which have £, on their boun-
daries is called the star of % in K. We construct a domain
associated with each cell of the dual complex K*. The domain
associated with E¥?  is denoted by D(E}! ), and the domains
are required to satisfy the conditions:

(1) each domain is in (1-1) correspondence of class v (v 3)
with a box B,,;

HHI 7
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(2) D(E}:,) lies in the star of EY and contains E}xt , inits
interior;

(8) if KX, , (k=1,...,r) are the (n—p—1)-cells of K*
which lie on the bounda.ry of E¥i , the domains D(E},_,)
(k=1,...,7) are contained in D(E}" ).

It is easily shown that it is possible to construct such a set
of domains.

We now prove that there exist regular forms Pf, (t=1,...,ap
p=0,...,n) satisfying the three conditions:

() Lf}" ~ 5j;

(“) (— l)”+1 p..c = (n—p)%zki P§,+1;

(iii) P} is zero outside D(E*. ).
The forms Pi are easily obtained. We can construct a function
fi(@) on M, of class two at least, which vanishes outside D(£g")

and satisfies the condition

f  filw)dat ... da™ = 1.
D(EY)

We define Pi to be fi(x)da*...dx". Since D(EF’) lies in K,
P satisfies conditions (i) and (111). Condition (ii) doesnotarise.
To construct P?_,, let

%0 %] Tkk
E¥i> B¥ — Bk,

Then PJ, — Pk vanishes outside D(E}), and

f (Pi,— Pk) = 0
D(]Ll)

Hence, applying the lemma of the last paragraph, we can con-
structan (n — 1)-form P _, regular on M and vanishing outside
D(EY), which satisfics the equation

(—1" P;:L—l..v = P']I.L— sz

This form P_, satisfies the conditions (ii) and (iii), by con-
struction. It also satisfies condition (i) when s #j. To show that
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it satisfies this condition when i = j, we consider the boundary
relation for £7_,. This is

blb—> ( - 1)n ‘n—l +Cn—1’

where C,_, is a chain of K in which E_, has the coefficient

zero. Then
[, pa=orf P
Epy F(E})
Pr)

= f (‘P{)——
K,

The forms P are obtained inductively. Suppose we have
constructed P, for ¢>p. Then
[( - l)p+1(n—p)77;‘kipi+l]x = '—(n—p)”;ki (n—p—])”zj PI]§+2
= 0,
and (— Lptt ¥ Pl is regular and vanishes outside

D(EY ). Hence by our lemma, there exists a p-form P},
regular on M and vanishing outside D(£}% ), such that

Pi},x = (— l)"+1(n—p)"7j Pp+1'

The form P}, satisties conditions (ii) and (iii), and condition (i)
when ¢ #j, by construction. It remains to show that condition
(i) is satisfied when ¢ =j. In the following equations the
summation convention is not used. We have

3 _ k i
f “Pp,r = (p+1)77if x Pp>
1"» F('Er+1)

where B, isa simplex of K having £ on its boundary. Hence

pPi = 7k pi
» (p+D73 D,
f B E*

r+1

%xp -1
= (p+07: I:(— 1)p+1 2 (n- p)"’) fEk 1]
p+1
= [pronf)? = 1,

since w+of = (= 1P,k = + 1.
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In this way all the forms P% are constructed. The truth of
the first theorem of de Rham follows at once. Thus, we have
finally proved that there exists a closed p-form whose integral
has R, arbitrarily assigned real numbers as its periods on B,
independent p-cycles of M.

25. De Rham’s second theorem. It is appropriate at
this stage to mention the second theorem of de Rham. This
theorem states that if @ is a closed form on a manifold M whose
integral has all its periods equal to zero, then ¢ is a null form.
De Rham has proved this theorem by a method which is
similar to that used above to establish the first theorem. Let
¢ be a closed p -form whose integral has zero periods. We
define a p-set (e, ..., e3?) by the equations

This p-set is closed, and has all its periods equal to zero.
Hence, by §23-2, it is a derived set, and we can write

€ = i ep-1-

ap ap . .
Now  Feri- ¥ ouid P
{= i=
ap—1 ;
= 24 (_ 2 n p#l)']t P
dp 1
s rp 1]
Hence ¢~1ﬁ=¢— Xe;P‘
i=1

where ¥ is a closed form which has all its periods zero, and
which has the further property that

F=0  (i=L..a,). (8)
EP

To establish de Rham’s second theorem, it is sufficient to
prove that ¥ is a null form. While there is no intrinsic difficulty
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in proving this, the details of the proof are somewhat involved.
We have first to extend the lemma, of § 24-2, and we have then
to construct & new and elaborate system of domains on M.
De Rham first shows that y is homologous to a p-form ¥,
which has the property (8), and which vanishes in a set of
domains containing the 0-simplexes of K. Then he proves that
¥! is homologous to a p-form ¥? which has the property (8)
and which vanishes in a set of domains containing the 1-sim-
plexes of K. Proceeding by induction, he proves that i is
homologous to a p-form "+, where y"*1 vanishes in a set of
domains containing the n-simplexes of K. But this last set of
domains covers M, and ¢! is therefore zero on M. The
theorem follows.

We do not go into the details of this proof, which will be
found in de Rham’s paper(2]. Instead, we shall prove the
theorem in the next chapter, as a first application of the
properties of harmonic integrals.

26-1. Products of integrals and intersections of cycles.
The two theorems of de Rham enable us to express some
of the topological invariants of a manifold M in terms of the
integrals on M. If I', (i=1,..., R,) is a base for the p-cycles
of M, the first theorem shows that there exist closed p-
forms ¢, (i=1, ..., R,) such that

=0

No linear combination with constant coefficients of the
p-forms ¢% can be a null form. For, if

¢=ai¢§)~0’

the integral of ¢ must have all its periods zero. But
r ¢ = a,

and hence each coeflicient a; is zero. Again, if ¥ is any closed
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p-form having the period v on I'; (i=1, ..., R,), then ¥y —v; ¢},
has all its periods zero. Hence, by de Rham’s second theorem,

Iy L.
Al
- E 0

The pth Betti number of M can therefore be defined as the
maximum number of closed p-forms on M which are linearly
independent, that is, which are such that no linecar combination
of them is a null form.

This result suggests that we might try to express all the
theorems on the topology of a manifold in terms of properties
of integrals on the manifold. This procedure is not, however,
completely satisfactory. In the first place, we have used the
properties of complexes on a manifold in order to establish the
existence of closed forms with non-zero periods. While it
might be possible to overcome this difficulty, there is a second
and more serious objection. Certain topological invariants,
such as the torsion groups of a manifold, have no place in the
theory of integrals, and cannot be taken account of in an
investigation of the properties of a manifold by means of
integrals. Nevertheless, when we only need to consider
properties of a manifold depending on homology with division,
the topological characters with which we are chiefly concerned
can be expressed in terms of integrals. We now give some of
the more important formulae.

26-2. Let I, (i=1,...,R,) be a basc for the p-cycles of M,
for p=0,...,n, and let ¢}, denote a closed p-form on M

such that
t = 8.
[ pi=

A set of closed p-forms ¢/, (1 =1, ..., R) is said to form a base
for the p-forms on M if any closed p-form ¥ on M satisfies a

homology
¢ ~ al' w}n
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where the coefficients a; are real numbers. The result stated in
§26-1 shows that the forms ¢}, (i=1, ..., R,) form a base. We
now show that the necessary and sufficient condition that the
closed forms ¥/}, (i=1,..., R,) should form a base is that the
period matrix w = (w¥) should be non-singular, where

. i
wY _f ) Iﬁp.
Pﬂ

(i) The condition is necessary. For, if the forms y% form
a base, there exist real numbers a} such that

P aiy
¢p (1'] 9”1)'
Hence 0f = dj ik,

Since the matrix formed by the first members of these equations
is the unit matrix I, , (a}) and (0%) are non-singular matrices.
(i) The condition is sufficient. If (w¥) is a non-singular
matrix, it possesses an inverse, which we denote by (a%).
Then, if R,
Xp = X afiy],

i=1

the integral of xi, — ¢% has all its periods zero, and hence
;\);') ~ ¢;)
If ¢ is any closed p-form on M,
Y~b
By
~i§1 bi a” Mf;,,

where the coefficients b; are real numbers.

The condition that a set of closed p-forms should form a base
has been expressed in terms of the period matrix of the forms.
This therefore requires the choice of a base for the p-cycles.
We can express the condition without any reference to the
periods. Let ¥¢_, (i=1,...,R, ) be a set of closed (n— p)-
forms forming a base for the (n— p)-forms on M, and let the
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period matrix of their integrals be v = (v¥). Then, by the
bilinear relations,

s

wherc €? is the transpose of the inverse of the intersection
matrix || (1. 17%_,) . The matrices €” and v are non-singular,

and hence Ilf Y x Y,
M

non-singular. Hence:

A set of closed p-forms Y%, (i =1, ..., R,) is a base for the p- forms
on M zf and only if there exists a set oj closed (n— p)-forms %,
(¢=1,...,R,_,) such that the matrix

[ wixwi)

weryY’,

is non-singular if and only if w is

-p

18 non-singular.

26-3. Let I} (i=1,..., R)) be a base for the p-forms on M,
defined for each value of p. If ¢ (i =1, ..., R)) is a base for the
p-cycles of M, we now seek relations connecting the numbers

J l/l;"XWz (p+q:n)7
M

f Wixyixyk  (@+bte=n),
M

etc., with the intersection numbers
(I";.l—p 'le—q)’ (Fft—a . r'fl-—b F{ci (-)

These intersection numbers depend on the choice of the bases
for the cycles of M, so we must expect the relations to depend
on the periods of the integrals of the forms ¢ with respect to
the cycles I';. The formulae are simplest when we choose the
forms ¢, so that

fr’¢1i' = 0f (p=0,...,n),
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and we shall consider only this case, leaving the deduction of
the formulae when the bases ¢}, (i=1,...,R,) are chosen
generally as an exercise to the reader.

We denote the inverse of the matrix || (I;_, . I'}) | by A®.

(i) Let p+q = n. Then, if

f ¢px¢7 = LDQ

we know, by the bilinear relations, that the matrix k??is the in-
verse of the transpose of the matrix || (/" .I73)|. The transpose
of this intersection matrix is, however, equal to (— 1)?7 (A»?)-1,
and hence
kre = (=1)pe A»,

(i) Let p+q+r =mn. The periods of the integral of the
(p+q)-form ¢ x i arc found by the formula of §22-5. We
have

[ #hxdti=arurs,
n-r

I
and hence PpxPi~X A 7)) Pl

Therefore, we have

km'=fM¢:,x¢z;x¢f= 5 AT »f B x B

My=1
— (__l)r(n r)/\" (l([‘n r)A -,

If we now substitute the value of A};~%(1'%,_,) given by equation
(12) of § 18-3, we obtain the equation

kP4 — An——pAn qAn r(Iwn - Iwﬁ_q‘lv%_r).

ik —
A similar argument enables us to express quadruple inter-
section numbers in terms of integrals over M of quadruple
products of the forms ¢§,, ete.
In the case in which » is a multiple of 4, say n = 2m
where m is even, we have

kmm — Amm’
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where A™™ is the inverse of the intersection matrix || (1%, . ') ||.
The signature of this intersection matrix is therefore equal to
the signature of k™». Let /%, (i=1,..., R,,) be any base for the
m-cycles of M, and let
J‘ wrin = .
r),

i k
Then 'f l/’;n X Q//gn " = wkmy',
M i

is equal to

T
and it follows that the signature of || f Y xyd,
hoar

the signature of |[(I',. [",)|. Hence the signature of

| nxw

is a topological invariant of M.

|
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Chapter I11
HARMONIC INTEGRALS

The investigation of the properties of integrals on a mani-
fold which we have made in Chapter 11 does not make any use
of the Riemannian metric which was introduced in Chapter 1.
In this chapter we consider integrals in relation to a given
metric, and use the fundamental metrical tensor in order to
define a restricted class of regular closed forms. This class of
closed forms has the property that there is in it exactly one
form of multiplicity » homologous to any regular closed form
of multiplicity p, or, in other words, there is just one p-form
of the class whose integral has given periods on independent
p-cycles of the manifold. The definition of this class of forms
has certain analogies with the definition of potential functions
in mathematical physics, or of harmonic functions in the
theory of functions of a complex variable, and for this reason
we call the forms of the class harmonic forms, and their in-
tegrals harmonic integrals; we also call the skew-symmetric
covariant tensor, defined by the coefficients of a harmonic
integral, a harmonic tensor.

27-1. Definition of harmonic forms. Let us consider
a Euclidean space of n-dimensions, in which (x,,...,%,)
are rectangular cartesian coordinates. From this space we
can define a Riemannian space in the following way. The
Riemannian space has the same points and neighbourhoods
as the Euclidean space, but we now admit as allowable local
coordinate systems any set of coordinates (y,, ...,y,) obtained
from the cartesian coordinates (z,, ..., ,) by a transformation
of class u (u > 2) which satisfies conditions (i) and (ii) of § 21,
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in some region. We define the metric by the condition that in
the coordinate system (z, ...,z,) it is given by
gydaidat = (dat)?+ ... + (dz™)

Let ¢ be a function in the Euclidean space which is a
potential function in some region of the space. The con-
dition for this is, in the usual vector notation,

div grad ¢ = 0.
Now grad ¢ is, in our notation, the covariant vector

(2

Thus when the space is considered as a Riemannian space,
grad ¢ is the covariant derivative of ¢. The equation

divg, =0

is, when written in full,
2% _o
ox,

1

and in this form it is not a tensor equation in the Riemannian
space. We now try to find a tensor equation in the Riemannian
space which will reduce to div ¢; = 0 when the coordinates are
the rectangular cartesians (xy, ..., x,).

In the coordinate system (x;, ..., x,) we have the relations
gi]' == g” = 8}, ka = 0.

Moreover, we have .jg = 1. The equation divg; =0 can
therefore be written as

L 3.2 (giigy) = 0
\/g =1 O, 9970 =

or, equivalently, giig; ; = 0.

This last equation is a tensor equation in the Riemannian

space, and is the necessary and sufficient condition that the

scalar field ¢ should correspond to a potential function in the
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Euclidean space. If we now define the divergence of an
absolute covariant vector £; in the Riemannian space by the

equation -
diV gi = g”gi.j’

Laplace’s equation div grad ¢ = 0 becomes a tensor equation
in the Riemannian space. A function ¢ which satisfies it may
be called a harmonic function, and the necessary and sufficient
condition that a function ¢ should be a potential (or harmonic)
function in the Euclidean space is that it should be harmonic
in the Riemannian space.

n

A
—— . - L} Iy =
The equation N El o, Wg9'g;) =0,

which we found above for the condition that ¢ should be
harmonic, is the condition that the (n — 1)-form

1 - ) ‘
M*/g 9iP;€;4,.. 1, A" ... dain=t

should be closed. This geometrical form of the condition sug-
gests the generalisation of the notion of a harmonic function
which we are seeking.

27-2. We consider a general n-dimensional Riemannian
space, with the metrical tensor g,;. Let

P= lP . dxtr .. daie

1 i1...0p

be a p-form in the space. Since F;_;, is an absolute tensor,
P* = _l_\/ ik irkp P, €
dinmp = ggrt...g Foreedip €1eeidp treniin-p

is a skew-symmetric tensor of weight zero, and the form

1

= (n——]_)) ' d(l'i‘ ee dx'.""P

P*

Tieerin-p

Px*
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which it defines is determined uniquely by P and the metrical
tensor. We call P* the dual of the form P. Now

* %k — Jik: jn—pkn— % L. L.
Pi....zp (n ]) 14/././ L 'g" bl PPkl...k,.-,,6]....1,._,,1‘...1,,

= - - )'gyhkl . gin—pku—-p g(llbl e gapbp

x I)b,...b,, €ay...ap by kenp Cirevednmp ireeip?
using geodesic coordinates, we can easily prove that
kk -
B, = (=1)p-np; .
In these coordinates, we have, at the origin,
k% | — (— | )(n—p) P* .
Pt. Ap ( 1) PT'[,“...L”

=(=1pe PPy .
Hence we have P** = (= 1)pn-n) P,
which shows that the relation between P and P* issymmetrical,

save perhaps for sign. If P is the exterior derivative ¢, of a
(p—1)-form @, we shall usually write

r* = @~
If P is an 0-form, that is a function, Laplace’s equation can
be written as [P¢], = P, = 0.

An example of a 1-form which satisfies the equation
P = 0
suggests itself at once. In Kuclidean space of three dimensions,
consider the magnetic field due to a system of currents. At any

point of the space at which there is no current, the vector
potential A = A4, is a covariant vector satisfying the equation

curl curlA = 0.

If we now pass from the Euclidean space to the Riemannian
space defined by it, as in §27-1, and consider the 1-form
A = A,dai, this vector equation can be written as

A, = 0.
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27-3. It will be remembered that the electrical potential
due to a system of charges, or the vector potential due to a
system of currents, is not uniquely determined; to the former
we may add an arbitrary constant and to the latter we may
add a vector whose curl is zero, that is, a tensor defining a
1-form which is closed. Let us consider briefly the usual method
of defining the potential or vector potential. In defining
electrical potential we start with a covariant vector E,
representing the electrical intensity, which satisfies the
equation

curlE = 0,

or the equivalent equation
E = Eidxi—0.

We then say that this is sufficient to define a function ¢,
unique save for an additive constant, which satisfies the

equation
¢, =B

Similarly, in defining the vector potential we begin with the
contravariant vector B = B! which represents the magnetic
induction. This satisfies the equation

divB = 0,
and the equivalent equation in the notation of forms is
B = Bydxtdx’ -0,
where By; = \Jg €, BE.

We now say that this is a sufficient condition for the existence
of a 1-form

A = A;da,
determined save for an additive closed 1-form, which satisfies
4,=B.
But the theorem invoked, that a p-form is null if it is closed, is

only true locally, that is, in a sufficiently small neighbourhood
of a point, and, as we saw in Chapter 11, it is not true in the
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large on a manifold for which R, is greater than zero. We now
define harmonic tensors to be the analogues of the electrical
intensity and magnetic induction in the large, and we are thus
led to the following definition: 4 p-form P is a harmonic form
if (1) it is regular everywhere on M, and (2) it satisfies everywhere

the conditions
P—>0, P*-0.

The integral of a harmonic form is a harmonic tntegral, and
the tensor defined by the coefficients of a harmonic form is
a harmonic tensor. According to this definition the potential
difference between two points in an electrical field is measured
by the integral of a harmonic form along any path between the
two points; and the integral

fA.dx

of the vector potential in the magnetic field round a bounding
circuit is equal to the integral of a harmonic 2-form over any
2-chain having the circuit as its boundary.

As immediate consequences of the definition we observe
that the (n—p)-form P* which is the dual of a harmonic
p-form P is harmonic, and that a harmonic 0-form is a con-
stant while a harmonic n-form is a constant multiple of

Ngdat ... dx".

27-4. Itisnot of course clear that on a Riemannian manifold
M, p-forms P (0 < p <n) having these properties exist, and one
of our main objects in this chapter will be to establish the
existence of a harmonic p-form P such that the integral

[r

has arbitrarily assigned periods on R, independent p-cycles
of M. The case p = 1, n = 2 is, however, somewhat special,
and the existence theorem in this case is really a classical
theorem. The Riemannian manifold is in this case a two-sided
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closed surface (cf. § 1), and by elementary differential geometry
we know that we can choose local systems of parameters
(%, y) so that the fundamental quadratic differential form is

Az, y) [da? +dy?].

Now if U = Pdx—Qdy
is harmonic, then §€+8Q =0,
oy oz
oP 0@
and i *@,

so that if U* = V = Pdy+ Qdx, the integral
f(U+ iV) = f(P+iQ) (dx +1idy)

is locally an analytic function of the complex variable
z = x+1y. It follows that, if we apply to M any of the classical
proofs, e.g. that given by Weyll17], for the existence of every-
where finite algebraic integrals on a Riemann surface, we
establish the existence of a unique harmonic integral

f(de — Qdy)
having assigned periods on the R, 1-cycles of M.

28-1. Approximation by closed p-sets. It is not with-
out interest to consider the relation between the harmonic
integrals which we have defined and certain p-sets which we
discussed in §23. To do this, we first define a ¢-dimensional
direction at a point P of a manifold. Let (z,,...,z,) be co-
ordinates valid in a neighbourhood of P, and consider a locus
defined by the equations

xi=fi(t1,...,tq) (i=1,...,n),

HHI 8
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which passes through P. We say that P is an ordinary point
of the locus if the matrix (2{4) isofrank g at P. If L' is another
§
locus, given by
Ty = Gi(Uy, ...y Ug) (e=1,...,m),

which passes through P and has an ordinary point at P, we
say that L and L’ touch at P if

if_i) - f?l) o
where (a¥) is a non-singular matrix of ¢ rows and columns.

By using elementary properties of functions we can verify
that the following properties hold:

(1) the condition that L and L’ should touch is independent
of the parameters in L and L’ which are used;

(2) the condition that L and L’ should touch does not
depend on the coordinate system (x,, ..., x,) chosen at P;

(3) if L touches L’ at P and L’ touches L'" at P, then L
touches L' at P.

The set of all loci which have an ordinary point at P and
touch at P is said to define a direction at L.

Let us suppose that the point Pisgivenbyt, = 0(i=1,...,q)
in the equation of the locus L. We consider the portion S of L

given by
|t ] <a; (E=1,...,q)

whose a,, ..., a, are positive constants. The volume V(S) of § is
defined by the integral

a, ag 1 a(f,i,...,fv,;)a(fja*").f;i)‘i
R M L el Lea L LA A R O
f—a. J_aq{q!g,f. 9iqiq 3(t1,---,tq) a(tp---,%)}

1 . .
Let Q = q’i Qip--i., dxt ... date
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be any g-form, defined in the neighbourhood of P. We consider

the limit of
1
75))8

as a,...,a, tend to zero independently. By elementary
analysis it can be shown that this limit depends only on @
and the direction of L at P. We define it as the derivative
of the form @ in the given direction at P.

This definition leads to an interesting interpretation of the
condition that a p-form P should be a harmonic form. Con-
sider any point O of our manifold, and a p-dimensional direc-
tion through it. We can choose local coordinates valid in the
neighbourhood of O, which are geodesic at O, and are such
that the locus

%, =0,..,2, =0
is tangent to the assigned direction at O. In these coordinates,
the derivative of P in the given direction is + 7 _; evaluated
at 0. Since the coordinates are geodesic, the dual form P*
has the property that

P}

Tp+1ee-tn

=P

T1eeelp?

provided (7y,...,¢,) is an even derangement of the natural
order. The direction absolutely perpendicular to the given
direction is defined by the locus

z, =0, .., z;, =0,

and hence the derivative of P* in this direction is +7;
evaluated at O.

Hence the dual form P* of P can be defined as the form
which has the property that P and P* have the same derivative
when evaluated in absolutely perpendicular directions at
every point of the manifold. It can be verified that P* is
uniquely defined in this way, save for sign. We may therefore
speak of P* as the form absolutely perpendicular to P. Thus
P is harmonic if both P, and the form absolutely perpen-
dicular to it, are closed.

8-2
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28-2. We take the interpretation of the harmonic condition
which we have just given as the basis of an approximation to
the theory of harmonic integrals by means of p-sets. Let K
be a covering complex of M. Then if P is any p-form, the

integral ] P determines a p-set (), ...,€?) on K, as in §23,

which is closed if and only if P is closed. We now try to define
the dual of a p-set. Since direction has no place in topology,
we cannot speak of an (n— p)-direction perpendicular to a
p-direction. But we have introduced the notion of a dual cell,
and we can use the (n—p)-cell dual to a given p-cell in place
of the direction perpendicular to a given direction. We are
thus led to consider as the dual of the p-set (e, ...,e}?) the
(n—p)-set (exl,, ..., exr,) associated with the cells of the dual
complex K*, wherc

e, = e (E=1,..,ap).
We then say that the p-set (¢}, ..., ¢?) is harmonic if (e}, ..., €7
is closed in K,and if the dual set (XL, ..., ex%7,) is closed in K *

The conditions for a harmonic set are therefore

(1) (1;+1)7}Jl'e;1 =0 (7’= 1: ""(xp+l)!
; *i, _ .
and (2) (n——1)+1)7/:iz(’:1") =0 (@_ I "',a'p—l)'

These equations are, however, just the equations (5) and (7)
of §23-3. The result of that paragraph therefore shows that
there is exactly one harmonic p-set having arbitrarily assigned
periods on R, independent p-cycles of K.

It is temptmg to make this finite representation of the
harmonic property the basis of the proof of the existence of
harmonic integrals with assigned periods. The details, however,
of a proof of this nature present considerable difficulty, and
a satisfactory proof on these lines has not yet been obtained.
It may be mentioned, however, that successful solutions of
some analogous problems have been obtained by these
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methods. Thus Courant, Friedrichs and Lewy (1] have applied
this method to the problem of solving the equation

02u 0%u

R i

in the (z, y) plane, where u has assigned values on the boundary
of a simply-connected domain.

In my original proof(3,4] of the existence theorem for har-
monic integrals I made use of an argument based on the above
considerations at one stage, but I was forced to complete the
proof by other means. The proof|5] which is given below uses
entirely different considerations. It is to be hoped, however,
that the method which I have suggested here may yet be used
to establish the existence of harmonic integrals having assigned
periods, since the finite representation exhibits so clearly the
essential nature of the harmonic property.

29. Periods of harmonic integrals. Before proceeding
with the proof of the existence of a harmonic p-fold integral
having assigned periods on E, independent p-cycles of the
manifold M, we must examine certain consequences of applying
the bilinear relations to harmonic integrals. Let

P=—1—P-
P

1 Ba. i, det L dat,

1 . .
Q = j)‘i (Ji...-’l.'p dx“ cee d.L‘"’
be two p-forms. Then,
1 . .
P x Q* = Z_)'f\/ggll]" . ytplp Pi,...i, Qi.---)’p dxt...dx"

= Q x P¥*,
Also,

Px P* = z}Ngg“"l e g By B g, At dat
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Since gy dada’

is positive definite,

11121 Jp

;!Jggi‘f‘... g P, B ;>0

unless P, =0.
iy

Now consider the case in which the forms P and @ are harmonic

and let
wl, ..., 0l

v, ..., vhe

be the periods of the integrals

jr. e

on a set of R, independent p-cycles I}, and let

w*L, . 0¥,

p¥1 | p¥En-p
be the periods of the duals of these integrals on a set of B,,_,,

independent (n— p)-cycles I',_,. Let € denote the transpose
of the inverse of the intersection matrix || (I',. I';_,)||- Then

efwiv¥ = { Px@*
M

Q x P*
M
= el vio™,
Also, ehwio¥ = | PxP*>0,
M

unless P, ; = 0, everywhere.
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Thus a non-zero harmonic integral cannot have all its
periods zero, and two distinct harmonic p-forms cannot be
homologous.

30-1. The existence theorem: preliminary considera-
tions. We now come to the proof of the fundamental theorem :

There exists a harmonic integral having arbitrarily assigned
periods on R, independent p-cycles of a Riemannian manifold M.

Since the harmonic form of multiplicity zero is a constant
and that of multiplicity » is a constant multiple of

Ngdat... dxn,

we may suppose the problem solved for the cases p = 0, n, and
confine ourselves to the cases 0 <p <n.

In the theory of potential functions in Euclidean space, we
have trivial differences between the cases n > 2 and » = 2, due
to the fact that if r is the distance from a point O to a variable
point I’ the potential at P due to a unit point-charge at O is
1/r*=2% or log r according as n > 2 orn = 2. Similarly, when we
consider harmonic integrals in a Riemannian manifold, we
have similar differences between the cases »>2 and » = 2.
We again have to consider a function which is like 1/r"~2 when
n>2 and like logr when n = 2. We can pass from the case
n > 2 to the case n = 2 by a formal change at each stage of the
argument, or to avoid needless repetition we can quote the
proof of the case n = 2, which, as we have said above, is a
classical theorem on the Riemann surface. For brevity we
adopt the latter course, leaving the reader to see what formal
changes in our proof would be necessary in the case n = 2.

30-2. We shall call a function r(x,y) a distance function
of class v, between any two points x and y of M, if it satisfies
the conditions:

@) r(z,y) = r(y,2)>0, (x#Yy); r(z,x) = 0;
(ii) regarded as a function of z it is a function of class » of
the local parameters at x;
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(iii) as « approaches y we may refer the two points to the
same system of local parameters. The function must then
satisfy the condition

r | 1
f’-’ff,{[g,j) “y @ =y T

where g,;(y) denotes the value of g;; at the point y.

The construction of the function r(x,y) is in most cases a
simple matter. Let us consider first the case in which M is a
manifold of class u, and can be represented as a locus of class
u in a Euclidean space Sy, of finite dimensions N, given by

‘X fl xl" b II) (1;=1,...,N),

and suppose that the metric is defined on M by the Euclidean
distance clement in Sy.

Then, if P (z,...,2,) and Q (y,, ...,%,) are two points of
M, we may define r(w y) by the cqua,tlon

N §
r(x, y) = {Icg‘l [flc(xl’ ""xn) —fk(:'/l’ ""yn)]z} .

This applies for all values of «, including » = o, that is, the
case in which M is analytic, and v may have any assigned value,
0 < v < u. This covers a number of important applications, such
as the application to algebraic varieties. Again, if the metric
is not given as an intrinsic part of the definition of M, and is
only to be introduced for auxiliary purposes, we may reprebent
M as a locus of finite class v < w in a Iluclidean space Sy. Then
we can introduce the metric by means of the Euclidean dlsta,nce
element in Sy, and r(z, ) can be defined as above. This case is
of importance in our proof of de Rham’s second theorem, for
which it is only necessary to define some metric, but any
metric which can be defined on M will serve the purpose.

On the other hand, the metric may be given as part of the
data of M and we may not be able to find a representation of
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M in which the given metric can be obtained from the Euclidean
metric of the surrounding space in the manner we have
described. In this case we can proceed as follows. There exists
a polynomial ¢(x) with the properties:

(1) ¢'(x) >0, O<a<z<a+2b;
(ii) d(a) = a, dla+2b)=a+b;
(iii) when z = a,
d dr

dil)¢(x) =1 (‘h‘:‘,ﬂb(":) =0 (r=2,...,v);
(iv) when = a + 2b,
i%_qﬁ(x):() (r=1,...,0).

Indeed, if yr(x) denotes the polynomial consisting of the first
v+ 1 terms of the expansion of
btz
[20 + ]+
as a power series in x, then
() = x— (x—a)" Y(x—a—2b)
is a polynomial with the desired properties.

Now if & is any point of M. there is a neighbourhood N, of
with the property that any point of N, can be joined to z by
& unique geodesic lying in N,. We can find two positive con-
stants @, b such that the geodesic spheres I',, I',, whose centres
are at « and whose radii are a, a + 2b, lie in N,, for all points
of M. If y is any other point of M, we define S(z, y) as follows:

(i) S(@, y) = p(x,y)
it y is within I',, where p(x, y) is the geodesic distance from
Y to x;
(i) S(x,y) = dlple, y)
if y is within I'] but not within 1',;
(iii) S(x,y) =a+b

otherwise.
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Then S(x,y) is a function of class v, whether regarded as a
function of z, or of y. The function

r(x,y) = }[S(x,y) + Sy, z)]

satisfies our requirements. The number v can take any integral
value less than .

30-3. We now define a double form w,(z,y), that is a form
which is a p-form in the local parameters (z,, ..., z,) at z, and
a p-form in the parameters (y,, ..., y,) valid in the neighbour-
hood of y. Let r(z, ) be a distance function and write

L =r3
Then, when p >0,

(2, y)
_ 1 | 02L 02L

|
= - e — - Byt i daxte dyir ... dyir.
(p!)?(—2)Prn=2 | 0x; 0y; "~ Ox;, Oy;, dart... da' Ay’ dy*

Ox; Oy;, ax,‘, 0 J]p
When p = — 1, we define w_,(2, y) by the equation
() = 0.

If r(x,y) is of class v, the coefficients of this double form are
functions of class v—1 of the local coordinates in the neigh-
bourhood of any two points z,y of M, except where x = y.
In Euclidean space, wy(z, y), regarded as a function of z, is the
electrical potential due to a unit charge at 3. In Euclidean
3-space, if we write

Ay = f (@, 9),
Y

where the integration is with respect to y and is over a cycle v,
then A is the vector potential due to unit current in y.
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In order to use this double form to obtain a proof of the
existence theorem, we have to study the behaviour of certain
integrals involving w,(z, y) and forms derived from it, in the
neighbourhood of a point O at which z and y tend to coin-
cidence. To do this we choose local coordinates (2, ...,x,) in
the neighbourhood of O, such that

(i) Oisgivenby =z, =... =2, =0;
(ii) the fundamental quadratic form on M reduces to

(dzt)2+ ... + (dan)?
at O.

We can simplify our calculations considerably by intro-
ducing an auxiliary double form, which we denote by @, (z, y),
defined in the neighbourhood of 0. The form @,(, y) is given
by the formula for w,(x, ), when r(x, y) is replaced by

px,y) = [B(x;—y,)*]

In performing calculations involving this auxiliary double
form, we shall evaluate the derived forms @Y (x,y), etc., as if
the metric was 3 (dz?)? everywhere.

From the definitions of w,(z,y) and @,(x,y), it follows
immediately that the orders of infinity at x = y = 0 of the
coefficients of the forms

0, (T, y) =0y, y) and  wj(z,y)—wy(x,Yy)

are (n—3) and (n— 2) at most, respectively. If we write
K, (@,y) = o ,(z,9)+ (= -0l ,(2,9)
and K, (x,y) = @4 ,(x,9)+ (- )P1@h_, 4(2,9),

then K (x, y)— K, (x,y) is easily seen to have an infinity of
order (n— 1), at most, at = y = 0. It will be proved in § 30-4
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that K ,(z,y) is identically zero, and hence it will follow that
the coefficients of r»~1K(z, y) are finite everywhere.
Let  be the locus

ait...+2k = al
and & the region i+ ...+ 2k <a?,

where a is a sufficiently small positive constant.
From the results stated for the orders of infinity of

(l)p(.lf, y)— mp(x’ ?/),
etc., we conclude that if u(y) is a regular (p — 1)-form:
(I)
lim | w%_i(x,y) xu(y) = ltmf " _(x,y) x w(y);
Y

a—> Y a—>0

(IT)

lem fw}’, o(@, y) X u(y ] = lim I:f Y o(x, y)xu(y)J ;
a—>0L.J§¢ xr u—>0 £

(T11)

lim J‘u*(y)xwl,ﬂl(g/, ] = lim I:f u*(y) x 0, z/,x):l
a—>0LJ¢ xr a—>0

(IV)
lim ju*('y) X, 5, (Y2 :I =lim I:f w*(Y) X @, _, ,(y. x)] ;
a>01L.J¢§ a—>0

each expression being evaluated when z is at O.

30-4. We shall simplify our argument considerably by first
proving certain results concerning the forms @,(x, y) and then
evaluating the right-hand members of the equalities written
above. We begin by proving that K ,(x, y) is identically zero.

By direct calculation we have

oY@, y) = p~n—2) X (&, —y,;,) da ... darr dyier L dy',
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the summation being over all even derangements (35, ..., ¢,) of
the first n integers, each term only appearing once. Similarly,

@Y ,(2,y) = (— )P1p~"(n—2)(n—p) Ndx" .. dxirdyivre . dyin
t(=pprtnn= 5 X -k
i1

xdx®...dxirdyter ... dyi

+ (=1t ntnn -2 3 3 Lol det)

i

x (x, — y;,) dx’s ... date dy'ere ... dy'
= (=1 p~(n—2)p Tdai...dxirdy’r+ ... dy™"

ip
(= )tprta(n-2) 5 (3 [xk—ym)
x dxt ... dardyiris ... dy'

(=1t tam-2 3 3 o nld)

pia

X (@, —y;,) da .. dxtr dyire... dy™
= (=1 p(n—2)p Xda’ ... dxirdy> ... dy*

w1t -2 £ o nldet)
k=1
x 3 (2, — yi,) da's ... datr dyie .. dy's

= (=1)rop_ (2,y)

Hence K,(z,y) = 0.

30-5. We now evaluate the four integrals (I), ..., (IV),
above.
(I) To evaluate

lim f oY _1(2, y) x u(y)
Y

a->0

when z is at O, we consider first the case in which

u(y) = Ady ... dyr-1.
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Then on y we have
@p-1(2, 9) x u(y)
= rzn}p( — )re-Dg-n(n—2) Ady'...dy" 1dy™t...dy" p,,
where
M= (= 1) (X, —y,)dat ... dxP-!
+(- 1)r—nz:i:( 1) (@, — ;) dat ... dai

x dxttl . dxr-ldar.
Let

dE = a1 Y (= 1)t (g — ) dyt ... dygF-Ldyh+ .. dy
k=1

be the element of volume of v, and denote

a“"“f dx
4

by a,. The value of , is independent of a. Then, since y is a
sphere, we can put

dy'...dy'tdyttdyt = (- 1) la Ny, —x,)dE,

and we obtain

f o} (2,y) x u(y)
Y

= (= 1)r-D-lg=—n-1(p 2)f A é (Y, —z,)%da! ... da? 1dZ

Y »

+ ( —_ [)11(1»—1)—1a—~n—1(n__ 2)f A z (_ 1)IIH'
Y i<p
r2p

X (Yp—2x,) (y;—x;)dact ... dxi-Vdx' 11, daP-1dxrdX.

Now since u(y) is regular we see that the error ¢ involved by
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replacing A by its value 4, at O tends to zero when @ tends to
zero. Therefore,

[ s xuw)
Y
= (= 1)e-D-1g-n-Ypn —2) Ay | 3 (y,—2,)%da’ ... dxP~1dZ
D

+ ( _ l)n(p—l) -1 awn—l(n _ 2) AO 2 ( — l)IH-i
Y i<p
r=p

x (y, —,) (y; — ;) do' ... dai-1dai+) ... daP~1da"dX + €
= (=1 D-1(n-2)An~Yn—p+1)a,dat... dxz?-1+0+€
= (= 1)ur-b-1pYn—2) (n—p+ 1), [4(2)]r.0 6
where € tends to zero with a.
Hence we deduce that for any regular (p — 1)-form u,

lim Jy«—u,",ﬂ(x, y) x u(y)
= (= 1)r-D-1p-Yp—2) (n—p + 1), u(x).

When we consider the other limits listed above, it is suffici-

ent to consider the case
u(y) = Ady*...dy» 2,

as in the calculation just given. To calculate the second limit,
we have

(L) @f_a(, ) x w(y)

= (= 1)n-D@-D(n—2)dyt ... dy"

p—1
Ay (- 1)t p(w—y;) dat ... det -t dat it daP !
1
— ( — l)(n—l) (p—-1) dyl . dJH

X Apil(— 1)i-1 —a
1 ay (pn -2
= (._. l)(n—l)(p—l) dyl .da y"
o[ A 1 04
o
Z ( ) a?h pn—2 pn—-z ay
xdal... dxi-1dattt... da? L.

) dat . dei-Ldzi+ . dap -1
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Hence

f @) x ()
= (- 1)(n—1)(11—1)f Ap‘""+2p)-:1dx1 .. datt
v 1

xdxitl . dxP-ldyt ... dyi - dyi“ o dyt
04

. p—1
—(— 1) l)(p~1)J -n+2 Y (1)1
(=1 LR DT

xdat ... dxt-tdatt! .. dxrdyt ... dy.
Hence

[ #-segrxuw],

p—1
= (= 1)=D@=D (p 2)f a1 A[pz] (yp— )2 dat ... daP-1
1% 1

+ X (= )Yy — ) (y;— ;) dod dat ... dai—?
i<p
izp

x dxttl. . dx? 1 |dZ +¢

= (= 1)@ Dw-Dp-Yy-2)(p—1)a, Aydzt...dxP1+¢,

where the terms included in ¢ tend to zero with a. Hence, for
any regular u,

lim [J Y _o(x, ) x u y)]
a—>0

= (= 1 DOV 2) (p = oty u(a).

(ILI) We now evaluate

£
lim I:f w*(y) X ©,_¢(y, x)] .
a—>0 é xr

We consider u*(y) = Ady» ... dy".
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Then,

[ f , u*(Y) X Bp_4(y, x):L

— (= 1)n-D w—n[ f P Adat .. derdyt .. dyn]
z
= (—1)*p-D- 1[f - ( - 2)dxl...dar:""ld.z:"dy‘...dy"
é‘k p
fp—"“ > Ad:z:1 . dxp 1 dxkdyl...dy":l
k= pa k

= (_l)n(p 1) 1[ 2‘ —l)" lp‘"“A dxl...dxPYdxk

xdy'...dyk-1dyk+1 |, (ly":l

+ (= 1)~ 1’[f “"*22 -udxl dx"—l(lx"dyl...rly"],
» OYk

S ) 0 1
since a /)" -2 aJ n n—2

Now[ Z (—1)k1pnt2 Adal ., dar - dzk

*
xdyt...dyktdykt . dy“:l

=(- I)T‘—ll: 2 p A der .. dakVdak | dan

vk=p

xdy' ... dyk-ldy*+ ... dy :I
= (1pe-]| [ a3 (3 1y-a140)

X dx? ... dektdxk+l | dandy! ... dy* L dyk+? ...dy"]
= (n—-2)f P14 2% (v — 2 )2 dz? ... dz" dX

(= 1Pt ) fm Pt Ay~ ) (g~ )
k=p

x dxidx? ... dak1daktl . dan dZ
=nYn-2)(n—p+1)a,A,dx? ... dx" +e,

HHI 9
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where € tends to zero with a, and 4, is the value of 4 at O, by
reasoning similar to that given before. It is easily shown that

. 04 *
bm | | p~t2_ da'...dap-tdakdyl...dy | =0.
a>0LJs OYx x

Hence we conclude that for any regular

tim | [ w4 x5, (0.9 |
a—0 8 x
= (= 1Dt n = 2) (= p+ 1)y ula).
(IV) Finally, we have

|, v ), s 00

= (= 1y [ )<y )
Y

+ (- l)“—l’J uf(y) x w,_5(y, x).
8

Hence

[ j W) X By, oY) )] — (—pyran f UM ) X Ty, 7) +e.
3 Y

By a calculation similar to one performed above, we see that
the right-hand member reduces to

(=D VD= 2) (p~ 1) @, ufe),

when a tends to zero.

31-1. The existence theorem, continued. We now
show how the calculations of the previous paragraph can be
used to reduce the proof of the existence theorem to the
solution of a certain integral equation, and obtain some results
which are of importance in the solution of this equation.

The first step towards constructing a harmonic integral
with assigned periods is to construct a regular closed form 4
whose integral has the given periods. We saw how to do this
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in Chapter 11. Another regular closed form whose integral has
the given periods is given by

A—ug,

where u is a (p — 1)-form. Our problem is to find a form » such
that thisis harmonic, that is, we have to solve the equation in %,

— A*
ut, = A*,.

We have therefore to consider the problem of solving the
equation

u-tx:f’ (1)

where f~0.

Let A denote an n-dimensional chain of M having boundary
I, and let w and v be two (p — 1)-forms which are regular in a
domain containing 4 and I'in its interior. From the equations

(utxv), = ur, xv+(—=1)"Pu* xv,,
(rxu), = vy xu+(—1)"Povxu,,
U X v, = v Xu,,

we obtain the equation

fu”zxv—f1)zzxu=fulxv—f v X U, (2)
4 4 r r

Let 8 and vy be defined as in the previous paragraph, and let
4=M-6,
I'=—7.
In equation (2) we take v = w,_;(»,y). Remembering that
when a, the radius of y, tends to zero we can replace w,, (,y)
by @,_,(«,y) when integrating over y or 4, we have

f LOh-10(@y) xuly) = L wy Xy, _y(2,y)

(= D)"Y~ 2) (n—p+ 1) @, u(z) + £,
9-2
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where £ tends to zero with a, by (I) of § 30-5. Also,

| Ui-22(%Y) X u(y)

= [J‘Mo);’,_z(x, Y) X u(y):L - I:J; wp—2(2, Y) X u(?/):L
=[] ot-ste uin |

— (= )EDC VnHn —2) (p— 1) ot uler) + 7,
by (II) of §30-5, where 7 tends to zero with a. Combining
these two results, we have

j Ky (@) xuly)= (= 170 (0= 2) )

- f ) x 0 0:)

= 1| [ opsm x| 48

~(— 1y fMut(y) X0y o(4:) L, (3)

where { tends to zero with a. Since the other terms in the
equation are independent of @, { = 0. Similarly we have, using
(IIT) and (IV) of § 30-5,

f w*(y) x K, _y(y, )
M
j W) x K,y () + f W) x K, 1(y, 2)

~[[ o, m)] (1| [ o, s |

4 f () x K,_4(y, )

R SR

+(=1)"r V0 n—2)(n—p+1) nu*(x)
+ (=) VY n-2) (p—1) o, u*(x) +£,
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where £ tends to zero with a. Therefore, by a simple calculation,
we have

([, ctrmr o]

= j wy) x Ky (4, %) — (= 1)@= (n = 2) &, ()
M

—(—1p f w3y x 05-a(0, ) )

31-2. From equation (3) we observe that if u(z) is a closed
form, then

[ Koata <ty
M
is also a closed form, and that if %(x) is null, then
[ Fute.yx )
M

is also null. Of more importance in what follows is the corre-
sponding result which can be deduced from equation (4).
From this equation we see that

f"u*(?/) X Kp «1(ya iL')

is closed when u*(x) is closed, and null when »*(z) is null.

31:3. From equation (3) we see that, if » is any solution of
(1), w satisfies

[ Kuatant) xuty) = (= 10 (1=2) o, u(o
= [ 1) %0y st )+ (=11 [ w3t0) 0,0 10,2,
M M
We notice, however, that if % is any solution of (1), so is

% +v,, where v is a (p —2)-form. Now, if we suppose that we
can solve equation (1) when p is replaced by p—1, and the
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unknown form is a (p— 2)-form and the second member is a
null (» —p + 2)-form, we can choose v so that

e, = —u¥,.
Replacing u by u +v,, we can therefore suppose that
u* -0,

and u is then a solution of the integral equation
[ Kases) cutp)= (= 10002 (1 2) 2, a0

- [ toxoaw0. @

«

We shall proceed to solve our existence problem by con-
sidering the solution of this integral equation. The method will
be one of induction on p; and in the course of the proof of the
existence of a harmonic p-fold integral with assigned periods
we shall show that equation (1) has a solution whenever f
is a null (n—p +2)-form. Consequently, it is permissible to

suppose that
u* — 0.

At the same time it should be observed that this assumption
is not really necessary; we merely solve (5) and deduce from
the solution obtained a solution of (1), and the above remark
is made merely to show that the omission of the term

(11 [ 10)x 0,0 0.0
from (3) has an obvious explanation.

32-1. Digression on the solution of integral equations.
Equation (5) is equivalent to N = (pn l) equations in the

coefficients of the form w. If we write these coefficients in
some order as
Ill, ceey ’ll“,v,



11, 32-1] INTEGRAL EQUATIONS 135

the equations are of the form

u@)+A [ Kieyu@idn, =@ (=10, @)

where the functions Ki(z,y) are continuous in z or y except at
z = y, and in applying the summation convention we sum from
1 to N. The parameter A is introduced for convenience, and
dr, is an element of volume, the suffix y indicating that the
integration is with respect to the variables (y,,...,¥,). The
equations (A) form a simultaneous set of Fredholm equations
of the second kind, and the reader is referred to the standard
works on integral equations for the solution (see, for instance,
Hilbert[2] or Kowalewskif6]). In the present case Ki(z,y)
becomes infinite when x = y, but, since the coefficients of
[7(x,y)]* ' Ki(x,y) are finite cverywhere, the necessary and
sufficient conditions that (A) should have a solution are of the
same form as if Ki(x,y) was finite everywhere.

The following are the main facts which we require to know
concerning the solution of equations (A).

1. If the parameter A has any value which is not a zero of
a certain integral function D(A), there exists one and only one
set of continuous functions w,(x) which satisfy (A). The
functions are all zero if f;(x) is zero for cach i. The solutions
can be written as infinite series in the form

DO uia) = D) + XX f L w9) ),

The series on the right converges for all finite values of A,

II. If A = A, is a zero of D(A), the set of homogeneous
equations

ui(x)+A1fMK’; (@, y)uly)dr, =0  (i=1,...,N) (B)

has a positive finite number of linearly independent sets of
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solutions, and moreover the associated set of homogeneous
equations
v*i(z) +/\1f v¥i(y) Ki(y,x)dr, =0 (i=1,...,N) (C)
M

has the same number of linearly independent sets of solutions.
The zeros of D(A) are called the characteristic values of the
parameter in (A). If A, is a characteristic value of the para-
meter, equation (A), with A = A;, has a solution if and only if

J v¥i(z) fi(x)dr, = 0
M

for each set v*i(x) of solutions of the associated equation (C).
Moreover, if the conditions are satisfied by the functions
fi(x), and if

U, A)y .ony upn(, A)

is the set of solutions of (A) for a general value of the parameter
near A;, then the limits

limu,(x,A), ..., imuy(z,A)
A—>A, A—>2,

exist, and give a set of solutions of (A) with A = A;; and the
most general solution is obtained by adding an arbitrary
solution of (B).

III. The non-homogeneous equations

7;*i(x)+)\f vi(y) Ki(y, x)dr,, = g¥(x) (¢=1,...,N)
M
(D)

have the same characteristic values as the equation (A). If
D(A) #0, the solution of (D) is given by

DO @) -gw)] = S f 0 Liyly, 9)dr,,

and if D(A) = 0, the equation (D) has a solution if and only if
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for each set of solutions u,(x) of (B). The other properties,
stated in (II), of the equation (A) can now be applied to (D).

IV. In the present case [r(z,y)]*! Ki(x,y) is a function of
class (v—3) of the local coordinates, when regarded as a func-
tion of z or y. In this case we can say that the solutions of (B)
are functions of class (v — 3) of the local parameters.

32-2. When we express these results in the notation of
forms, we obtain theorems which will enable us to solve
equations (1). Along with the equation

f Ko, y) < () — (— 1) (n— 2) 1, u(a)
M

= f f(?/) X wp-—l(y’ x)’ (5)
M

we consider the homogeneous equation
| Kra@ gy xut) = (=199 D -2z, um =0 (0
M

and also the associated equation

f v¥Y) X Ky (9, 2) = (= )P0 (n = 2) , v¥(x) = 0, (7)
M

where v(x) is a (p— 1)-form. Equations (6) and (7) have the
same number m of linearly independent solutions. If m = 0,
(5) has a unique solution, whatever the form f(y) may .be.
If m > 0, (5) has a solution if and only if

| [ Jwx0, ) <o) = ®)
MJM
for cach solution v*(z) of (7).

32-3. We now prove a lemma which will be used later in
this chapter.
Let us consider the non-homogeneous equation

A f ) < Ky y(,2) = (= 0D (0= 2)a, wk(z) = Fe),
7y
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where K, ,(x,y) is the form defined in §30-3. We are only
interested in values of A near A = 1, and we may suppose that
A is restricted to a domain containing no characteristic value
of A different from A = 1, which may or may not be character-
istic. If A =1 is a characteristic value, we assume that the
(n—p+1)-form F(x) satisfies the conditions for the existence
of a solution of (7)" when A = 1.

The unique solution of (7) for a general value of A is given by

D) @) - Fl@)] = X A» f () x Loy, ).

The series on the right converges for all finite values of A, and
the integral function D(A) does not vanish for any value of A
in the domain, other than A = 1. The function vanishes for
A = lif and only if (6) and (7) have non-zero solutions.

We saw in § 31-2 that if w*(x) is closed, then

f w*(y)x K, 4(y,)
M

is also closed. From the manner in which the forms L,(y, z)
are constructed, it can easily be shown that this implies that

fu*(y) X Ly (y, )

is closed. Hence if F(x) is closed, the solution of (7) is closed.
Now let A tend to 1. The solution of (7)’ tends to a solution
of the cquation in which A is replaced by 1, and it is easily
shown that this solution is closed.
We can now make the following deduction. Let u*(x) be
any regular form such that

F(x) = f‘ w*(y) x KI, Ay, x) = (= 1)@= (n - 2) a, u*(x) > 0.
Al
There exists a solution «*(x) of (7)" (with A replaced by 1)

(7
which is closed. Hence w*(x)—v*(x) is either zero or else &
solution of (7).
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Since, by §31-2, if u*(x) is & null form,

[ <K, -0,
M

we can, by a similar argument, show that if u*(z) is any regular
form such that

j )% Ky a(32) = (= 10D (1= 2, w(e)~0,

there exists a null form v*(x), such that w*(x) — v*(x) is either
zero or a solution of (7). Finally, on account of the last results
of §32-1, we can say that any solution of the homogeneous
equation (6) is a form whose coefficients are functions of class
(v — 3) of the local parameters.

33-1. The existence theorem, concluded. Since there
does not exist a harmonic integral with all its pericds zero,
the number of harmonic integrals of multiplicity p which are
linearly independent cannot exceed R,. But B, =1, and we
have seen that a constant ¢ is a harmonic integral of multi-
plicity zero. Therefore the existence theorem is proved in the
case p = 0. We may use induction to establish the result in
the gencral case, and for this purpose we shall assume the
truth of the theorem for (p — 1)-fold integrals.

Let us denote by

i
Up-1

(7:= 1, ceey RI)—I)
the harmonic forms of multiplicity (p—1). Substitute u},_,
for w in (3). Since

.ul

p—1"" 0, [;'1(’1;1—1]* -0,

we see that «},_, is a solution of the homogeneous equation (6).
Consider any other solution of (6) which is closed. Since there
are R, , independent harmonic (p — 1 )-forms on M, any closed
(p — 1)-form is equal to the sum of a harmonic form and a form
whose integral has zero periods. We may therefore take the
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set of closed forms which satisfy (6) to be the harmonic forms

and the forms _
(/51 (’L=l,...,xp_1),

whose integrals have zero periods. Finally, suppose that there
are 7, , solutions of (6), no linear combination of which is

closed, and denote them by ‘
Yl (t=1,...,T, ).

If we substitute for ¢! and ¥ for u(y) in (3), we obtain the
equations

f O, x 0y ol 0) >0,

and f P, X0, 4(.0)~0,

and from (4) we conclude that
[ 30K, ) (= 170 D (0= 2y
-[ [, #or o, 0n] o
M x

and
J‘ju[!/,i(y)]y” X Kp—-l(y’ 'L) - ( - 1)11(”41) (’IL - 2) “u[l//i(x) I.c = 0.
(10)
33:2. From the theory of integral equations, we know that
the associated homogeneous equation (7)has B, ;+5S, ,+7,_,

independent solutions. From among these we can write down
7,_, at once. For, equation (10) tells us that

Yz, (t=1,...,T,,)
are solutions. Further they are independent; indeed if

M r
H‘M/’ x = 0,

then fai /34
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would be a harmonic integral without periods and hence it
would be zero. Therefore
ai!ﬁi——)O,

which is contrary to our hypothesis. Now consider (9), and
use the lemma of § 32-3. We have solutions

pix —Li (t=1,...,8,,),

of (7), where £ is a null form. If these solutions are connected
by a relation

a’i(¢i* - gl) -> 0:
then a;p* -0,
and hence faiqSi

would be a harmonic integral without periods, which is not
possible. The S, _; + T, , solutions of (7) which we have found
are therefore independent. Again, if we substitute u%* ;, for
u* in (4) we obtain the equation

J\M[u})Al(y)]* X Kp—l(y’ .'17) - ( - 1)"("71) (n - 2) a’n[u’;—l(x)]*

- U a1 x 0y, x’]:

and by an argument similar to that given above we deduce
the existence of B, ; further solutions

ui -t 9i~0  (i=1,..,R, )
of (7), and show that these, with the S, ,+7},_, solutions
already found, give a complete set of independent solutions
of (7). It further follows that any solution of (7) which is null
can be written in the form

a; '/’ixz'

33-3. Before applying the test (8) for the solvability of (5),
it is convenient at this stage to prove two lemmas.
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I. If v* i3 any solution of (7), then

u = J. v*(y) x w,_(y, ) > 0.
M

From equation (4), and the fact that v* is a solution of (7),
we have
.

wr, = (=1p [ o) <o, 0]

and hence u*r ~0,

Therefore fu”,

is a harmonic integral with all its periods zero, and so
u*, = 0.

Therefore Juz

i8 a harmonic integral, and all its periods are zero; hence
u—>0.

LL. The most general solution v* of
fv*(y) X 0y _4(, %) >0

which is null is given by
v¥ = a; ¢i1r

By (4) it follows that o* is a null form which satisfies (7),

and hence
v¥ =a .

33-4. Kquation (5) will have a solution if and only if
[ f0x 0, s0.2) <o%@) = 0
Mo
for each solution v* of (7). By Lemma T we know that

f ©p_1(Y, ) x v¥(2) >0,
M
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and the condition is therefore satisfied, since

f~0.
Let u be a solution. From (3), we have
[ b -tonxo,.0~0
and u,—f~0.
Hence, by Lemma II, we have
w,—f = Zapie,

where the coefficients a; are constants. Hence, if

U=u—ay,
U=, =f.
Therefore f(A -U,)

is a harmonic integral with the assigned periods. In order that
this harmonic form should be regular U must be of class
v—3>3, i.e. v=0.

We have thus established our existence theorem for a
general value of p. We have seen in the course of the proof that
a harmonic p-form satisfies the equation

f Ky <uly)— (= 17 (1= D, ule) = 0.

If we now refer to the results quoted in §32-2 regarding
integral equations, we conclude that the coefficients of a
harmonic form are functions of class v—3 of the local para-
meters. If v = w, that is, if the manifold is analytic, and it
is possible to introduce an analytic distance function, the
coefficients of a harmonic form are analytic.

34. De Rham'’s second theorem. It should be observed
that in the proof of the existence of a p-fold harmonic integral,
we did not make any use of the theorem that a closed form
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whose integral has all its periods zero is a null form. We are
now in a position to deduce this theorem.

On any manifold M of class »>7 we can, as we have seen,
introduce a metric of finite class » = 6. Suppose this is done,

and let
¢

be the integral of a closed form which has all its periods zero.
Then, by the result of §33-4, there exists a closed form U
such that

Jo-v

is a harmonic integral. But since this integral has no periods,
¢ - Uw =0,

and hence ¢ is a null form.
35. The equations satisfied by a harmonic tensor.

Iij is a harmonic integral, where

P = ~I~P dxtr | dxte,
p!

Tyenelp
we say that the tensor P, i, 18 @ harmonic tensor. Let us now
consider the differential equations satisfied by a harmonic
tensor. The condition
P—>0
is equivalent to
»+1 )
Z ('~ l)r_l a,“ I-:

r=1 1

=0,

1---'l.r—l ir+1~--ip+\

in any coordinate system. Consider, in particular, a coordinate
system (y,, ..., ¥,), geodesic at a point O. At O we have

0

'ayka,...i,, = Pi....i,,k
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and hence the condition at O is given by

p+1
EO(—l)r 1P cdrmyfybrendp e = O’
e
. J\ Jp 1 —
that 18, 8 clp i l)jn---jp,jph =0.
Hence in any coordinate system
Y B H —_
61: lle jp Jpitr 0. (ll)

Conversely if (11) is satisﬁed at all points of M, we have, at
any point O,

P+l 2
N (—1)— -- . . . =
r:]( 1) ayi, [RTRS PARE PP PR O’

in geodesic coordinates at O, and hence in all coordinate
systems. Hence (11) is the necessary and sufficient condition

that
P->0.

Again, we have similarly as the condition that P* should be

Cl()Sed,
Jieesdne %
8 Al In—p i1 4 —_ 0’

tieveln—p+1 Jl---ju—p.jn—-p T
that is,
Jreedn—p . ferl ko, -
3,':__,1':_,‘: g vy iy O B L G = 0,
that is,
] . Jieesdn—pi1 kol kepl =
NG €y kpdrendnpOtrta i ghl L g ”}7,...1,,,7',,_,,,,. = 0.

Since (9%7) is a non-singular matrix, we may replace this last
equation by the equation obtained by multiplying it by

NG s gl
We obtain the equation

i - i by gk -
g lgm‘ e gtiinoeh Chrenkpireednap I e PP B g e = 0.

gan-—p-ﬂjl e g(lou—pl 1jn—pt1

HHI 10
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We now expand the determinant in terms of the last column,
and use Jacobi’s theorem that

7181 7y 8n - [
g g\ e gl t—p ) 1grn--p|18n—pl<| ) g"n—pdl&l )
|
l

Tn--p8 Tn~p 3
groRt L gt lgr,,s,._,,., gr,.sn |

where (r,....,r,) and (s, ..., s,) are like derangements of the
first » integers. We have, save for a non-zero numerical factor,

! PO {

rs 1 » —

8r(11. pigeeUn l’ll,,.lp,s - 0'

i.c. G Py iy e = 0. (12)

This equation could also have been obtained by using geodesic
coordinates. The conditions that £, ; is a harmonic integral
can therefore be taken as.(11) and (12).
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Chapter IV
APPLICATIONS TO ALGEBRAIC VARIETIES

In this chapter we make use of the results obtained in
previous chapters to investigate properties of algebraic
varieties. We first show how to construct a set of Riemannian
manifolds corresponding to an algebraic variety V,, of m
complex dimensions, and then proceed to investigate the
properties of the harmonic integrals on one of these manifolds.
The metric on the manifold has certain special properties
which enable us to make a classification of the harmonic
integrals of multiplicity p into a number of sets. This classifica-
tion is closely related to the classification of p-cycles of the
manifold due to Lefschetz. It appears that, for each value of
p not exceeding m, there is a special linear sub-set of the
harmonic p-fold integrals, containing E,— R, , linearly in-
dependent integrals. We call the integrals of this sub-set the
effective p-fold integrals, and show that all the important
properties of the harmonic integrals on the manifold can be
expressed as propertics of the effective integrals.

The results we arrive at can be expressed most simply when
we make use of complex parameters (zy,...,2,,) on V,, and
take (2q,...,2,,5 21, ..., %,,) as parameters on the Riemannian
manifold, where Z;, is the conjugate imaginary of z,. When we
do this, we find that we can classify the B, — R, , effective
p-fold integrals into (p+ 1) classes. The integrals of the
(k+ 1)th class can be written in the form

-

JAf;...ip—ij..-jk dz ... dair-rdghh . dii,

where the summations are from 1 to m, and the integrals ot
the (p—~L+1)th set are the conjugate imaginaries of the
integrals of the (k+ 1)th set. The first set consists of the

10-2
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algebraic integrals of the first kind of multiplicity p associated
with V,,, but the second, ..., pth sets depend on the particular
Riemannian manifold associated with ¥, which we have con-
sidered. It is shown, however, that the number of integrals
in each set, and the period matrices of the integrals of each set,
are relative birational invariants of the variety V,. We then
show how a number of geometrical properties of V, can be

expressed as properties of these invariant matrices.

36. Algebraic varieties. It is well known that, given
any irreducible curve U, there is associated with it a real
analytic manifold M of two dimensions, which we call its
Riemann surface. This manifold is not a Riemannian manifold,
since it does not carry a metric, but, as we shall see later, it is
possible to attach to M a Riemannian metric so that the
harmonic integrals defined by this metric on M are well-
known invariants connected with the Riemann surface. We
wish to generalise the idea of a Riemann surface, and to
associate with any irreducible algebraic variety U, of m
dimensions a real analytic Riemannian manifold of 2m
dimensions. We shall then study the harmonic integrals on
this manifold.

If U, lies in the projective space S, of £ dimensions, we shall
show in the next paragraph how we can construct the Riemann-
ian manifold B which is to be associated with S;,. In R there
is an analytic locus M of 2m dimensions representing the
points of S, which lie on U,,. Now, if U,, has no multiple points,
we can show that M is a Riemannian manifold, provided we
define a metric on it, and this we can do by using the metric
on R. It is this manifold M which we shall take to be the
Riemannian manifold associated with U,, and we shall see
that, in the casem = 1, M is, essentially, the Riemann surface
of U, as defined in textbooks on algebraic functions (cf. the
remarks in § ). But if U, has multiple points, M will have
singular points, and in general it does not conform to the
reaunirements of a Riemannian manifold. There is a well-
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known way of getting over this difficulty when m = 1, but
this does not help us much in considering general values of m.
We must therefore consider how we should proceed in the case
in which U, has multiple points. We might try to extend the
idea of a Riemannian manifold to allow the presence of
singular points, and try to extend the results of previous
chapters to the more extended type of manifold, but it can be
readily seen that this would lead to serious complications, and
indeed this method seems impracticable.

The alternative is to try to eliminate the multiple points
of U,, by means of a birational transformation. It is known that
an irreducible curve, or surface, can be birationally trans-
formed into a curve, or surface, without singular points. The
theorem that an algebraic variety U,, (m>2) can be trans-
formed birationally into a variety ¥V, lying in a space S, of r
dimensions. which has no multiple points, has not yet been
proved satisfactorily, but there are many reasons for believing
that it is true. The procedure we shall adopt in this chapter
will be to assume the truth of this theorem, and replace U,
by V,,, and take M to be the Riemannian manifold of V,, con-
structed as we have indicated. It will be noticed that in fact
what we are doing is to confine our considerations, in the cases
m > 2, to varietics U, which can be transformed into varieties
V,, without multiple points.

When m > 1, there is a further complication to be taken into
account. T'wo algebraic varieties V,, V;,, each without multiple
points, may be in birational correspondence, and yet not be
in (1-1) correspondence without exception, for certain points
of one may correspond to algebraic loci of dimension greater
than zero on the other. The manifolds M, M’, which correspond
to V,, Vi, respectively, are therefore not necessarily homeo-
morphic, and hence we can obtain from the original variety
U,, different manifolds M which are not homeomorphic. The
results which we obtain by means of harmonic integrals con-
sidered on M will not necessarily be the same as those obtained
by considering M’, and hence the invariants which we obtain
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are at most ‘“relative’’ invariants, that is, they are common
only to varieties obtainable from one another by birational
transformations in which there are no exceptional elements.
We must also make it clear that the metric which we intro-
duce on M is not uniquely fixed by the representation of U,
by a variety ¥,, without multiple points, even when we confine
ourselves to a class of varieties V,, which are in (1-1) correspon-
dence without exception. Thus, it would seem that by the in-
troduction of harmonic integrals we should arrive at characters
of ¥, which are not even relative invariants. However, it will
be shown that, from the results which we arrive at by the use
of harmonic integrals, we can extract certain properties which
do not depend on the metric, but are birationally invariant
properties of V,, relative to the system of prime sections of V,,.
By a proper system on ¥,,, we shall understand any continuous
system of varieties of m —1 dimensions on V), containing a
linear system without base elements which can be used to
represent V,, projectively as a variety without multiple points.
We thus obtain invariants of V,, relative to each proper system.
The importance of invariants relative to a proper system lies
in the fact that the classification of the cycles of M, due to
Lefschetz (7], is also birationally invariant relative to a pro-
per system, and one of the main objects of this chapter is to
obtain a parallelism between the results obtained by means
of harmonic integrals and Lefschetz’s classification of cycles.

37-1. Construction of the Riemannian manifold. Let
us consider an irreducible algebraic variety V,, of m dimensions,
without multiple points, lying in a projective space S, of r
dimensions. We shall construct Riemannian manifolds R
corresponding to S,, and M corresponding to V,,. A very con-
venient method of representing the points of S, by the points
of a real analytic locus of 2r dimensions has been given by
Mannoury 9.

Let (2, ...,2,) be a set of complex homogeneous coordinates
in S,. Since only the ratios of the coordinates of a point are
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determined, we can, without loss of generality, suppose that
the coordinates of each point are subject to the condition

ZoZo+ - 27 = 1, (1)
where 2, and z, are conjugate complex numbers. Let X,,
Xowr = Xon» Yo = —Yin (R#Ek) be rectangular cartesian co-

ordinates in a Euclidean space E of (r+ 1)? dimensions, and
consider the locus R defined in E by the equations

Xh = \/2 ZnZns
Xk = 2%+ 252, (2)
Yir = (a2 — 22,
where 7 is a square root of — 1. Risareal locus. Moreover, since

m m

m
X+ ¥ th+hv Oth = ~Ezh~h+4h§kzh5hzk5k

h=0 hk=0
h+k
m 2
= 2| X 2,2,
h=0

=2’

the locus is finite. If P is any point of S,, and (z,, ...,2,) are
coordinates of P satisfying (1), the most general coordinates
of P which satisfy (1) are (e¥z,y,...,€%%,), where 6 is rcal.
But, since

N2(€2y) (e 2)) = \22),%,

(€2) (€79Z,) + (e72,) (e¥2y) = 221 + 242y,
i[(e%02y) (e 2;,) — (e7Zy,) (€¥2y)] = 4(2, 2, — Zn %),

there is a unique point on R corresponding to each point of S,.
Conversely, if (z,,...,2,) and (2, ...,2;) both satisfy (1), and
determine the same point on R, we have

4
% _ X — 1V _*n
;n, /2 xYk zk,

and hence cach point of R corresponds to a unique point of §,;
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R is therefore of 2r dimensions. In R there is a locus M which
is in (1-1) correspondence with the points of S, on ¥,,; M is of
2m dimensions. We shall prove that R and M are Riemannian
manifolds. Since S, can itself be regarded as a special case of
a variety without multiple points lying in S,, it will be sufficient
if we prove the result for M.

37-2. M isalocusin E defined by a finite number of analytic
equations. We first show that it has no singular points. Since
V,, is an algebraic variety without singular points, we can
express the neighbourhood of any point of it parametrically,
as follows:

Pz, = fh(ul‘ tee um)v

where the Jacobian matrix of the functions f,(u,, ..., u,,) is
of rank m. If we write
Uy = xh.+‘m:m+h

and substitute in (1), we can determine an analytic funection p,
different from zero, so that (1) is satisfied. Substituting in (2),
we obtain an expression for M in terms of paramcters
(24, ..., &y,). The Jacobian matrix is of rank 2m, and hence M
has no singular points. M is therefore a manifold of class o,
as defined in Chapter 1.

To prove that M is orientable, we consider the set of all
coordinate systems on it obtained from local complex para-
metersonl,,, as (xy, ..., xy,) isobtained from (uy, ..., %,,), above.
Let (uy,...,u,) and (ui,...,u;,) be two systems of complex
parameters on ¥, which are valid in the same domain. If

Wy, = X+ 0y, (h=1,...,m),
and g, = X+ 1,1 (h=1,...,m),

(@1, ..., 25,) and (g, ..., x,,,) are local coordinate systems on M
valid in the same domain. In this domain we have

x;: + ix;ﬂ+h = ¢;,(-’IJ1 + ixlll*f-l’ e Xy + ‘ix2m) (h =1,...,m),



1v, 37-2] ALGEBRAIC MANIFOLDS 153

and the Cauchy-Riemann equations are

’ /’ / 4

0y _ O%mip  OFpyp _ _ 0Fp k=1

P T T e (h,k=1,...,m).

Ty, Lin+k Tk Lo vk

. ox; ox,
Write h =y, S,

a hk> a hk
xk ‘Lk

Then the Jacobian matrix of the transformation of the
parameters is
?:._vj) (2 —b)
ox;) \b al’
and is non-singular.
Now if I, is the unit matrix of m rows and columns,
a -—b) L, d,)_(a-i i(a+ib))
b a/\il, I,/ \ia—ib) a+:ib

(L, ;I,,,) a—ib 0
=i, 1 0 a+ib)

m m

. 8| oI
Sln('e i 'm m} = am # 0’
rlII" IIH
| Ox; . . 2
we have .| =|a+i/b||a—ib| = N2>0,
| 0]
L)
where N is the modulus of the Jacobian ajlz" . The coordinate
J

systems on M obtained from the complex parameters on V,
therefore form sets serving to orient M, as in §4. Moreover,
since V,, is irreducible, M is connected.

M is therefore an analytic orientable manifold. To make it
a Riemannian manifold we must introduce a metric. Since M
is a locus in the Euclidean space E, given locally by the
analytic equations

Xh = fh(xl’ RS 3)2,"),

Xk = furl@ys - oos Zam),

Ifhk = fhk(xv tees x2m)!
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we can define the metric g,;dzidz’ by the equations
of), 0 ™ Ofne O ™ ofur of
gy = L 1 fh ¥ f nic U i f nie O

h= oax 8xj hk Oax 8xj hk—= oax axj
+k h+k

It may be observed that, in proving the existence theorem for
harmonic integrals on M, we may take the distance function
r(z,y) to be the Euclidean distance in £ between the points
of M. Then r(x,y) is an analytic function, and the harmonic
tensors on M have analytic components. It is also to be
remembered that the metric on M depends on the representa-
tion of V,, as a variety in S, and on the homogeneous coordinates

used in S,, so that the harmonic integrals depend on these
considerations. This objection will, however, be removed later.

37-3. In the case m = 1, M is, essentially, the Riemann
surface of V;. Let 7' denote the Riemann surface of ¥}, con-
structed in the usual manner. If P is any place on 7 and
t = o +7 is the local complex parameter at P on T, we may
take u, = t. Then M is given by the analytic equations

‘Yh = f,,(O',T),
Xl«k = fhk((r’T),
Yoie = guilo,7),

afh af hk ag]’k
do  do  Jo

U O Y

or ot or

where the matrix

is of rank two. M is therefore analytically homeomorphic to 7'.
Moreover, as we shall see below, the metric is of the form
Aldo®+dr?]. Hence the Riemann surface defined by the
Riemannian manifold. as in §1, is the Riemann surface of
the curve V.

38:1. Discussion of the metric. We now cexamine the
metrics which we have defined on R and M. We begin with R.
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Let (2, ...,2,) and (&, ...,¢,) be two points of S,, whose co-
ordinates satisfy (1). The distance p between the corresponding
points of £ is given by

pP=2 % (Zhih—ghgiz)2+h§k(zh5k+5hzk—§h G- G &)
- E (zhék —Z2;— 5 G+ G Gi)?
= 2% 22— 6)? +4Z (zhzk &8 Gz — G
= 2§zh2h+2§€h§h_4§zh2hghgh
+4 32,225+ 4 2 66686 -4 2 2.6, 224
hEk htk A K#h
= 2[X 22,2+ 2T 5GP — 4T 2.8 12 20 6l
n x n n
- 41| Za gl

Let us suppose that z, and {, are both different from zero,
and introduce non-homogeneous coordinates

(2 (Bg)
z

Write zh = Ty + 1%, p, g Enttbrin
0 0

If we are given the non-homogeneous coordinates of the points,
we can determine homogeneous coordinates which satisfy (1)
by writing

2o =20 2 = 2(Tp+1%pyn),

and \CO = §0: gh = §0(§h+igr }-h)’

where z, and {, are real and positive, and satisfy

2r
z%[l-#)]xﬁ:l =1,

1

2r
a[1+3a]-
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Then

! (xh + ixr+h) (gh - igr+h) + 1 I
/)2 = 4 ] — — - g —— o !

ogalfa]
[ EA05)

2r \ 2 r r 2
- ( I+ 21:9“'/1 gh) - ‘21: ((L‘;, gri'h —'xr+hgh): :I

o
I~
-

4 r 2r
=cpae oy o[ Sfre S @b ng)
[I+)_]xﬁ:|[l+2 :l hk=1
1

_ {L (&, 11— Ty fm’}z] !

where, in the summation over &, k, each pair is counted once.
Let us now suppose that the points are near together, and
write
ay = &, +dg".
To the second order of small quantities, the distance p = ds is
given by

4 2r
dst = _ {m%>zw% — £ dg")”
[l+2}£f,]~ ' .
r 2
{\T: £ dgrlh'_grf-hdgh)} :I
= ) dEidE, (3)
where
481’} 4[&,&, '+ g,uﬁnj]

Weij = Meviri = o T o (<),
(e [
1
4[E: 6 —Erridy .
Nevij = — L& ”jz, reii] (2, <7).
[1+E€i:|
1

and Nippj =~
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There is a convenient rule for expressing these formulae for
74 Let us suppose that £; is defined for all integral values of
the suffix ¢, in terms of £,, ..., £,,, by the formula

g2r+i = —gi'

If we define a function ¥ by the equation

2r
= Jogl:l-f-}]g}’;:l,

By

we find that Nij = Y g ¥ g) a §r+L 2 §r+j

for all values of i, j.

38:2. We have now found the form of the metric on £ in
a particular set of local parameters. Let us make a trans-
formation of the complex parameters on §,, say,

Entib i =Ll +ib s s E B

Defining &;, for all values of the suffix, by the equations

’

—_—
S+ T Siy

we can write the Cauchy-Riemann equations in the form

agl agr”
oo _ Torth hk=1,...,2r).
o, o, " ")
Then
0F, 0F, _ % 0508 O 08 0

i pe: og; = OF,0F; ok, o5, " oe, 08, 0E, oE,

azW agt ag] . aolp agr+1 a£r+j
ag ag agh agk q r+1a§r+] agr+h agﬂ»k

_ 2y oy g A
T 08,08, 08 08,08 ' 0L, 1,08, . 0L 0E, 408k
o e
= 06,08, ok 08
0%, 0%,

since =0,

4 4 + ’ ’
0£n 08, 011006, i
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In applying the summation convention, we have of course
summed for ¢, j, ete., from 1 to 2r.
In the new system of coordinates the metric 7;;d§"*d§"? is
therefore given by
a2¢ allﬁ

9 i+
Vs = ogog oty 08,
In particular, if we take new non-homogeneous coordinates to
Z\ . .. . .
be C“, ey -’-) in §,, the metric is given by this formula. We
1 1

might, however, have begun with this system of non-homo-
geneous coordinates, and we should then have obtained

,,_,,?y 2y
I T ages T og oELy

where V' = log (l + Y ’2)

= ¢ —log (§3+&2,1)-

This emphasises the fact that i is not unique. We can, indeed,
modify ¥ by the addition of any function ¢ which satisfies
the equations

2 ¢

o Ar
;}‘g:ag] arfiagr‘t—}'

In particular, we see that in the neighbourhood of any given
point of B we can modify ¢ so that it is analytic in the neigh-
bourhood.

=0 (¢.g=1,...,2r).

38-3. We can now consider the metric on M, which is o
sub-manifold of R. Let ¥}, be given locally by the parametric
equations

‘:L:h + l‘gr th = .fh('rl + i‘r/11+11 cee 17,,, + i‘m‘zm) (h': l, seey T)’

and now define v, for all integral values of the suftix 4 by the
cquations

Loptn = — -
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Just as when we considered the transformation of local
coordinates in §,, so we now prove that the metric on M is
given by

g;jdxdl,

N2,/ 02
oy oy (tJ=1,....,2m). (4)

where Gos = T
i axiax]' a‘z’.m+iaxm+)‘

The metric on M will have this form whenever the local
coordinates on M are deduced from the complex parameters
on V,, in the way we have done above. In this chapter we shall
not have to consider parametric systems on 1, obtained in any
other way., and we may restrict the systems of allowable
coordinates to systems like (2, ..., %,,), where (z, +ix,,,,, ...,
Z,, +1%,,) are complex parameters on F,,. For these restricted
systems of allowable coordinates we shall prove certain
theorems which are not true for general coordinate systems
obtained by analytic transformations. Since we shall not
usually state explicitly that the theorems only hold for the
restricted systems of coordinates, we must warn the reader
not to apply the results of this chapter to more general
coordinate systems on M. In the present chapter it is to be
understood that the term “allowable coordinate systems” is
to be interpreted in the restricted sense. We observe that when
m = 1, the metric in our allowable coordinate system is always
of the form A [(dx')? + (dz?)?], and hence the Riemann surface
determined from the manifold, as in §1, is the Riemann
surface of 1.

We shall refer to the Riemannian manifold M which we have
constructed as an algebraic manifold.

39-1. The affine connection and curvature tensor. A
Riemannian space M in which the metric is given by (4) has
some special properties which are of interest; they will play
an important part in our later investigations.

We first show that at any point of M we can find an allowable
coordinate system of the restricted type which is geodesic.
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Let (2, ...,2,) and (2, ...,2,) be two systems of homogeneous
coordinates in 8,. Using either of these systems, we can follow
the process of §37 to construct a Riemannian manifold of S,
(and hence of V), and the two Riemannian manifolds will be

congruent if and only if
13 5 133 35
| 2020+ ... + 215, | = | 220+ ... + 2.2, |,

where (z,...,2,), (zg,..-,2r) are the coordinates (satisfying
(1)) of two points of 8, referred to the first coordinate system,
and (%, ...,%,), (&, ...,%.) arc the coordinates (also satisfying
(1)) of the same two points referred to the second coordinate
system. Now, if the transformation between the coordinate

systems is

2, sz)“hkzk (h=0,...,7),
(

the necessary and sufficient condition that the manifolds are
congruent is

s ’ . ~ - ’ - = ’ .,
| 2020+ ..o + 202, | = | IL,‘(LO,‘aOkz,,zk-# cee + Y a2, |-
h, k

(LY

Hence we obtain the conditions

S i = S oia
X ayay = O e’
13

in particular, it a = (a,,;) is & unitary matrix, that is, if

the condition is satisfied. When the Riemannian manifolds
are congruent, they are clearly equivalent fer all our purposes.
We now construct a manifold M equivalent to M on which we
can find a coordinate system which is geodesic at the point
corresponding to a given point P of V.

Let P be the point («,...,a,) in the coordinate system
(g) ---»2,), where

Ay +...+a,a, =1,
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and let the tangent space to V,, at P be given by the equations
Eﬂljz:‘=0 (i=l,...,7‘——'m).

Let Y1 = Ahas
where A4, E,ﬂn'/?u' =1,
1
that is, %% =L
i
Next let Yai = As(Bait a1710),
where 2 BaiVait o = 0,
and /\2;\_22 (Bai+ tea V10) (Bai+ B V1i) = 1,
that is 2YeuYu =1 XY2uYu=0.
1 1

Proceeding in this way, we can replace the equations of the
tangent space to V,, at P by the equations

2Yiuy% =0 (t=1,...,r—m),
J
where S YVni Vi = Ok (hk=1,...,r—m),
J
X Yni%i =0 (h=1,...,r—m).
j

Now consider the matrix L given by

L= (‘xo Y0 - 7r—m0) .
% Yir - 7m—rr
We can add to the right of this matrix m further columns so
that the resulting matrix a is unitary. Then consider the new
system of coordinates (2, ...,Z,) given by
Zp = X Q.
k
In this coordinate system, P is the point (1,0, ...,0) and the
tangent space is
2,=0 (h=1,...,r—m).

HIT II
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Using the coordinate system (Z,...,%,), we construct the
Ricmannian manifold 3 of V,,, where M is equivalent to M.
The function ¥ can be taken as
2,7z,
= l 1 ~ --1 P =
¥ og[ + 020-&- +3 2]
b

In the neighbourhood of P, ¥,, is given by

~

i —f( ol f’) (h=1,...,r—m),

29
where the functions on the right are power series beginning
with terms of the second degree. Take

LA .
u,=—r’2%+’— (j=1,...,m),

as the local parameters on V. Then
m
Y= 1og[1+i Zw$+e:],
i

where ¢ is a power series beginning with terms of the fourth
degree. If we now calculate g;; by (4), and then calculate I},
we find that at P ' _

= 3}, =0,
The coordinates are therefore geodesic on M. But, since M is
equivalent to M, it follows that there exist on M restricted
allowable coordinates which are geodesic at a given point.

39:2. In the formulae which we now give for the differen-
tial invariants of M we find it convenient to allow the indices
in components to take all integral values, with the condition
that the addition or subtraction of 2m to or from one index of
a component changes the sign of this component. Thus, for

example,

iam+i = —9ij
I‘?]{nl T F;k

It is to be understood, of course, that in applying the sum-
mation convention, the summation takes place from 1 to 2m.
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Let Tf:jjj%: be any tensor of weight W, and let

SJ) ]q — T-?l Jr—amAJedeir. Jq
wip — LA, ip*

Consider an allowable transformation of coordinates to a new
system (Z, ..., Z,,). Then .

1 w >
aﬁil by...bq ax(h ax(lp ale axjc
ox;| om0, Om,, Oy,
— ‘ a_xf rbyecbr—y M Fbr by g 1.0uby a‘_za‘ _a:.lqu
= (geeeeieiieiieiasnnsanes ap A~ " A%
l ax’ ' » a:L i ax,«p
?)Ejl 0T;, , WFpyj, ax,, “ ox;,

Oy, " Oy, ox,,, b, Bxb' - aqu

Hence from 7’{-;_‘;;{; we can define a new tensor by increasing
one of the contravariant indices by m. There will be no con-

fusion if we denote the tensor SJ::7 e by Tj‘._f_'fj;‘_.'ff,j.’ff_‘.‘m_f;.

Thus, in the case m =L, if T is a tensor whose components
in an allowable system of coordinates are

™ =q, TR2=b, TH=¢c, T2=d,
I'm+ii has components in this system of coordinates given
by
Tm+il — ¢ w12 —d  Pmi2l = _q  Tm22 = _}p,
A similar result can be proved for the covariant indices, and,
clearly, further tensors can be obtained by applying the

process to more than one index. We notice that, on account
of (4), g;my; and gi™+i are skew-symmetric tensors.

39-3. Now let us consider the Christoffel symbols. We have

k:; = %g ka[#’iia + zﬁi m+jim+ra T wmﬂ':i mta 2/Im+i m+j a]’
where we have written
oo B
ik d;0x; 0%,

TI1-2
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Then,
1 ’m+ij = %gka['ﬁmﬂij a + ¢m+i m+im+a 'ﬁi}' m+a + '/fi m+j a]

i“ m+j
= %gk m—m[tﬁmﬂ jm+a ™ ¢m+im+j a + Q//ija + ¢i m+j m+a]
= —3gm™* Y+ Vimigmiat VYmiiimia— Vmiimiial

— +k

= — Ik,
These results enable us to express the covariant derivative
of a tensor Shft = F"...?.'..‘..’.’f.t’.'.?ri:..."' in terms of the co-
variant derivative of T?: For convenience we shall con-

sider the caser = 1. If T"‘ff {f}___ xis the tensor obtained from
Tﬁ;""-""’ by increasing the hrst contravariant suffix by m,
we have

S{:z T"H‘.’Ma :fq S%lfnn-iq 1’71'1 _ TO_&JE..J:q Ivm+:i1

__ mm+ads.de i 7‘111 h .
- T qF ) 1 1 m-lak

= 0.

A similar proof holds where a covariant index of 7% 1: is
increased by m. By a repetition of the argument, we see that
if (T‘,ﬁ:‘_{;)* is a tensor obtained by increasing any set of the
indices of T73.":3* by m,

530 k. = (TR b, )%
or, in other words, the operation of increasing an index by m
is commutative with the operation of covariant differentiation.

39-4. Finally, certain properties of the tensors obtained
by increasing some of the indices of the curvature tensor by m
must be proved now, since they will be required later.

We may use allowable coordinates which are geodesic.
Then for the Riemann-Christoffel tensor we have

By = 3 miismiicr Vimeskmir— Cmsijomt— Vimsgmakil-



1v, 40] DIFFERENTIAL INVARIANTS

Therefore we find immediately that

Rij m+kl = T Yjem+i

and Boiijin = —Bimiju

165

But we have seen that R, ., etc. are tensors. Hence these
equations will hold in all allowable coordinate systems.

Similarly, we have

B ikt = 9" Bij ikt = —9%Bijemn = — Bfimas
and B = g™t By = —g* " Ry
=g%R, . iju
= =9 R mijm
=- B;zn+:f kl*
40. Harmonic integrals on an algebraic manifold.

We have now found all the properties of the differential
geometry of a manifold M with a metric given by (4) § 38-3
which we shall require. OQur purpose is to use these properties
in order to derive properties of harmonic integrals associated
with this metric, with the object of obtaining invariants of
an algebraic varicty of geometrical interest. We shall show
that the harmonic integrals of multiplicity p on an algebraic
manifold can be analysed into a number of sets in a signifi-
cant way, and as a first step towards this we prove two
preliminary theorems on harmonic tensors on an algebraic

manifold.

Tueorem L. If P, ; is a harmonic tensor, then

— grm+s
Qi....i,,_g =g P,

rStyeadp—2
18 also a harmonic tensor, or else it is zero.

To prove this, let
p—1

Lty = El( =1 Qs it aeipeier

p+1 1
31 ' — r— . . . . s =
SIHCO ll‘ ( 1) Pz,...l;-11r+;...1p+|,‘lr

-, — Dgrm+8
we have Lt,...i,_, = 29 Pril...ip_‘.s'

0

b
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P
1 —
Now ?(— 1y Li,...i,_li,“...'i,,ir = 0.
Also,
9Ly, iy ri; = 2099 P i isi
— tj a
= —2gUg" L, 4 ipai Blei t Priy..ip_sa Biss

. p=2
— 2ghgrms l;l‘l)ril...i:ﬂ PR RY ;
"This is proved by changing the order of covariant differentia-
tion and using the fact that P; _; is harmonic (§35). Now

GG D, iy ai B = 99 Py i Bl
=9 Py tysr Bimeis
= _.(]rsyijpail... ip .,rB?m-f—sj
= —grnl+sgijEi,...i,,..,aB%ej'

Also grjgis B§m+sj = (Jrjgis B7J’ m+js = grsg i Bz’ m+sj*
Hence g'ignm+s B, is symmetrical in r and 4. Since

P

TN Y U Y
is skew-symmetric in » and ¢, we conclude that

giL; 0,

eerlp—2t,d =
1

T (p-1!

is harmonic. But L is a null form, and hence, by §29, it must

be zero. Hence

and hence L (dat... dair

beip—

1 . .
Q=" 57 @i.ip, 2" ... dXP2 >0,

(r—2)!
Also, 99@s...ipvi5 = 99 ™ Py iy = 0,
since P, ; is harmonic. The theorem is therefore proved.
Corollary. Incidentally we have proved that if P ,; is
harmonic,
gr m+s_Pi , = (.

1eeelp—17,8
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Turorkm 1L. If P, . is harmonic, so is

1o vt

Qi,...ip = Pm+'i,...m+1'p'

p+1
—_ r—1 . . . . = . .
Let ?( 1) Qip.-'lr—]"rf—\u-'lp F1s Oy Ll,...zpu'
p+2
m \ r—1 -
Then Y=y gy iyigeipinie = 95

1

»
viptg = (= 1Py 9490, i,,,i,j'*“g”%:(_l)r—IQi....i,_,i”.....r,,i,ir,j

14
—(—1\» N gt]
—( 1) %J Pnu, e & M et ip,mATy, §

[)

— lJ . . . .
+( l) 1 Pn-! T1e e itHEr—1 T MATy 4o T, Ty, MAJ

T AY) .
—( l) ZJJ M+tiye..MFtp—y { mtiy .. Fip, J, mtiy

»-1 ij . . . BY .
+ ( I) V oY) Im P igeeotitbdy q@m-ir 3ecomi-ip B’l m+tyj

— 1)1 L ) ]
( l) 2.4 (] m Fiyeeetit My & M4 p i gee ATy i MATe 11T
rs=1
rH‘ X Bm+um|1,j

— 1) . . ..
+( ]) 24 Pm+z. Ay M py e MTpy RUE] Ty

—1 o
( - ])l L(l mATre Mty @ Mt y..omtip Bi iy m+j

1
(" 1)" 24 J m-tiy..omi iy ,im+1‘,.,...m,+i._l/t’m+m: m+ip
r8s=1 X B
r+8 mtigtrmije
The first term vanishes since I, is harmonic, and the
fourth vanishes on account of the corollary to Theorem I.

"The remaining terms cancel, since

B% m+rj = T B?r m+je
Therefore the form

. 1 : ;
]J = '(}-) +l—)‘i Li,---’ip de .. dx“"“
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is harmonic. But L is a null form, and therefore, by §29, it
must be zero. Hence

»+1 .
21‘(— 1@ iriirinnitipini, = 0-

rs p— s
But g Qi,...i,p.. rs =g Pm+i,...m+i,_1m+r.s
— __gm+rs 3
= —gmt Pm+i1...m+1p_1r,s

—=grm+s P . )
m+iy...m+ip_1 7,8
=0,

on account of the corollary to Theorem I. Hence @, ;, is a
harmonic tensor.

41-1. The fundamental forms. The Riemannian mani-
fold R has the Betti numberst

Ry=Ry=..=Ry =1,
Ri=R;=..=R, ,=0.
If S, is a linear t-space in S,, there corresponds to it on R a
2¢t-cycle which we denote by I'y,. Now, I, is the Riemannian
manifold of S, and we orient it in the usual way, by means of
complex parameters on S,. The following two properties hold:
(i) if 'y, is any 2¢-cycle on R,
. 1 vét’“/\l b
where A is an integer;
(ii) (Fay- Typp) = (= 1)1,

The metric on R is given, in the notation of § 38-1, equation
(3), by 7,;d€dEi.

There exists one harmonic p-fold integral for each even value
of p (0 < p < 2r). We now wish to determine these. We must, of
course, remember that we are on R, and hence, in applying the
results of §39, we must replace m by r, and determine the

t The statements concerning the topology of algebraic manifolds are
quoted from the results obtained by Lefschetz[7], due attention being paid to
the differences in the convention of orientation.
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affine connection from (3) instead of (4). Now 7, is a skew-
symmetric absolute tensor and

Nrije = 0
Hence Mrsilys + Mrki, g T Meriie = 05
and Pz = O-
1 Lo
Therefore, VL= Gy s ;AT dg)

is a harmonic 2-form. In the same way, we show that
1
Vo = $V; XV, Vg =34V XV, .., V= S V1%V
are harmonic forms of multiplicity 4, 6, ..., 2r respectively.

The period of the integral of v, on I, can be calculated by
defining S, to be

fy=...=5=0, §ip=...=8=0.
dgrder+t
Th =4 N TE L P e
en fp,vl _L', [1+8F+E2.0°

In the same way we can show that
(4m)! -
f ="y (= 1),
1 .
Tt is easily verified that
v, = (— 1)V | g, |rdEL ... dE>.

The forms vy, ..., v, define forms on the manifold M contained
in R. Let us consider »,. This defines the form

1 S
Wy = 57 Dis dxtdal,

0E, 0E

where Pij = Mrinky, o,
1
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(where, applying the summation convention, we sum from 1
to 2r). But, since

06 _ Obren
0x; Oy
we obtain Pij = Imrij
. 1 S
that 13, W, = QT gm+ijda;' dx!.

s
Similarly, @y = Yo, xw,...,0, = 01X Oy

are forms on M, and as we proved that v,, ..., v, are harmonic
on R, so we can now prove that my, ..., ©, are harmonic on M.
We shall call them the fundamental forms on M.

41-2. Now let I, be any cycle on M; it is also a cycle on
R, and on R we have

7;2/ ~Aly,
where A= (=1)e=0(Ly. Iy, o)
But
_ 477t
f o= f n=A | = (e @y ) 4
r!l Pll [‘zg t .

In particular, if I’y is a cycle corresponding to a variety

V,on V,, of order £,
A=k,

4r)t
so that J._(’)l:k(",) (— 1)te=D,
Ty !
If we use coordinates which are geodesic at I’ and evaluate
at P, we have
0, = _de"dx"”"',
1]

w, = (= DX dxh .. daie dam+i .. dam™ti,

Hence, if, as usual, we denote the dual of w, by w},

% __ —
Wy = (_ 1)“‘("' b Wyp—q-
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It may be observed that, in any allowable coordinate system,

1 . )
(I)q = (“2q—)—' Ns-?._fw dx“ vee dx"q,

where N@ ; is the Pfaffian of the skew-symmetric deter-
minant

gm+i. iy e gm+1‘, iq

D Dmvigin oo T vigiy |

42:1. An analysis of forms associated with an alge-
braic manifold. The fundamental forms which we have
defined on M, together with the two theorems proved in §40,
lead to a classification of the harmonic integrals associated
with M which is the basis of the application of our theory to
algebraic geometry. In this paragraph we shall prove certain
preliminary results concerning p-forms on an algebraic mani-
fold, in which we do not use the condition of integrability; and
hence the analysis is not confined to harmonic forms. We shall
find the following notation convenient. iiven the p-form

1 . .
P=— P, ;dx".. dx'",
p ‘ 1.00lp
we define a (p— 2)-form P® associated with it by the equation
1 ) )
PO = (p7j2)7!g + Pyii, A2 datr (p> 2),
or by PO =0 (p<2).

We then define P by the recurrence relations
PO=P, P®=[Pr-vm,

We also define an associated p-form

P = l_)ly ‘Pm-(-il...mH'p da’ ... da.
By § 39-2, this form is uniquely determined by P, and does not
depend on the allowable coordinate system used. We note that

[P'] = (=1)* P.
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42-2. We first prove three lemmas, as aids to calculation.
Lemma A. If P 18 any p-form, then
[Pxw,]? = PO%xw,—2r(m—p+r—1)Pr-D,

The formula is proved by direct calculation when r = 1.
Let us assume it true for index r — 1. Then,
[P xa,]" = [(P x w,)r D]
=[Pr-Ox o V-2(r—1)(m—p+r—2)Pr-D

= PO%xw, ~2(m~—p+2r—2) Pr-D
—2(r=1)(m—p+r—2) Pr-1

= PO xw,—2r(m—p+r—1) Pr-D,
Lemma B. This proves a similar result:
[Pxw,JV=POxw, —2m—p—q+1) P xw, ;.

This formula holds for ¢ = 1, by Lemma A. We therefore
assume it true for index g— 1, and prove it true generally by
induction. By Lemma A, and the hypothesis of induction,

we have
[Pxw, |V =g [P xw, ; xw]"
=g P xw, 1JVxw,—2¢ Y{m—p—2q+2)Pxwm,,

=POxp,—2¢  m—p—q+2)(g—1)Pxw,,
=207 Y m—p—2¢+2)Pxw,,

= POxw,—2(m—p—q+1)Pxw,,.
Lemma C. If P is any p-form (p <m) such that

PO =0,
then, if p+q<m,

(m—p)! P,

@ — (—2 P
[Px w0 = (=2 ==

and if p+q>m, [P x 0,]@ = 0.
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When ¢ = 1, the theorem is true by Lemma A. We may
therefore proceed to prove the general result by induction.
By Lemma A,

[P x 0] =g P xw,_;x0]?

= [P X0, x 0,
—2(m—p—q+1) [P x 0,110

= P X 0 1D x 0,
—2(m—p—q+1)[Pxw, 7.

Hence, by the result for index ¢—1,

[P xw,]® =g —2)11 - (m— P) PO x

(m—p—q+1)!
!
= (—2)1 — (m P) P, ifp+qg<sm,

(m—p—q)!
since, by hypothesis, P®=0; the same proof shows that
[Pxw,]? =0, ifp+g>m.

42-3. Let us now consider any p-form (0<p<m), and let
q be the integral part of }p, ¢ = [§p].
We define g p-forms P, ..., P, inductively, as follows:

_p__ (m-ptq)!
Po = P~ Copm—p+29)1

] (m—p +q-7r+ 1)!
P.=D . r+1)
(r) (r-1 ( 2) ”+I(m —p+ Zq 27‘ n 2) 1)21'-—1) XWq_yi1y

where P¢=1V is a (p — 2q + 2r — 2)-form defined from P, ) as
in §42-1. Then, by Lemma C,

)
P =o0.

We now prove that PV =0

P@ x Wy,

Since the result is true for » = 1, we assume it true for index



174 ALGEBRAIC VARIETIES [1v, 42-3

r—1 and prove it true for index r. By the hypothesis of
induction,

—r+1) q—r+2) _
[PE=510 = PR = 0
Hence, by Lemma C,

g—r+1) __ a— r+1) g—r+1)
Pér) P( r—1

= 0.
Write
0 _ (m—pig-r+)! —
p—2q+2r—2 ( 2)q 41 (m P+ 2q 27‘+ 2)] (r—1)
(r=1,...,9),
Qp = P(g)h
Then (@il = 0
q
and P =3 0Q, oxwy.
k=0

We have thus found a convenient form in which to write
any p-form on M (0 <p<m).

42-4. We next find a convenient form when p>m. If P*is
the dual of P (§27-2), P* is a form of multiplicity 2m —p <m,
and hence we can write

q
P* = kg]({iz,n_j,_ﬂk X 0. (g=[m—14p]),

where [y poe] = 0.
q
Then P = (-1 Y[Ry, ap X 0x]*
k=0
It is therefore necessary to calculate the dual of a form
Q) _op X Wy, (r<m),
where (@] =0

In order to do this, we use geodesic coordinates and consider
a typical term of @,_,,, say,

Q'i,.. dam+iy.e..Mm+Tg JroeJb m+ky...m+ke
x dat ... dafedgm+i | dgmtiadaly |, dais dgmth | dam+ke
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(in which the summation convention is not used). Here
4 Jm> K, are all different, and are not greater than m. The

condition

I.Qr—Zk](l) =0
can be written as

m

-l
Z.. Qa {neidigmto m+tiacem+iadye..jo m+ky...m ke — 0.

a=1
Now o, = (—1)#E-DXE dgh | dals dgm+i . damtix;
hence the typical term of @,_,;. x 0y is

_ k—1)+uk
( 1)!”‘( H ZQa,...a,.111+a,...m+acaj....jbm+k‘...m+kp

x da't ... date kdam+i . damiiaikdyh | daitdamtRe | damthe,

where the summation is over the sets (a,, ..., a,) taken from
(%15 -5 Tqyr)- Using the condition
D
lQr— 2k]( ) = 0:

we can replace the summation by summation over the scts
(ay, ..., a,) taken from the integers not greater than m which
are different from 4y, ..., %% J1s --->Jp Kys--es ke, provided we
multiply by (—1)%. To form the dual we have to replace the
r differentials da?, dam+i, dai=, dx™+¥*» by the remaining 2m —r
differentials. The resulting term is seen at once to be a term of

4
Qr~-2k Xy iy

save for sign. An cxamination of the permutations involved
leads to the equation

[Qr an X 0 ]* = (— Dt Qo X O ry
where €= sm(m— 1)+ ir(r+1).

Hence if P is a p-form, p >m,

q
P = % [1‘)‘2:1)—7;—2k Xy J* q=|m—3p]
q
= (__ 1)4m(m+1)+}1t(1)—1) %: (__ l)k ':!m—p 2k X Oy
where [Rém «1)—2].:](1) = 0.
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The results for p>m and p<m can be summed up in the
theorem:
THeOREM III. Any p-form P on M may be written as
P=3 Pa X Wy,
a,b

where a+2b=p,

and the summation 18 over all non-negative integral values of
a, b for which

a+b<m,
and where |2 = 0.
The dual of P is given by
P* = (- 1):2}]( — 1)’ Py X0y _pip
where €= g—m(n,z —D+ip(p+1).

42-5. The form given by Theorem III is unique. In order
to prove this, we show that if

El)u X Wy = 0: [Pn](l) = 0:

a,b
where a+2b=p, a+b<gsm,

then P, =0 (all permissible values of a).

Suppose, indeed, that not all P, are zero, and let a, be the least
a for which P, #0. Then if

ay+2by = p,
0= %P, x @,
a,b

= 3 [(Py x @)
a,b

=3 (=2) _(m=a)! ey

a,b (m—a-—b)‘ a
_ . (m-a)_!_
= (=2 (m—al—lbl)!

Thus P, =0,

(7
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and we have a contradiction. The formula given by Theorem
III is therefore unique.
42-6. Finally we obtain an alternative form for the condition
PO =0,

for any form P of multiplicity p <m. Suppose first that this
condition is satisfied. Then, in the first place,

[P X (‘)m—p+1](1) =0,

by Lemma B. But, by Theorem III, we can write

P x Wppr1 = 2 F, x oy,
a,b
where [P]J®P =0
and a+b<m,

a+2b=2m-p+2.

Hence 0= Y[L, xw]V
a,b

=—=2¥Y(m—a—-b+1)P,xw,_,,
a,b

by Lemma B. Hence P, = 0, for each admissible a,

and therefore Pxw, p41=0.
Conversely, if Pxw, ,,=0,
a
let P = kz_:on—zk Xy, = [%p],
where [@p—2]¥ = 0.
Then
& (m—p+k+1
Pxw, ,, = § ( k ) @pok X 0y iga = 0.

Therefore, by Lemma B,
0=[Pxwyu_p,]?

7 (m—p+k+1
=— 2k§0k( & ) Qp2k X Opy_pige

HHI 12
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It follows from the uniqueness theorem proved in connection
with Theorem III that
Qp—'lk:() (k=1,2,...,q).

Therefore P =Q,
where [@,]¥ = 0.
Hence the condition PO =

can be replaced by P xw,_,.; =0.

42-7. A similar argument shows that, if p >m, a p-form P

satisfies the condition
PO —

only if P=o.
Indeed, by Theorem IIT, we can write
P =3P xn, (@+2b = p),
ab
summed for a +b<m. If

PO =0,
we have, by Lemma B,

0==-2(m—-a-b+1)P, xw,_,,
a,b

and hence P, =0,

for all admissible . Hence P is zero.

43-1. The classification of harmonic integrals on an
algebraic manifold. With the aid of the results found in
§§42-1-42-7 we arrive immediately at certain theorems of
importance in the theory of harmonic integrals.

TuroreM IV. If P is a harmonic p-form, @ = P xw, is a
harmonic (p + 2)-form, or else it 18 zero.
In the first place,

Q,=F,xo,+(=1)"Px(v),
= 0.
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Secondly,

1 L.
rs _ J1ee-dp+e
g Qi,...‘ipnr,s - gma?-:---l:ﬂ?' I+ a B‘fs---fp+so

pl2!
= O,
since, P being harmonic,
grsR',...i,_. rns —

a nd gr misp,

T10008p—1 T8

0,
=0

(Theorem I, Corollary).

43-2. Now let us consider a harmonic p-form P, where
0<p<m. By Theorem III,

P=%0Q, uxo. (=l

where [@p—26]® = O.

If we turn to the construction of the forms @, ,;, we recall
that, in the notation of §42, we first constructed forms
P(l)s ""P('l)' NO\V,
(m—p+q)!
= e P@,

Qo2 (—2)2(m—p+2q)!
Since, by Theorem I, P is harmonic, @,,_,, is harmonic. It
follows that £ is harmonic, and therefore
(m—p+q-—1)! g—1)

@y 2412 = (22 L m—pt2q—2)!" ®
is harmonic. 1t follows by a simple induction that @,_,; is
harmonie, for £ =0, ...,q.

Next, let us consider a p-form P, where p >m. Write it in
the form, given in Theorem III,

P=3%Q,xw, (@+2b=p; a+b<m).
a,b
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Then the dual form P* is
P* =1 3 (1) @y x

a,b
and is harmonic. Since 2m— p <m, and
(@) = 0,

it follows that ¢, is harmonic. Therefore, by Theorem II,

@, is harmonic.
If we now use Theorem IV, we obtain

TuEOREM V. When a harmonic p-form P is written in the form

P=30Q,x0, (@+2b=p; a+b<m),
ab

uas described in Theorem [11,

Q, and Q,xw,

are harmonic, for all admissible values of a and b.

43-3. The harmonic forms > which satisfy the condition
PO =0

play an important role in the development of our theory, and
it is convenient to give them a name. We shall call them
effective forms, and their integrals will be called effective

integrals.
Let P be any harmonic form of multiplicity p <m. Then,

by Theorem V, we can write

_ a1
P=P+3B, yxor  (q=1ip)),

q
where Q=Xk1P, g X4
k=1

is a harmonic (p — 2)-form and P is an effective p-form. Hence

we can write _
P=P+Qxw,.
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Conversely, if ¢ is any harmonic (p — 2)-form (2 < p <m), and
P is an effective p-form, we can write

q
Q =k21k”1Pp~2k X Wg_y,

where [P, o ]® = 0;

then P=P+Qxo,

q
l
= % B, o X s

where P, = P, is an harmonic p-form written in the standard
form. Now there are R, harmonic p-forms, and £, _, harmonic
(p—2)-forms. It follows that there are exactly R,—F,_,
effective forms, provided that
P+Qx N
is not zero unless
P=0 and @ =0.

Since p < m, the uniqueness theorem of §42-5 shows that this
condition is satisfied, and hence we have, by a simple induction:

TurorEM VI. There are exactly S, = R,— R, _, independent
effective integrals of multiplicity p (0<p<m). [f we denote
these by

fp;', (i=1,...,5,),

a basis for the R, harmonic integrals of multiplicity p is given by
the q + 1 sets of integrals
[Pf, (i=1,...,8,)),

fP;,_z X () (¢=1,...,8,),

JP;")—M X (')q (’" = 1’ s Sp—zq)»
where q = [§p].
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We call the integrals
f P, op Xy,

the ineffective integrals of the hth class, and the forms appearing
in the integrands the ineffective forms of the hth class. An
ineffective integral (form) of the Oth class is the same as an
effective integral (form).

We notice that the condition that P should be an effective
p-form (0 < p <m) can be written as

P—0,
P'—0,

Pxw = 0.

m-p+1

44. Topology of algebraic manifolds. Before we can
discuss the periods of harmonic integrals on an algebraic
manifold, we must recall the main topological properties of
the manifold. The theorems which we require were either
discovered by Lefschetz, or are simple deductions from his
results; and the reader is referred to his tract (7], or to Zariski’s
summary (17}, for the details of the proofs.

Lefschetz’s theory of cycles on the manifold corresponding
to a variety ¥V, provides a classification of cycles relative to a
linear system of varieties ¥, , of dimension m — 1, which may
be taken as the system of prime sections of ¥, ,. In con-
structing the Riemannian manifold of ¥, in §37-1, we took a
particular representation of ¥, as a non-singular variety in a
projective space S,, and constructed the Riemannian of S, by
Mannoury’s method. We now take the system of varieties
of dimension m—1 on ¥, relative to which we propose to
classify the cycles of M, to be the system of prime sections of
this representation of ¥,,, and we denote the section of ¥, by
a generic linear space of S, of dimension r—m+p by V
(0<p<m). Corresponding to V, there exists a sub-manifold of
2p dimensions on M, which we denote by M(V,).
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The theorems which we shall require in the investigations
of the periods of harmonic integrals are as follows. We need
only consider homology with division.

I If p<m, and I, is any g-cycle of M (g<p), there is a
cycle lying in M (V,) homologous to I',.

II. Every homology between the g-cycles of M lying
in M(V,) (p >q) which holds in M holds also in M(V,). Hence
R{](Vp) = Rq'

[II. If p<m, there exists a basis I' (1=1, ..., R,(V;)) for
the p-cycles of M(V,) in which the cycles fall into ¢+ 2 classes
(@=0ip):

IS (i=1,...,R,—R,_,),

9))
I (i=R,—R,_y+1,...,R,—R,,),

7]

Fli) (I:z]gll—“R/%‘lq+ la'"y Rp),
ri (i=R,+1,...,R,(}},),
with the following properties.

(i) The cycles I'; (i=1, ..., R,) form a basis for the p-cycles
of M. We call them the invariant cycles of M(V,). The cycles
I'y(i=R,+1,...,R,(V,)), which we call the vanishing cycles of
M(V,), are homologous to zero in M.

(ii) A cycle of the hth class has zero intersection (in M(V,))
with any cycle of the kth class, if 4 # k. The cycles

['7'}:’ (’l: = RV —_ R/;—le + I, ceey R - ltll-—2h—2)

vl

are called ineffective cycles of the hth class (h=0,...,q). An
ineffective cycle of the Oth class is also called an effective cycle.

(iii) The ineffective p-cycles of the Ath class are homologous
to cycles of M(V,,_,), but no linear combination I, of them is
homologous to a cycle in the general M(V,_,_,). There may,
however, exist an algebraic variety D of dimension less than
p—nh on ¥V, with the property that M(D) contains a cycle
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homologous to I',. The variety D is not in this case a generic
linear section of V,.

IV. If p<m, in order to classify the (2m — p)-cycles of M
we first classify the p-cycles of M according to the scheme of
I1I. Then, a basis for the (2m—p)-cycles of M exists con-
sisting of cycles I3, , (1=1,...,R,, ,=R,) which fall into
g+ 1 classes (g=[1p]):

]gm—p (1,: L., R —R, ._2),
f;m_p (t=R,—-R, ,+1,...,R,— R, ,),

m—p

Py G=R,—R,_ o +1,....R),

with the properties:
(1) T -
(ii) (T . T ) =0
(B, =By on<i<R, =R, 3 3 R, 5 <j< R, —R, o »)
if h£k;
(iii) if R,—R, 5 <i<R,—R, 5 ,,

then Fé:m—p . M(V)—h) = Fp—-?h

1

MV~ T

n’

is an effective (p — 2h)-cycle (sec V, below).

Consider on V), , a linear com—2+k gystem of varieties Vo—an
with the property that through a general point of V,_, there
passes just one variety of the system. In M(V, ,,) there is a
cycle homologous to I, 5, and, as V,_,, describes the system,
this cycle describes a locus (in the sense of Lefschetz) which is
a (2m — p)-cycle lying in M(V},_,) and homologous to I',, _

In order to preserve a continuity in our formulae it is con-
venient to call the cycles

i
2m—p (Rp - Rp—2h <1 < R R —2h— 2)

ineffective cycles of class 2m—p—m+h = m—p+h. We can
then state the result, which includes ITI (iii):
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V. If I', is an r-cycle (any r) of class k, I, is homologous to

a cycle of M(V,_,), and, further,

L. M(Vyi)
is an ineffective (r—2k)-cycle of class h—k if k<h, and is
homologous to zero if k> h.

VI. When the system |V, _;|. of prime sections of V,, is
given, the set of ineffective r-cycles of class A is uniquely
determined. If another system |U,_;| on ¥, which gives a
projective representation U, of V,, as a variety without sin-
gular points is chosen, the classification of the r-cycles may be
altered. But the classification of the r-cycles into sets of
ineffective cycles of different classes is unaltered in the special
case when U, _, is algebraically equivalent to V,,_;, and
| U,o—1 | has no base points on I/;,,, hence it is fixed by the com-
plete continuous system {V,,_,} defined by the prime sections.
Thus if we are given on V,, any complete continuous system
{C} of varieties of dimension m —1, which contains a linear
system |C| without base elements providing a projective
representation of V,, as a variety without multiple points,
there corresponds a umque classification of the cycles of ¥,
having the properties described in [-V.

m

45-1. Periods of harmonic integrals. The reader will
have observed a correspondence between the results and
terminology of §§43 and 44. We now show the precise nature
of this correspondence. To do this we first require to prove the
formula
P x vy = (— Lymk+ikk+D (4]:7) P
Ty sk :

where Fh ~ Ph+2/.: . M(Vm—k)7
and P is any closed A-form.

We suppose the cycles of M are classified as in § 44 and use
the notation of that paragraph. In the notation of §22-5,
we have
Pxw, = 2/\2’" k Ph+2k)f P xf o

r, I

Thy ok
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(4m)
k!

But fﬂ Wy, = (— 1) T 53

2k

by §41-1, where n is the order of V,,, and hence

P

i
fr P x w), = (— 1)kt 1’( ) n 2 (T ny o) J r‘P
b2k !

h

Let a, = | (1% . I’;m_p)”,
a2m—2k(rh+2k) = H (Fh+2k . lyﬁl.;m-—-Zlc . r;m—h) i| .
'l‘hen a2k = agk 0
0 aj
ag,

where al; is a squarc matrix of Ry, ,;— Ry s » Tows and
columns, and a%, = (— 1)k»-kyn, Now

(A2m=2K(T% o)1 = Qg o - Bopon( D noor) - A4
Therefore
A2k )i e = [am—an - Bopo(L i) - % e

= (— l)k(m“k)nullaZm—zk(Fh+2k) . afrl]Rui'

‘BUt lf I‘/, M FIII ] ]1ll+2k . Fé%tk*zka
then (A9 -2 (Lyor) s = Z/‘:(ah)tj-

. 2n--2k( | ‘ -
Hence (A2 (L o) )i e = (— DR D=1y,
Therefore,

~

k
Pxw,= (- l)mk-MMk 1) ,(4?.Ti)_ }r‘“ui P
k! 550

J Thyak

ke
= (= 1ymk+ikteD (J;:T!) P

I

I

ij P, say.
T
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45-2. We use this result to show that, if p <m, an effective
p-fold integral has non-zero periods only on the effective
p-cycles. Let I, be a p-cycle of class £ > 1. Then there exists
a (2m—p+2)-cycle Iy, ,,, of class m—p+h+1 with the
property

F2m—-p+2 . M(K}—l) i I'

p*

If P is an effective p-form,

Pxo 1= 0.

- m—p+
Therefore,

JI‘,P = (Vm—p+l)~lj\rmup“Pxwm-p+1
= 0.

In general, let P be an effective A-form. We may call
P x v, an ineffective (h + 2k)-form of class k. This is in agree-
ment with the definition given in § 43-3 for the cases b + 2k < p.
If I'y 5, is & cycle of class r, we have

f wak=ka P,
Ty sk Iy

where Ty~ Liygi - M(Voie)

is an ineffective cycle of class r — k. But

P

Iy
is zero unless r = k. Hence:

TrHEOREM VII. An ineffective integral of multiplicity p and
class k has nmon-zero periods only on the p-cycles of class k.
Since there are S, o = R, o, — R, o o ineffective p-fold in-
tegrals of class k, and S,_,, ineffective cycles of class k, and
since the period matrix of the R, harmonic integrals of
multiplicity p is non-singular, it follows that the ineffective
integrals of class k have a non-singular period matrix with respect
to the ineffective cycles of class k.

The results of this paragraph show that the periods of the
harmonic integrals can be determined as soon as we know
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the periods of the effective integrals on the effective cycles.
Moreover, since the dual of an effective p-form P (p<m) is
+ P’ x w,,_,, where P’ is an effective form, we may reduce the
study of the periods of harmonic integrals and their relations
with the periods of their duals, to the study of the periods of
the integrals of the effective forms P and their relations with
the periods of the integrals of the associated forms P’. This
study can be confined to the sub-manifold M(V},).

46-1. Complex parameters. In view of the results
proved in the preceding paragraph, we shall confine our con-
siderations to the effective harmonic p-forms, and to the
effective p-cycles, 1 <p<m. Let

1

= I}" P : dxil cen d:L'""

1y...7p

P

be an effective harmonic p-form, so that
PX mlll—p-f-l = 0.
Then, by Theorem II of § 40,

P =P datr...dxt
p!

Mty antip

is a harmonic p-form, and
’
P X (')m—y+1 =0.
Let us express the forms in terms of the complex parameters
2y = Tp+ W4 p
and their conjugate imaginaries

Zp =T — Wy -
We have

. 1 . . .
P+(—ipp P = Pl F, . [dx"...dxt 4 0 damte | dgmtie],



1v, 46-1] COMPLEX PARAMETERS 189
Consider the typical term

dat ... dat damth | damiie[dah . dads damth . damte

+ (= Lyrtt st dagmtin | damtie dake . dak]

t
dz“ Lzt dzh L dE [H dzis + dzs) [T (dz*e — dzke)
1

2r+s+t
8 t

+ (= 1) 1 (d#he—d2i) T] (de +dé"”)]-
1 1

The right-hand side of this identity is a sum of terms each
involving an even number of conjugate imaginary differentials
dz". Hence we can writet

q
Po(=i P =S Py (=[ip)),
where

Pop = [(p—2k)! (2k) 1] " PE24, i
x dzi ... dzie-* dzh |, dzi*,

where in applying the summation convention we sum for
values of the indices from 1 to m, and P‘f"’ Gyt rendue 18 SKEW-
symmetric in the suffices ¢;,...,%, o5 J1,...,Jox, separately.
Now

P+ (—ip P'—>0.
If we express this condition in terms of the complex para-
meters, we find that

p—2k+1 a (2k
=1 az P el T paeeitp—sk 113 Jreedak = 0’
2k+1 @ k
rgl(— l)r— a P clp_sk; Freeidr—1dr preeJakdr = O’
for each k. Hence Py~ 0.

+ The suffix 2k is enclosed in brackets, in order to distinguish the form from
the symbol often used to indicate a form of multiplicity 2k.
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Similarly, it may be shown that we can write

Po(=ip P =S Py =[4p= D)),

where Py >0,
v/
and hence 2P = ¥ Py,
k=0
where Pyy—0.

46-2. Next consider w,. At the origin of geodesic coordinates

we have
m

W, = 2]) dat damti

2 m

= 3 dztdzt,
29

and hence in any set of parameters
o ), = a;, ;dztd2).
Similarly,
1
me—p+l = [G;i—T' +*1T,]§“i....i,,. pE1; Jreedm p1

x dziv ... dzin-vi dzh . dzin o,

(0]

It follows immediately that

Pxwy, =0
implies Puyx 0y 1=0 (k=0,...,p).
Conversely, let
Poy=[(p—k)1E) PP ;5 5o dei .. deie kd2l . dzix

be a closed form such that
P(k) Xy pi1 = 0.
Let Zp =X+ Wpypy 2y = Ty — Wy

and Pyy = A+1B.
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Then an elementary calculation shows that, if p = 2¢,
Am+i....m+t,, = (= 1)t Ai....i,p

and, if p = 2¢—1,

= k
Am+1,'l‘..m+ip - (_ 1)q+ Bi,...i,,‘

It follows that if P is either the real or the imaginary part of
P, then

P—0,
Pxw,_ .10,
1 . .
and P = 21 Piyooni, 42 ... datr >0,

Hence P is an effective p-form. We call Py, an effective form
of type k. Similarly a p-form which is the product of an effective
(p — 2h)-form of type k by w, is called an ineffective form of
type h+ k. We then have

THEOREM VIIL. An effective p-form P can be written as a sum
v
P=% P(k) H
k=0

where Py, is an effective form of type k, that is an effective form
which can be written as

Poy=[(@—=k) k] 1P ; .. 5020 .. deto-rdede ... d2.
46-3. Consider the closed form
1 . .
P(O) = 5' I?i....ip dzh...dz%.
The condition Pyxw, 4y =0

imposes no restriction on Pg. Since Py, is closed, we find that
the coefficients of the form depend only on (z,, ...,2,,), and not
on (%, ...,2,). But it is a classical theorem in the theory of
algebraic functions and their integrals that an integral

fI;?Ai....ipdzi‘ ... dzi
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whose coefficients are analytic functions of the local para-
meters at every point of an algebraic variety, and which
satisfies the equations

p+1 P
3 (=110 4 =0,

r=1 azi,

Treertro1r 1eipia

is an algebraic integral of the first kind attached to the variety.
If the variety is projected into a variety with only ordinary
singularities in a space of m+ 1 dimensions, in which the
non-homogeneous cartesian coordinates are (2y, ..., 2y4,), and
if the variety is given by

Fzgy....2p41) = 0,

the integral can be written in the form

f_l_ I;’,...i,,(zl’ "'7zm+1)dz¢, dzip
. 1 81{ s

az m+1

where By iy Giseeos Zingn) (¢,=1,...,m)

is a polynomial in (2, ...,2,,,4), adjoint to F(z, ..., 2,,,), and
satisfying certain other relations (cf.(t] for a complete state-
ment of the conditions). Conversely, the real and imaginary
parts of an algebraic integral of the first kind are effective
integrals.

47-1. Properties of the period matrices of effective
integrals. Let us consider the S,=R,—R, , cffective
p-fold integrals. divided up into integralsof typesh (=0, ..., p).
Let the integrands be the forms

P, (i=1,...,0%),

(ip) (t=1,...,00),
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where the forms P}, (i =1, ..., p}) are effective forms of type 4,
and we may assume
P(ih) =P (ip—h)-

»
We have Sph =8, pb=psh
K=0

Let the period matrix of the integrals of the type & be F, a
matrix of p" rows and S, columns. We may regard the period
cycles of the integrals as cycles in M(V,). The matrix of their
intersections in this sub-manifold is non-singular. We denote
the transpose of its inverse by AJ.

By the bilinear relations (§ 22-4), we have the equations

‘ .
aras@py = | [ PPl
[V ¢

(@) If h#k, Piyx Pl =0 in M(V,), since the product is a
2p-form with p—h+k differentials dz?, and p+h—£k differ-

entials dz!. Hence _
QUALSBEY =0 (hrk).

(b) Let b = k. If we write
QEAJRE) = (= 1)P+h ey,

we can prove that e, is a positive definite Hermitian matrix.
To do this, let A, ...,/\p: be any complex numbers, not all
zero. Then

Nl Ay = ip(= 1) X A R8 AXDE) 1A,
ij

>

=i"(—])"J PxP,
M(Vp)

where P = A; P,

is an effective integral of type A, different from zero. We have
to show that the right-hand side of this equation is positive.

HHI 13
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Let A,1B be the real and imaginary parts of P, so that
P =A+iB.
If p = 2, PxP =(A+iB)x(A—iB)
=AxA+BxB
=(—=1)th|Ax A"+ Bx B'],
by the result of §46-2; and, if p = 291, '
PxP = (A+iB)x(A—iB)
=—-2AxDB
=—2(—L)ytt" 4 x A’
= —i(— 1)yt [Ax A"+ Bx B).

Hence, in either case,
i"(—l)’”j Pxpz(—l)l’f [Ax A"+ Bx B'].
My M(F p)
Now, by the results of §§ 45-1 and 42-4, we have

f Axd =E| AxA'xo,,
M(Vp) M

=§'r;f A x A%,
M

A* being the dual of 4, and similarly,

J Bx B = g',,j Bx B*,
M(Vy) M

—)!
— (— 1ymon-p)+hm-pn—ptn P}
where E=(-1) (4m)ym-» ’
and 7= (__ 1)§m(m—1)+%11(ll+1).
. (m—p)!
= (—=1) — £/°
Hence gﬂ ( 1) (477)111—11 ’

and therefore we have

—o)!
'v—th' PxP=""PV [ 14, 4%+ Bx B¥1>0,
P(—1) vy X (amm? M[ x A*+ B x >

since A and B are not both zero.
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47-2. We can obtain similar results for the ineffective
p-fold integrals of class k. An ineffective p-form P of class 4 is
the product of an effective (p—2k)-form by w,. Now the
effective (p — 2h)-forms of class & can be arranged into p — 2k + 1
types, those of type k being of the form
Q=Up—2h—E)EN Qs i) sros: june @27 .. dio-s—rdiie e,
Recalling the form of w, found in §46-2, we see that

P=Qxuw,
= [(P —h— /“)' (h + k)']—l })il--uip—h—k; Jreeek
x dziv ... dzte -h-rdzh | dziner,
which we have called an ineftective form of type b+ k. Thus
the ineffective forms of class & can be arranged into sets of type
k, where k= h, ...,p—h.

Let A2 be the period matrix of the ineffective p-fold integrals
of class & and type a with respect to the ineffective cycles of
class & of M, which may be taken as cycles of M(V,). Let A}
be the transpose of the inverse of the intersection matrix of
these cycles. Then, as before,

AZAGRBL)Y =0 (a#D).
We now show that
AZARARY = iv(—1)rHiiep,
where B, isa positive definite Hermitian matrix. Following the
argument given above, we have to show that if P is any
ineftective form of class & and type a

i"(—l)"“‘f PxP>o.
M(V)p)

Now P = @ xw,, where @ is an effective (p—2h)-form of
type a —h. Hence

5 2h)! _
f M(VP)P <P = ((_k !;‘z‘fm V,,)Q X Q X wy,
47720 . ~
- ((17’%2 (- l)hJ,u(v,,_,»)Q x@
= %:T');_’f ( — l)h (,,;)1:-—2h (— 1)p+a—h k,

13-2
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where £ is a real number greater than zero. Hence

z‘v(—l)hwf PxP>0.
M(Vp)

It will be observed that if we consider all the harmonic
forms of type &, including the effective and ineffective integrals,

QAL = in(~ 1)y,

where Q is the period matrix of integrals, A is the transpose of
the inverse of the intersection matrix of the period cycles,
and vy, is a Hermitian matrix, which is not, however, positive
definite.

47-3. Any closed p-form which can be written in the form

(p—k) kP, dzir...dzie-* dziv ... d2i,

1eestp—hs Jree-dk

whether it is harmonic or not, will be called a form of type k.
We now prove a lemma concerning a set of p-forms of type A
whose integrals have zero periods on all ineffective cycles of
class j (j=0,...,k—1, k+1,...,[1p]). Let

QL ..., Q°

be such a set of forms. If we choose as basis for the p-cycles of
M the cycles I'y (i=1,...,R,) of §44, the integral of @' has
zero periods on all the cycles except

I';; (Rp - Rp—zk <ig Rp - Rp—zk-—z)’

and there exists an ineffective form of class £ whose integral
has the same periods. Then

Qi ~ E A(ia)j P(};l)’
a

where the forms Pj, are incffective forms of class £ and type a.
Let & be the period matrix of the integrals of @1, ..., ¢* and
A% the period matrix of the integrals of Pf, (j=1,2,...). If
A% be the transpose of the inverse of the intersection matrix
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of the ineffective cycles of class k, calculated in M(V,), then by
calculations similar to those made above,

QARAP) =0 (a#h).
But we have Q = FAHAL.
Since ARARA?) =0 (a#b),
we have Ao APARAEY =0 (a#h).

Since A? A2(A?)’ is non-singular,
Ao =0  (a#h).
Further, QAZQ = A, A2 AZ(ARY (X))’
= iP(=1)pHhtk M,

where M is a positive definite or indefinite matrix according
as there does not, or does, exist a linear combination of the
forms @; which is null.

47-4. We make two deductions from this result. We confine
ourselves for simplicity to integrals having zero periods on
the ineffective cycles, but the generalisation is immediate,

(i) Let 27 be the period matrix of the effective p-fold
integrals of V,, of type A, and let €2} be the period matrix of
the effective p-fold integrals of Vj, (m >k > p), the metric on
M (V,) being determined from the Mannoury representation of
¥, obtained from the representation of V,,. Since the effective
p-cycles of M(V,) coincide with the effective p-cycles of M,
the effective p-fold integrals of type & on ¥, define integrals of
type h on M (V,) satistying the conditions of our lemma. Hence

RIIL’ = )‘(I/) Q;l)'

Hence Q¥ = (QP\ = (7\(0) Qp\ = AQr,
d (1)

Now Q2 and & are non-singular matrices of R,—-R, , rows
and columns. Hence A is a non-singular matrix. This is only
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possible if pl = p (V,), and A, is a non-singular matrix of p’,
rows and columns. By rearranging the integrals, we can write

Qp = &
(ii) If £ = p, the same reasoning shows that
Qp =22,
where A, is a matrix of p, rows and p () rows and columns,

since the effective p-cycles of M are included amongst the
cffective p-cycles of M(V),).

48. Change of metric. A third application of the lemma
of §47-3 enables us to establish the result that the matrices
Q7 are birational invariants of M relative to the complete con-
tinuous system defined by the prime sections of M. It will be
recalled that the classification of the p-cycles of M into classes
of ineffective cycles given in § 44 is unaltered if we replace V,
by a birationally equivalent variety U, which is (a) in (1-1)
correspondence with ¥, without exception, (b) such that the
prime sections of U, correspond to varieties of (m — 1) dimen-
sions on ¥, belonging to the complete continuoussystem defined
by the prime sections on V,,. The harmonic integrals, on the
other hand, depend on the choice of metric on M.

If P("n (5217...,/)2‘)
are the effective p-fold forms on M of type & (h=0, ..., p) and
Phy — (i=1,....p%)

arc the forms defined on M by the effective integrals of type

h (h=0,...,p) defined by a Mannoury metric associated 'with
U, the forms .

Pl  @=1,..,p"
satisfy the conditions of the lemma of §47-3. If we calculate
the periods of all the integrals with respect to the same basis
for the effective p-cycles, the lemma gives the result

Q;: = )‘(h)glh':
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where A, is a matrix of 5% rows and p% columns. Hence

Q\ = /Ay 0 .. Qp
ap 0 Ay Qp
o A/ \Q

But the two period matrices in this equation are non-singular
matrices of B, — R, , rows and columns. Hence

Ag O
0 Ay

l(p\

is non-singular, and therefore ) = p and A, is non-singular.
By rearranging the integrals, we can write

Qp = Q.

In general, if the periods are calculated with respect to
arbitrary (possibly different) bases for the effective cycles,
we have

7= M2 A,

where A, is a non-singular square matrix, and A is a non-
singular square matrix of integers. Period matrices which
satisfy an equation of this form are said to be equivalent.
Hence we have the theorem:

On an algebraic variety of m dimensions we consider a complete
continuous system of varieties of m— 1 dimensions {C}, and in
{C} we take two linear systems | Cy | and | Cy| with the same base
povnts, which serve to give projective. representations of the variety
as varieties without singularities. Lf we now proceed to build up
the theory of harmonic integrals as in the earlier part of this
chapter, the period matrices of the effective p-fold integrals of
type h on the two varieties are equivalent.

An exactly similar argument holds when we consider in-
effective integrals of class k instead of effective integrals.
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49. Some enumerative results. Certain formulae con-
cerning the numbers p} can now be proved. We have

, Po=p
and > pk=R,-R, ,.
k=0

Let us first suppose that p is odd, say p = 2¢+ 1. Then
q
2y pk=R,—-R, ,.

k=0
If p=0,1,R, , =0, and hence, by a simple induction, we
find that R, is even whenever p is odd. This result has been
proved otherwise by Lefschetz(71.
Next let us suppose that p is even, say p = 2¢. Then, by
the result of §47-1,

QLAPQP)Y =0  (h+#k),
QEA(QR) = (- 1)+ ay,

where A? is the inverse of the transpose of the intersection
matrix of the effective p-cycles (regarded as cycles in M(V})),
and a, is a positive definite Hermitian matrix. AJ is a real
symmetric matrix, and it has a character called the signature,
defined as follows. Let T be a non-singular matrix such that
TA? T is a real diagonal matrix. The matrix T is not uniquely
defined by this property, but it is known(3] that the number
of elements of TA? T’ which are positive is independent of the
matrix T. This number is called the signature of A}. Clearly
it is also the signature of a,, the intersection matrix of the
effective p-cycles. We denote it by S(Af) or S(a,), and it is a
relative invariant of V,,. Since a, is positive definite, there
exists a matrix B, such that

ph E;& = O,
Take T= /g 0 .. -1 /Qp
0 g Qf

B,/ \S
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Then TAPT' = (—1)2 /¢,
. €1

€

where €, is (— 1)” times the unit matrix of p, rows and columns.
Hence
S(a,) = py+pp+ ... +p5 (¢ even)

and S(a,) = pp+p3+ ... +pB1 (g odd).

The number pY of everywhere finite p-fold algebraic in-
tegrals attached to V,, is an absolute invariant of V. We
therefore have the following relations:

(i) P =3Ry;
(ii) Py <3(R,—R, )
when p is odd;
(iii) when p=2g, P, < 8(ay,) (g even),

pgq < 182«( - qu -2 S<a2q) (q Odd)

It is well known 21 that p{ is equal to the first irregularity of
V., and that p, is the geometric genus of V. Form = 1 we are
concerned with an algebraic curve V}, and the results obtained
are classical in the theory of algebraic functions. In the case
of surfaces (m = 2) we shall later obtain more precise results.

50-1. Defective systems of integrals. In the following
paragraphs we prove a theorem which is a generalisation of
Poincaré’s theorem on defective integrals(ii], for sets of
integrals which have zero periods on all the ineffective cycles
of M. A similar theorem can be proved for sets of integrals
having non-zero periods only on the ineffective cycles of class
k, for any fixed value of k, but the theorem cannot, as far as
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we know, be extended to sets of integrals which have non-
zero periods on ineffective cycles of more than one class.

1

Let P, ..., P3,
1

1’(1), ceey Pzrll),

Ply, ..., P
be a set of closed p-forms which have zero periods on all the
ineffective p-cycles of M, with the properties:
(i) P, is a form of type A, i.e. it can be written as
Piy=[(p—h)h!] 1P, dzi ... dzir-rdzi . dzih,

and Py = Pl_pys

cop—h; Jreeodn

(i) no linear combination of the forms with constant
coefficients is null;

(iii) if &, is the period matrix of the integrals of the forms
) D
P, of type k, there exists a matrix A, of 0, rows and o = ¥ 0,
0

columns, and a matrix R of integers of o rows and R,— R, _,
columns such that
Q, =47,R. (5)
We call such a set of forms a complete set.
We first show that A, is of rank o, and R of rank o. The
(p+ 1) equations (5) can be written together as

Q= /Q,\ = /A\R = AR.

g[' A[)
The matrix  is of rank o, otherwise there would be a linear
combination of the forms P, which is null. Hence A and R
are of rank o at least. But A is a matrix of o rows and columns,
and R has o rows; hence the rank of these matrices cannot
exceed o. If any A, was of rank less than o, A would be of
rank less than o. Hence A, is of rank o, and R is of rank o
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Since R is of rank o, there therefore exists a matrix S of
integers of B, — R, _,—o rows and R, — R,_, columns, so that

T=(s)

has determinant ¢ different from zero. Let us make the change
of base for the period cycles given by

try st I3,

The integrals of our set of forms of type A have now period

matrix equal to
tA, RT-1 =tA,(1,,0),

where I, is the unit matrix of o rows and columns. The in-
tegrals of all the forms have therefore periods different fromn

zero only on the cycles I'}} (i=1,...,0). The matrices Q, are
now to be regarded as per 1od matrlces calculated for the cycles
.

Let the intersection matrix of the effective cycles I}’
(i=1,..., R,—R, ,)in M(V,) be written as

a; a,
a; a,)’

where a, = (. I Gj<o),
a =y I (<o;j>0)
a, = (I I (>0;5<0),
a, = [[(I LI G j>o),

and write the transpose of its inverse similarly as
( A, Az)
)
Az A,
where A, has o rows and columns, ete.
By Jacobi’s theorem on inverse determinants we know that

las| = |A,ld,

where d is the determinant of the intersection matrix. We
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prove that | a,| is different from zero by showing that A, is
non-singular. By §47-3, we have

Q, A A % ...
. 1 2 ’ O\ — (__45\D : .
(9 )(Aa A4) (Qo...ﬂ,, == ( ‘ ap)’

14
where (— 1)* a,, is a positive definite Hermitian matrix. Hence

A, A ...
2l Al A = (-9 (1 ,
A, ap

and, since the period matrices in this equation are square
matrices of rank o, and the right-hand side is non-singular,
A, is non-singular. Therefore a, is non-singular. Let
A= |a4la2a;l,
and make the change of base given by
. g e )
a4y, = |a, | [} = A0 (¢<o),
A, =lag| Iy (i>0).
The integrals of our forms have zero periods on the cycles
A} (1> o) and the intersection matrix of the B, — R, _, effective
cycles A%, is of the form
’
0 b,

where b, is a (0, ) matrix of rank o, and b, is a non-singular
matrix of B, — R, ,— o rows and columns. Thus a complete set
of o p-fold integrals which have periods only on the effective
cycles has the property that we can choose a base for the effective
p-cycles A, (1=1,...,R,— R, ,) so that

(a) the integrals have non-zero periods only on the cycles
4% (i<o);

(b) (45.4,)=0  (i<o;j>0);

(€) (4% . 43,) || is non-singular (3,j<0).
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For brevity we shall refer to the cycles 4% (1=1,...,0), or
any linear combinations of them, as the period cycles of the
complete set. We observe that the whole set of B,— R, ,
effective integrals forms a complete set, their period cycles
being the effective cycles of M.

650-2. Let us now suppose that a complete set of o p-foring
Py  (i=1,..,0),
Py ¢=1,...,0),
P, t=1,..,0
can be arranged so that the forms
) (=12,

P(il (= l)""’\l):

P(Lp) (i= 1""’Ap)
form a complete set, where
»
0 < A = 2“ Ah< T,
h=0

We first choose as a basis for the effective p-cycles of M a set
of cycles in M(V},),
45 ¢t=1,..,B,—R, ,),

»

satisfying the condition of the theorem of §50-1. We now
consider only the period cycles 4}, ...,4%, and repeat the
argument of §50-1, replacing o and R,—R,_, by A and o
respectively. We find a basis

i (i=1,..,R,—R,),
where ry =4 (2> 0),

for the effective p-cycles of M, so that the period matrix of
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the integrals of P, (i=1,...,0,) with respect to the cycles
I} (i=1,...,0) is of the form

X :
w, 0
A, = (w; wa) :
h h
Here wj} is of A, rows and A columns, etc., and the intersection
matrix of the cycles I'; (i=1, ..., ) is of the form

3
0 a,
where a, is a non-singular matrix of A rows and columns.
Let us now consider the relations of §47-3. We obtain

(w}‘ 0 )(A1 0 )((G)k)' (5’%)') =0 (hk).

wi wi/\0 AJ\ 0 (&f)

where A, is the transpose of the inverse of a;. Hence

The matrix

G = A (@) ... (@) (@s1)" - (@)

is of rank A— A, and hence if X is any matrix of rank A,, of
A, rows and A columns, which satisfies

X, =0,
any solution of the equation

Y, =0
is given by y = aX.
But we can take X = w},
and hence w? = o, w},

where ay, is a matrix of o, — A, rows and A, columns. Clearly,
we have
a,; = up_h.
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If we now replace the o, forms
Phy (=1,..,0%)
by the forms Qs (G=1,..,0%),
where Qi = Phy  (I<Ay),
Qe = Pt —oduy; Pl

the period matrix of the integrals of the forms Qf, is of the form

w, O

0 w})’
and hence the forms @, (i=A,+1,...,0%; h=0,...,p) com-
prise a complete set. The complete set P, (i=1,...,0%;
h=0,...,p) is said to be defective, and the two complete sub-

sets are called complementary complete sub-sets. A complete set
which is not defective is said to be pure. The period matrix

Q =/,

Szl‘
of a complete set which is pure is called a pure period matrix,
and the period matrix of a defective complete set is said to be
irreducible, or impure. The period matrix of a complete set with
respect to its period cycles is always a non-singular square
matrix.

Let Q=/Q)\ and A=/A;

Q, A,
be period matrices of two complete sets of p-fold integrals,
written in the usual form. Let €, have p, rows and p columns,
and A, have o, rows and o columns. Then

P

»
p=2pp 0=20
h=0 )

=)
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The matrices £ and A are said to be equivalent if

(1) Pr = Oy (h=0,...,p);
(2) the matrices ,, A, satisfy equations
ay, QhA = Ahr

where a, is a matrix, of p, rows and columns, which is of rank
Pr- and A is a non-singular matrix of integers, having p rows
and columns.

By a finite number of repetitions of the argument given
above, we prove immediately that the period matrix of a
complete set of integrals is equivalent to

QY ...
: P
oo
Q)
3
(1)
Q7 _
Q)
where QM =Q
Qb

is a pure period matrix. The integrals can also be arranged so
that their period matrix is

Qo
Q@

Q)

50-3. We now show that the reduced form of the period
matrix of a complete set of integrals is, essentially, unique.
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Suppose, indeed, that the period matrix of a complete set of
o forms can be reduced to

Q = (QW

QO
where @ is a pure period matrix having period cycles

Iyt F it ryb ot
11)‘ i—1 "__’pr :

and suppose that it can also be reduced to the form

A = [A®

A®
where A® is a pure period matrix having period cycles
A-;’)r}'...'l‘h'i <,+1, ey A-}r;-k..d«m.
If Iy =c¢;; A} (t=1,....,0=2r,=13s),
there exists an equation
a2 = AC,

where a is a non-singular matrix of o rows and columns and
C = (¢;;). We write this as

all ... aln\ /QD | = (A | cu | Qr
: o R : ’
asl .. ¥ Q0 A®) \Cst |, Csr
where each of the elements is a matrix and
= (o) 0
0 o

' ®
has s; rows and r; columns. The matrix equation implies
Q) = AOCi,
that is, o) QP = APCH (b =0,...,p),

HHI 14
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when we consider the integrals of different types separately.

Let 1%, s be the numbers of rows in ), A}, that is, the ranks

of these matrices. Since off) has s* rows and 7} columns, its

rank pi/ satisfies the inequality

pif <min (s?,r}).

Now, Q& and A® are non-singular square matrices. Hence
the matrices a/ and G¥ have the same rank, p¥, say.
There cxists a non-singular matrix P{, of s} rowsand columns

such that
Piyaiy = ((5(() ))’

where B is a matrix with pj; i rows. There also exists a uni-
modular matrix of integers D¥ so that

N Bii
v = ().

where Bi/ has p*/ rows. The equation
oy P = APCH
then gives BiH QP = LB,

where L§ is the matrix of the elements in the first pj/ rows
and pi columns of P{jA{P(D¥) 1. This equation implies that
the matrix Q@ cannot be a pure period matrix unless either
pii = 0 (h=0,...,p), or pj = r} (h=0,...,p).

We Lonslder the second case. In this case we obviously
have p¥ = r;. Moreover, since

Pl <min (sf,75),
we have sl >r}. Also B¥ is not singular. The equation
B = LB
can be written as
[3‘;{)9”) = [r,.’o) P(",{)Agf’(D”)“l B,
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where I, is the unit matrix of A rows and columns. Hence,
since B, is non-singular, we obtain the equation

Y(%A(’:) = 9(]{) Et'i’
where i) = (8ih) (1, 0) P,
and Ei = (Bii)1Dii,
In the same way, this shows that A® would be impure, unless
Py =8t (h=0,...,p). Hence we conclude that if r; #s;, a’l = 0.
If r; = s;, a¥l is either zero or a non-singular square matrix,
and in the latter case ¥, A® are equivalent period matrices.

Now suppose that 0, QP .. Q@ are equivalent period
matrices, and that QO (¢>a) is not similar to QO. From the
result just proved, we know that QO is similar to one AY at
least. Let it be similar to AW, ..., A® but not to AY (j>0).
Then in the matrix a the elements in the first ar; = as; columns
and the last o — br; rows are zero, and the elements in the first
bry rows and last o—ar; columns are zero. But a is non-
singular. This is only possible if @ = b. Therefore we conclude
that the reduced forms £, A of the period matrix of the o
forms have the properties:

(1) r=38;

(ii) for a suitable arrangement of A®, ..., A®, the period
matrices Q9 and A® are equivalent (¢=1,...,7). Thus the
reduced form of the period matrix is essentially unique.

On the other hand, the pure complete sets of integrals whose
period matrices Q% go to make up the period matrix £ need
not be uniquely defined. For if Q® is similar to Q®, there may
exist an equivalent reduced period matrix A in which A® and
A® gre similar to ® and Q®, and in which «!2, a?! are not
zero matrices. Thus, if Q® = Q® and QO is the period matrix
of the integrals of

P(ih) (’l/= 1,...,7{1;}&:0,...,])),
and @ is the period matrix of the integrals of
QP (G=1,...,m7 h=0,..,p),

the forms aPfh,+bQ%, (t=1,..,m™% h=0,...,p),

14-2
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where a and b are integers, form a pure complete set, whose
period matrix may be taken as one of the component period
matrices of another reduction A of .

50-4. An important example of defective integrals arises
in connection with the p-fold effective integrals on M, when
p <m. When we consider these as integrals on M(V,), we have
a complete set of integrals on this sub-manifold. In general,
they are not effective integrals on M(V,), but the results of
§47-4 shows that if

Pyy=[(p—h)!A1) 1 PR

i i b (J3i 5in
vipon; e QBT 2T M dZ L dZ

is an effective p-form of type & on M, there exists an effective
form

Qu = [(p—h)!h!]1 Pg”.'.)..i,,_;.; dein G202 dZi L 2,

of type & on M(V,) such that the integrals of F;) and @, have
the same periods on the effective p-cycles of M(V,). The
R,— R, , forms Qg (=0, ..., p) so obtained therefore com-
prise a complete set, which is a sub-set of the complete set of
effective forms on M(V,). There therefore exists a comple-
mentary complete set of effective forms on M(V,) whose period
cycles are the vanishing cycles of M (V).

51-1.f Applications to problems in algebraic geo-
metry. The applications which have been made of the theory
of harmonic integrals to problems in classical algebraic
geometry are somewhat scattered. In the following paragraphs
we give a brief account of some immediate applications, but
where an extensive knowledge of the geometrical theory of
algebraic varietics is necessary to the understanding of
applications, we merely give references. In a later paragraph
we shall give an account of some applications to the theory

t As explained in the preface, the following paragraphs merely summarize,

for the henclit of those interested in algebraic geometry, the more important
applications which have been made of the results of this chapter.
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of algebraic surfaces, but we first consider some general
problems.

We have already pointed out that a p-cycle of the manifold
M is always homologous to a p-cycle lying in the sub-manifold
which we have denoted by M(V,). The ineffective p-cycles of
class A (h>1) are homologous to cycles lying in the sub-
manifold M(V, ;). In addition, an effective p-cycle may be
homologous to a cycle lying in a sub-manifold M (D), where D
is an algebraic variety on ¥, of dimension less than p. In
this case, D does not lie in a generic variety V,_;, and usually it
possesses some special geometrical properties. Let I°, be any
p-cycle of M. We say that I', is of rank k if there cxists an
algebraic variety D onV,,, which may be reducible, of dimen-
sion p—k, such that I', is homologous to a cycle of M(D).
The rank of a p-cycle clearly cannot exceed the integral part
of ip. If p = 2¢, and I is of rank ¢, we say that I, is algebraic.

We now prove that if

P(i’,) (i=l,...,T]l;h'=0,...,p)

is a base for the harmonic forms on M, both cffective and
ineffective, where P{, is of type h and P, = P, ), then
necessary conditions that a p-cycle I', be of rank k are

f Piy=0  (i=1,..,7; h=0,...,k—1).

Ty

It is clear that these conditions imply the further conditions
’ Pjy=0 G=1..,T; h=p—Fk+1,...,p).
JIy

[f I, is of rank £, it is homologous to a cycle of M(D), where
D is an algebraic variety of dimension p—#k, lying on V.

r
1f D is reducible, we write it as D = ¥ D,, where D, ..., D,
1

are its irreducible components. Each D; is of dimension
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p—k, at most. On M(D,) there exists a cycle I"S such that
I',~ AT, on M. Tt is sufficient to prove that

frinh):O (j=0,...,'rh;h=0,...,k—l),

for each value of <.
Let the dimension of D; be s;. Then D; is given, locally, by
a set of equations
zh=fh(‘ul""’us,) (h=l""3m)J
zy = fa(Uy, .. u,)  (h=1,...,m).
Since $; <p—k, we have, on D,, if h <k,
0z

T
1eeelp—h} Jre..dn aul, au'p_h

Phy=[(p—h)!A! P,

x —a}fj‘ .. i)z""' dub... dule=r dum™ ... dum»
aum, aum;.
=0,
since p—h>p—k=zs,,
and therefore Jr‘ Phy=0 (h<k).

51-2. We have therefore found a set of necessary conditions
to be satisfied in order that the cycle I', be of rank k. The
question whether they are sufficient is of great importance in
the application of the theory of harmonic integrals to algebraic
geometry, but as yet it can only be answered in special cases.
Lefschetz(71 has proved that, in the case m = p = 2, the
2-cycle I'; is algebraic if and only if

Q=0
T,

for all algebraic integrals f @ of the first kind on M. This is

equivalent to our condition in the only case which arises
when m = 2.
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We now consider the case p = 2, for any m. If the 2-cycle
I'; is not homologous to zero (with division), it can be of rank
one at most. We now show that if each algebraic double
integral of the first kind on M has zero period on I, there
exists an integer A, different from zero, such that AT, is
algebraic. Except for the introduction of the multiplier A, this
is the same as proving the sufficiency of the conditions found
in §51-1.

If I', is any 2-cycle of M, there exists a non-zero integer A
such that Al is homologous to an invariant cycle I'y of M (V).
The cycle I'y is algebraic if the harmonic integrals of multi-
plicity two on M(V,),

"Qfﬂ)a

which are of type zero have zero periods on it. We saw, however,
in § 50-4, that the harmonic integrals on M (V;) form a defective
set, and that they can be decomposed into complementary
complete sets, one having periods only on the invariant cycles
and the other having periods only on the vanishing cycles.
The necessary and sufficient condition that I'y be algebraic is
that the algebraic double integrals (i.e. the harmonic integrals
of type zero) on M(V;) which have zero periods on the vanishing
cycles should have zero periods on I';. But the algebraic
integrals in question are homologous (and indeed equal) to
the integrals on M (V,) derived from the algebraic integrals on
M (by §47-4). Hence AL, is algebraic if

f P:;»=Af Py = 0,
AT, Iy

for each effective integral of multiplicity two and type zero
on M.

Lefschetz has shown[7] that the necessary and sufficient
condition that a (2m — 2)-cycle I',,_, be algebraic is that the
2-cycle I'y = I'y,,_, . M(V,) be algebraic. The condition for this

18
f r.P(lo) =9
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for each effective 2-form Pj, of type zero on M. But, by §45-1,

. -1 .
P:o) = Vm_zf Pibo) X (J)m_z,

Ty

and it follows the neccessary and sufficient condition that
I, , be algebraic is that the harmonic integrals of multi-
plicity 2m —2 and type m—2 should have zero periods on
Iypp- But, asin § 47-3, we show that any closed (2m — 2)-form
of type m — 2 is homologous to a harmonic form of type m — 2,
and hence the necessary and sufficient condition that Iy, ,
be algebraic is that the closed (2m —2)-forms of type m—2

have zero periods on it.

51-3. As an example of the use which can be made of the
criterion that a cycle be algebraic, we refer briefly to the theory
of correspondences between two irreducible curves ¢' and D,
of genera p and g respectively (13, 8. We denote by z a general
point of C, by 7y;, ...,7,, & fundamental base for the 1-cycles
of the Riemann surface of €, and we denote this Riemann
surface by C. Similarly, y, 8y, ...,d,,, D refer to the 0-cycles,
1-cycles, and 2-cycle of the Riemann surface of D. Let C'x D
be the product of ¢! by D, and denote its Riemannian manifold
by the same symbol.

Suppose that we are given an algebraic correspondence 7'
between C and D, in which to a point of C' there correspond
points of ), and to a point of D there correspond a points of C.
Let ; be transformed into 7'(y;) of D, where

T(y,) ~bid;, (6)

and similarly let &; be transformed by the reverse trans-
formation into 7'-1(4;) of C, where

T-Y3;) ~ aly;. ()

On the surface C x D the correspondence is ““‘represented” by
the curve which represents the point-pairs x x y related by
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the correspondence. This curve is an algebraic 2-cycle I', and
it can be proved that

I'~BCxy + axxD + eliy; xd;,
where € = yb = —(8a)’;
here b= () a= (@),

and vy, 8 are the transposes of the inverses of the intersection
matrices of the 1-cycles on C, D.

Let fdui (i=1,...p),

Al

Jdvi (i=1,...,q)

be the Abelian integrals of the first kind attached to C, D,
respectively, and let their period matrices be w, v. Then the
algebraic double integrals of the first kind on C'x D are the
pq integrals

fdui xdv;.

Since I is algebraic,
fduixdvjzo (t=1,..,p;5=1,...,9),
r

from which we obtain the matrix equation

wev’ = 0.
This is, essentially, a classical result due to Hurwitz(s].

Conversely, suppose there exists a relation

wev' =10
connecting w, v, where € is a matrix of integers. Then this
condition implies that

I'~BC xy + ax x D + ctiy; x &

is algebraic, whatever values we give to «, B; and a simple
geometrical argument is sufficient to show that «, B can be
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chosen so that the cycle represents an effective algebraic

curve. This curve defines a correspondence between C' and D

in which the 1-cycles are transformed according to (6) and (7).
The correspondence is of valency zero if and only if

e=0,

and the result shows that the number of independent “sin-
gular” correspondences between C and D is the number of
independent matrices € for which

wev’ = 0.

For a more detailed account of this theory, and for further
developments, the reader is referred to a paper by Lefschetz(s).
A partial extension to correspondences between surfaces will
be found in [5). The reason that the extension is only partial
is that we can only apply necessary conditions that a 4-cycle
be algebraic.

52-1. Some results for surfaces. We conclude this
chapter by referring to certain special results which we can
deduce for algebraic surfaces. We first make a deduction from
the fact that any algebraic integral of the first kind is harmonic,
and therefore cannot have all its periods zero.

Let us consider an algebraic surface ¥, of order n, lying in a
space of threc dimensions and having ordinary singularities,
whose equation in non-homogeneous coordinates is

Sflx,y.2) = 0.

Severi(16] has defined a semi-exact integral on ¥, to be an
integral of the form

f Rdz+ Sdy, (8)

where R, § are rational functions on V}, if the integral is such
that on every curve of ¥, it defines an Abelian integral of the
first kind. Clearly, such an integral is birationally invariant,
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and it can be expressed, in the neighbourhood of any point
of ¥, in terms of local parameters u, v in the form

J Pdu+ Qdo,
where P, @ are analytic functions of %, ». Therefore
dS dR
(G -2 wav
which is equal, locally, to

0Q oP
f (au e )d a,
is finite everywhere on V,, and, since it is the integral of a null

form, has no periods. But the double integral is algebraic, and
therefore, since it has no periods, we must have

48 R _
de dy

In other words, every semi-exact integral is the integral of a
closed form, that is, it is an algebraic simple integral of the
first kind (usually called a Picard integral of the first kind)
on V,. Now let us consider the integral (8) on the curve
x = constant. The function S must be a polynomial 4, adjoint
to f(z,y, 2), of degree (n— 3) in (y,2z), over of/0z, that is,

A
S =7
Js
where we have written f, = 9f/0z. Similarly we may write
B
R = "7
Je

where B is an adjoint polynomial, of degree (n—3) in (z, z).
By considering the behaviour of the integrals at infinity we
see that A and B are of degree (n—2) in (z, y, 2).

Next, we consider what the integral becomes when we take
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(y,2) as the independent variables. To do this we eliminate
dx by means of the equation

frdx+f,dy+f.dz = 0,

Bdz—Cdy
Afo+ Bf,

=

Exactly as before, we prove that C' can be taken to be equal,
on V,, to a polynomial of degree (= — 2) in (z, y, 2) and of degree
(n—3) in (x, %) adjoint to f(x, y, 2), and we have a relation

Afz+ Bf,+ Cf. = Df, (9)

and obtain fRdx +Sdy = f

where C=

where D is a polynomial of degree (n—3). The integral can
also be written as

Ju

The integrability condition is

sel 7)1 (1) 3y () -7 () -

0 oC
and this reduces to 04 +fi3 +f ¢ =D (10)
ox  dy 0z

J‘ C d@: Adz

D

on J,. Since each side of this equation is a polynomial of degree
(r—3), it follows that (10) is an identity.

Severi [16] has further shown that if there exist poly-
nomials 4, B, C, D, of the given degrees, 4, B, C being adjoint
to f, which satisfy (9), we necessarily have

A=xp+a, B=yp+p, C=z24+y, D=n¢+9,
where ¢ is a homogeneous polynomial of degree (n—3), and
a, B3, v are of degree (n— 3), while 8 is of degree (n —4). It now

follows easily (Picard and Simart(101) that equations (9) and
(10) are necessary and sufficient to define a Picard integral of
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the first kind on ¥,. Equation (9) is a sufficient condition in

order that f B dz—_ _Qgg/
fe

should be a semi-exact integral. But we have just seen that
a semi-exact integral is necessarily closed. Therefore (10) is
satisfied, and equation (9) is sufficient to define a Picard
integral of the first kind on the surface V.

Severi goes on to make an interesting deduction. The
equation A=0

defines a surface of order (n-—2), adjoint to V,, with the
following properties. It passes through the points of ¥, which

satisfy f,=0, f.=0
v b s )

that is, through the Jacobian set of the pencil of curves cut by
the planes = constant. Moreover, it passes through the base
points of this pencil. Severi shows that if 4 is any polynomial
of degree (n — 2) which defines a surface

A=0

satisfying these conditions, there exist unique polynomials
B, C, Dsuch that 4, B, C, D satisfy (9). Hence the number of
independent Picard integrals of the first kind is the number of
linearly independent polynomials A. Stated geometrically,
this result becomes:

Let | | be a proper system of curves on V,, and let | E, |
be a pencil belonging to | K|, and | E'| the system adjoint
to | £ |. The number of independent Picard integrals of the first
kind on V, is equal to the number of curves of the complete system
| E+ E'| which pass through (a) the Jacobian set of | E|,
(b) the base points of | E, |.

Finally, Severi shows that the curves of | £+ E’| which
pass through the set (@) all pass through the set (b).

It is a well-known theorem ([15] and (7]) that the number of
independent Picard integrals of the first kind is p, — p,, where
P, is the geometric genus of V,, and p, its arithmetic genus.
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52-2. We now consider a second application of the theory
of harmonic integrals to algebraic surfaces. Let p be the
maximum number of linearly independent 2-cycles of the
surface ¥, which are algebraic, and let

ry= M), T4..,T4"

be a base for them, where I'y (¢ > 1) are effective cycles. The
intersection matrix of these cycles is non-singular (Severi[14]),
and therefore, as in § 50, we can choose R, — p further effective
cyclesso that I'y, ..., I'fs-1 form a base for the effective 2-cycles
of M, and
(5.1 =0  (i<p;jzp)

A birational transformation affects only the algebraic cycles,
hence the cycles /4, ..., I'f* 1 are absolutely invariant. They
are called the transcendental cycles of M. We write the inter-
section matrix for the effective cycles as

a ( a, 0 )
= b
0 a,
where a, is a symmetric matrix of p — 1 rows and columns, and
a, is a symmetric matrix of R, —p rows and columns. Both are

non-singular. Now let us write the effective integrals as a
complete set, viz.

(i) the algebraic integrals f]’,- (e=1...,py),

where p, = pJ is the geometric genus of V;;

(ii) fQi (t=1,...,Ry—1-2p,),
where Q=@

(i) f]fi (C=1,..,p,)
where R, =P,

and let the period matrices of the three sets be , A, Q.
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The matrix A satisfies the equations
Q@A =0,
Q@ HA =0,

but, since A and a are real, we need only consider the first set,
Q@A =0.

Any real set of solutions of

Q@al)yx=0

is a set of periods of a linear combination of the integrals (ii).
Since the first p—1 cycles are algebraic, we have, by
Lefschetz’s theorem (§51-2),

Q= (0, w),

where w has R,—p columns. The equations to determine A

are therefore
0, w[az'])A = 0.

Therefore, by rearranging the integrals (ii) we can take A to
be of the form
I
A=|"r1 °),
(" &)
where I,_, is the unit matrix of p — 1 rows and columns. Hence

the effective integrals form a defective set, and can be resolved
into the two complementary complete sets:

(@) fQi (i=1,...0=1);
(b) (i) JP (i=1,...3,),
(i) J'Qi (i=py .o Ry—1—2p,),

(i) J'Ri (=1, .00r2,).
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Now apply to these two sets the theorem of §47-1. We obtain
the results

(@) a, is a positive definite matrix;

(b) Q -b, 0 0
A (a3) (@A1Q)=| 0 b, 0],
Q 0 0 -b
where b, 0 0
0 b, 0
0 0 b,

is a positive definite Hermitian matrix. Hence a, is a matrix
whose signature is R,—p—2p,. Thus a,, a, are symmetric
matrices whose signatures are p— 1, R, —p — 2p,, respectively.

[n interpreting these results, the reader should remember
that if 1, is of order n,

(.19 = —n.

In other words, our conventions of orientation are such that
a positive geometrical intersection corresponds to a negative
topological intersection. It is therefore convenient in con-
nection with the present results to change the orientation of
M so that the paramecters (x,,x,, ,, ;) are concordant with
the orientation. The first thecorem becomes:

I. The signature of the intersection matrixz of the trans-
cendental 2-cycles of M is 2p,,.

For the algebraic cycles, we now consider the intersection
matrix of the p cyeles 173, ..., I'f 1. Then we have
II. The intersection matrix of the curves of a base on an

algebraic cycle has signature 1. Geometrical proofs of this last
theorem have been given by Segre(12] and Bronowski(i1.



REFERENCES

225

. J. BroNowsKI. Journal of the London Mathematical Society, 13

(1938), 86.

2. G. CasTELNUOVO and F. ENrIQUES. Annales de I'Ecole Normale
Supérieure (3), 23 (1906), 339.
3. L. E. DicksoN. Modern Algebraic Theories (Chicago), 1926, p. 71.
4. W. V. D. HopagE. Journal of the London Mathematical Society,
12 (1937), 280.
5. W. V. D. HobuE. Proceedings of the London Mathematical
Society (2), 44 (1938), 226.
6. A. Hurwirz. Muathematische Annalen, 28 (1887), 561.
7. S.LEFscHETZ. L’Analysis Situs et la Géométrie Algébrique (Paris),
1924,
8. S. LerscrETZ. Annals of Mathematics, 28 (1927), 342,
9. G. MAnNNoury. Nieuw Archief voor Wiskunde (2), 4 (1898), 112.
10. E. Picarp and U. SiMarr. Théorie des Fonctions Algébriques de
deux Variables, vol. 1 (Paris), 1897.
11. H. PoiNcarEk. American Journal of Mathematics, 8 (1886), 289.
12. B. SeGrE. Annali di Matematica (4), 16 (1937), 157.
13. F. SevERL. Memorie dellu Reale Accademia di Torino (2), 14
(1904), 1.
14. F. Severt. Mathematische Annalen, 62 (1906), 194,
15. F. Suveri. At della Reale Accademia nazionale Lincei (5), 30
(1921).
16. F. Suverr. Atte della Reale Accademia nazionale Lincei (6), 7
(1928).
17. O. Zariskt. Algebraic Surfaces (Berlin), 1935.

HHI

15



Chapter V

APPLICATIONS TO THE THEORY
OF CONTINUOUS GROUPS

In this chapter we consider the application of the theory of
harmonic integrals to spaces which possess continuous groups
of transformations into themselves. It will be shown that when
a space possesses a continuous group of transtormations into
itself, and the group fulfils certain general conditions, a
Riemannian metric can be defined in the space by means of
this group, and the harmonic integrals associated with this
metric are invariants of the group. Lt will be shown that these
invariants are, in fact, the same as certain invariants which
have been discussed by Cartan(2l. The main purpose of this
chapter is to show how harmonic integrals provide a con-
venient method of discussing the invariants of Cartan.

53. Continuous groups. For the purposes of this chapter,
some knowledge of the clements of the theory of continuous
groups must be assumed. The results which the reader will
require to know can be found in any standard treatise on con-
tinuous groups. For his convenience we shall make our refer-
ences for results in Lie’s theory of groups to the work of
Bisenhart 3], and for results taken from the topological theory
of groups the reader may consult the monograph of Cartanit.
But in order to explain our approach to the subject, and to fix
our notation, we shall begin this chapter with a summary of
the theory which we propose to make the basis of our later
investigations. It should be noted that in some respects we
impose certain limitations on the spaces and groups considered
which are unnecessary in the general theory of continuous
groups; the reasons for these restrictions will, however, be
apparent later.
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53-1. Let V be an orientable manifold of class u, of n dimen-
sions. Since the only transformations of coordinates on V
which we have to consider are analytic transformations, the
class number u is of no importance, and we may, if we wish,
suppose that V is an analytic manifold. The condition that V
should be an orientable manifold is essential for the theory
which will come later.

A transformation 7' of the space V is a correspondence
which relates each point P of V to another point P’ of V, in
such a way that the correspondence between P and P’ is
one to one, without exception. As P describes the whole
manifold V, P also describes the whole manifold, and, given
any point ¢} of V', there is just one point @’ of V such that, when
Pis at @, Pis at @'. The transformation which takes Q into
Q" is called the inverse of 7" and is denoted by 7'-1. The trans-
formation which takes each point of V into itself is called the
identity transformation.

Instead of considering a single transformation 7' of V, we
now consider a set of transformations of V, which are in one to
one correspondence with the points of a space M. For the
purposes of this chapter, we confine ourselves to the case in
which M is a manifold of  dimensions. It will appear later that
the manifolds M which we have to consider are of dimension
three at least. 1f A is any point of M, we denote the corre-
sponding transformation by 7. The set of transformations is
said to form an r-parameter continuous group if the following
properties are satisfied:

(i) if 7T, is any transformation of the set, the inverse trans-
formation 7';! also belongs to the set;

(ii) if 7'y and T are any two transformations of the set,
and 7, takes the point I of V into the point P’, and T takes
the point P’ into P/, there is a transformation of the set
which takes P into P', for all points P of V. This trans-
formation is called the product of the transformation 7/ by
Ty, and is denoted by 7, 7,;

15-2
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(iii) the rule for forming the products of transformations
obeys the associative law, that is, if

TyTy=Tx and ToTy =Ty,
then T.Tx =Ty T,

Throughout this chapter, we assume that the sets of trans-
formations which we consider satisfy these conditions. We
further assume that the following conditions are satisfied.
Let (s, ..., 8,) be a local coordinate system on M valid in some
neighbourhood, and let 4 be any point of this neighbourhood.
The transformations 7', transform the points of a neighbour-
hood N of V into points of a ncighbourhood N of V. If
(€3, ..., ;) is & coordinate system valid in N, and (z,, ..., %,)
is a coordinate system valid in N, the transformation T,
where A has coordinates (s,,...,s,), transforms the point P,
whose coordinates are (z,,...,#,), into the point P’ whose
coordinates (73, ..., Z,) are given by

Ty = fi(@y, .oy Xy 81, .05 8,) (i=1,...,m), (1)

the functions being real analytic functions of (x,,...,x,) and
o,
0z,
zero at any point of N, for all positions of 4.

Again, let (s, ...,8,), (53, ...,5,) be local coordinate systems
on M, valid in neighbourhoods M, and M,. If 4 is any point of
M, and B any point of M,, we assume that as 4 and B vary in
their neighbourhoods the product transformation 7\, = T T,
defines a set of points C on M which lie in a neighbourhood
M. If (s3,...,s;) is a local coordinate system valid in M,
C is determined by the equations

of (s;,...,8,), and the determinant . being different from

&y

r) (i=l,...,’l‘), (2)

where the functions are analytic in (s, ..., s,) and in (5,, ..., ,).
Finally, we assume that the group of transformations on V
is tramsitive, that is, that there exists a transformation of the

8 = Pil81s 384 81y -,
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group which transforms any assigned point P of V into any
assigned point P’ of V. This implies that r >n.

The conditions which we have imposed imply that the
groups to be considered are of the kind known in group theory
as transitive, closed, Lie groups.

53-2. By using the properties of groups which we have
stated above, it is shown in the standard works (3], p. 18) that
if we eliminate (), ..., z,) from equa,tions (1) and the equations

oT;
as f'l(x’ 8)
. oT; o,

we obtain 5; = £(Z') A%(s), (3)
where, for each a, £i(Z') is a contravariant vector at the point
(@1, ...,%,) on V which is independent of (s, ...,s,), the com-
ponents of the vector being given in the comdma,te gystem
(Zy, ..., Z,); and where A%(s) is a covariant vector at the point
(81) -+ s,) on M, which is independent of (zy, ...,%,). The sum-
mation is from @ = 1 to @ = r. The vectors & (a=1,...,7) are

linearly independent, in the sense that there exist no consta,nts
ct, ..., ¢, ditferent from zero, such that
ct & = 0.

Similarly the vectors A? arc lincarly independent and the
determinant | A% | is never zero. Hence we can find a set of 7
contravariant vectors 4% (a=1,...,7) on M such that

AG(s )A"(ﬂ) =85
The vectors £ are determined by the transformations of the
group, as a set. But we can replace them by linear com-
binations (with constant coefﬁcients) of themselves. Let
77a_ a b (a=l’---,r):

where u, (@, b=1, ...,7) are real constants, and |} | #0. We
can ﬁnd r?real numbers vj(a,b=1,...,7) such that

b — S
uf vy —6‘0.
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If we write By = v 4,

we have nt B2 = ub Ef v A,
= & A3,

and hence 2_4 = (&) By(s)-

The set of vectors £ (@=L, ...,7) may therefore be regarded as
the components of a covariant vector in a space of r dimensions,
which we shall call the vector space associated with the group.
In this vector space the allowable transformations are those in
which the coefficients in the equations of transformation of a
vector are constants, and have a non-singular determinant.
The r vectors A% (a=1,...,7) on M then determine a con-
travariant vector in this space, and the vectors A% determine
a covariant vector.

The equations (3) arc called the fundamental equations of
the group, and the vectors &, are called the fundamental
covariant vectors on V. When the coordinate system in the
associated vector space is fixed, there is a vector &/ defined at
cach point of V, uniquely for each a. Similarly A“ A% are
respectively the fundamental covariant and contravariant
vectors on M.

53:3. The fundamental equations of the group are differ-
ential equations which determine (%, ...,%,) as functions of
(81, -+-»8;), when the initial values are properly chosen. They
arec completely integrable. If we apply the conditions of
integmbility

a [‘-‘a( ) (S) [g(t ¥ Au )]

we obtain the equations

‘-‘u PJ: - g{) a—-/ Cab gw (4)
045 0AS
There = Ax g8l Te _ Tk
where e, = Az A ( 33,  Os, ) .
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This last equation can also be written as

gOdf_ 4,24

AR = O, A (5)
e l) ab‘ c
08y s

Af

Since the vectors £ do not depend on (sy,...,s,), and the
vectors A%, A% do not depend on (3, ...,%,), it follows that
CSp is a constant. Clearly, we have

e ¢
Cop = =05 bar

. ab
and, since

0= lg g,a,gi_aagb gag_magg o,
R ‘a?' box, ™A b om;, > om O

Mt 11 Ye Yd i
= [(ch -’u(l /;‘u (Jbrl + (J((lb ¢ ul] Ee’
. d g Yl (e
we have O;'c O:ut + (JZ'(l bd + Cuh Ocd = 0. (6)

The numbers €, (a,b,c=1,...,r) are called the constants
of structure of the group. If we replace the vectors £ by vectors
78 = ub &, ete., we find that €4, is replaced by

D

Pl o (r
ab = Ug Uy Uy ¢ na*

Thus (%, is a tensor of the associated vector space.
Another tensor of the vector space is given by

Ja = (/':;d /gh'

This is a symmetric tensor. It is shown in works on continuous
groups (31, p. 174) that for groups of the kind known as semi-
simple, the determinant | g, | is not zero. Semi-simple groups
are usually defined in terms of properties of the invariant
sub-groups of a group, and it is then shown that the necessary
and sufficient condition that a group be semi-simple is that
| 9up | #0. For our purposes, however, it is sufficient to define
a semi-simple group as a group for which | g, | #0, but it is to
be noted that this condition defines a class of groups which is
important in other connections. Cartan ([1], p. 10) has shown
that for a semi-simple group which is closed the matrix (g,,)
is positive definite. In this chapter we are only concerned with
closed semi-simple groups.
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We take the tensor g,, as the metrical tensor in the vector
space. There exists a contravariant tensor g% such that

9y = 0¢5

and the tensors g%, ¢, can be used to raise and lower indices.
We shall write
Cabc = Yad Cllfc

- 1 1

Now Cabc - (Il)q C%d C be
— Yd 1l
- C(Il)q[CZd (/’pr + C’cld Cbp

_ 1 (1 )]

= C(pr[ (Il’q Ct d ng ng]
_ \

= — Cyye-

Hence C,,, is a skew-symmetric tensor of the vector space.
We shall find it convenient in raising and lowering indices in
tensors such as (¢, to observe the convention that when we
raise an index which is on the left at the bottom we place it on
the right at the top. Thus we write

g 2Cy = G
With this convention we have, for instance,
gl = — "'l = = O3,
and it follows easily that
e = — e,

53-4. Let us now consider the manifold 3/, which we call
the group manifold. Let A and B be any two points of M, and
let 71, = T,.. This relation defines a transtormation of M
which takes the point A4 into the point C. For cach point B of
M there exists such a transformation of M, and it can be
verified that these transformations form a transitive group,
and, since there is one transformation of this group corre-
sponding to each point B of M, M is also the group manifold
of this new group. We call this group of transformations of M
the left-hand translation group.
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The equations of the transformations of the left-hand
translation group are the equations

8, = Pi(8y, -y 805 815+, 8,) e=1,...,7), (2)
where (s, ...,$,), (5, -..,5,) and (s, ...,s;) are the coordinates
of A, B, C, respectively. We can form the fundamental
equations of the group, and it is shown (3], p. 23) that

0 _

a(s-./’ ‘4(‘11(8 ) A?f (§), (7)

where A%, A2 are the vectors defined in §53-2. Forming the
conditions of integrability of these equations, we obtain the
equations

5 045

ey
0sy

— AL = Gt %)
which we have obtained above. Thus the left-hand translation
group has the same constants of structure as the group of
transformations of V.

Equations (7) can be used to show that the manifold M is
orientable. To see this, let us fix some point of M, say the
point O which represents the identity transformation, and let
N be a neighbourhood of O, and (sy, ..., s,) a coordinate system
in N. Consider the set of neighbourhoods N, of M, where the
pointsof N represent the transformations 7', 7' as Adescribes N.
There is one such neighbourhood for each transformation 7'
of the group, and the set of neighbourhoods covers M. By
the theorem of Hecine-Borel, there exists a finite number of
transformations 7, ...,7, such that the neighbourhoods
N; = Ny, (i=1,...,p) cover M. We fix a coordinate system in
N; by the condition that a point P of N; has the same co-
ordinates as the point of N which represents the transformation
ToT;'. If we can show that any two of these coordinate
systems which are valid in a neighbourhood are like in this
neighbourhood, it will follow that M is orientable.

Let P be any point common to N; and N, and let the trans-
formations T 17 1, Tp T'; ! be represented by the points 4; and
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A;, which lie in N. If A; has the coordinates (sf, ..., s}) and if
A; has the coordinates (s], ..., s}), the law of transformation
expressing the coordinates in N; in terms of the coordinates
in N, is the particular case of (2),

8, = P, (0, 8%),

where o represents the transformation 7;7';!. Hence, by (7),
we have

st . .
Pa __ gageiy Aafei
as,ﬁ' = ‘41l(‘5 )A/)'(s )’
i a.s’g','
and therefore =A%, [ A%, -
| 8.5';,? - o

Now the determinant | 4%| has the same sign at all points
of N, and hence

and it follows that the coordinate systems in N;, N; are like
in a neighbourhood of £. Thus M is orientable.

53-5. The equation
m _m
TpT, =T

serves to define another group of transformations on M, which
we call the right-hand translation group. This group is com-
posed of the transformations which take the point B into the
point C, one transformation corresponding to each point A4
of M. The fundamental equations of this group are

s, + -
= A%(s") A4(s).
oy, = A6 i)

where the vectors A%, A% can be determined without difficulty
(131, p. 28). We choose a base for the set of vectors 4% so that,
at the point O which represents the identity transformation,

Ae _ Aa
A = 4.
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Then the vectors A%, A% have the properties:

M Az(s) Ab(s) = &3

qa a
and (ii) A %42 = A2 %ﬁlj;
Sp Sy

and indeed the vectors A%, A¢ can be defined by these pro-
perties.

The conditions of integrability of the fundamental equations
of the right-hand translation group are found to give the
equations _ _

—,04% —,04% . =
At A = O,
where e+ 0 = 0.

53:6. The results which have been sketched in the preceding
paragraphs, and which will be found proved in detail in any
textbook on the theory of continuous groups, include every-
thing required for use in this chapter. We are now rcady
to begin the particular study of this chapter, which is the
behaviour of tensors on a manifold possessing a transitive
closed semi-simple group of transformations, under trans-
formations of the group. In particular we are interested in the
skew-symmetric covariant tensors which are invariant under
the transformations of the group. These define invariant
integrals of the group. It is shown that the group defines a
Riemannian metric on the manifold, and that the harmonic
integrals associated with this metric are amongst the in-
variant integrals, and in the case of the translation groups on
a group manifold we are able to deduce in this way certain
topological properties of the manifold.

We shall be concerned with tensors on ¥V, tensors on M, and
tensors in the associated vector space. However, we never
have to consider V and M simultancously, though we have to
consider each in turn in conjunction with the vector space.
Thus, we are at any stage only concerned with two sets of
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tensors, and it is convenient to make certain conventions with
regard to notation. When we are dealing with the manifold V'
and the vector space, we shall use Latin letters for the indices
of tensors in V, Greek letters for the indices of tensors in the
vector space. Thus, for £, C%,, we shall write &%, 0%;.

When we consider the group manifold M, we are only con-
cerned with the translation groups, and for these groups V
and M coincide. The fundamental contravariant vectors for
the left-hand translation group are the vectors Aj, and,
regarding the manifold as the manifold V, we replace these
by &i. Then we adopt the conventional use of Latin and
Greek suffixes explained above, and write the vectors as £:.
We also have to consider the right-hand translation group.
We shall denote the fundamental contravariant vectors of
this group by 7%, these vectors being the vectors previously
denoted by A2

54-1. Geometry of the transformation space. In this
paragraph we are only concerned with the variety V. The
infinitesimal transformations of the group are given by x>z,
where .

v = x;+e* &y,
€* being an infinitesimal number. Since the group is locally
transitive, there is an infinitesimal transformation which takes
a point z into any point of its neighbourhood, and for this it
is necessary and sufficient that the matrix (£¢) should be of
rank n. If we define '/ by

g1 = E &g,

the matrix (g%) is positive definite, and there therefore exists
a positive definite matrix (g;;) such that

959" = oF.

The Riemannian metric on V is now defined by the quadratic
differential form g,;dxida’. It will be observed that the metric
is determined completely by the structure of the continuous



v, 54-2] THE TRANSFORMATION SPACE 2317

group. We use g;; and g to lower and raise Latin indices, and
9.4 and g to lower and raise Greek indices.

Consider £ =gl g &
Wehave  £L£F = Elg*gu £ = gy = &},
If r = n, we have EiEh =88,
but if > n, hy = £3 & # 93,

since (k}) is only of rank n. The tensor 4§ of the associated
vector space is of great importance in discussing the geometry
of V. It has the properties:

(i) 58. = EEQEL = 058 = &)
(i1) h3Ef =
(i) W3 = WERE, = ESEL = s,
Further, if h*# = g*¥ hf,
then hob = g EPEL = EgliEs = hb=,
Similarly, hop = oyl = hpys
and h*fhg, = hS.

54-2. We now define quantities

0
;k_ L‘gk gk

aﬁé
The law of transformation of these qua.ntities corresponding
to a change of coordinate system on V is easily found to be

0% pu . O% s 0% 0%,
oz, T 0x0m, " 0x; 0%,
We may therefore take these quantities as the components of
an affine connection on V. Since we shall consider more than
one affine connection on V, we shall write the covariant
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derivative of a tensor Q7% of weight W with respect to this
connection as

D
J1e. o J 0 J1...3 Fienneerrnnenienens 7
Qi ~ Qi — Z Qr il Ly

Liplk = axk

+ S“ (JJ- Jr—1@jr pree Jq Ljr WQ ak

We shall also consider covariant differentiation with respect
to the connection whose components are L}, where

€
]kf_ ki = 07
and in thiq case we shall denote the covariant derivative of

ih Jq by
Ty.ilp 1 pllk:
Consider the fundamental relation satisfied by the vectors £,

6o - o (4
If we multiply this by £%, we obtain

(agﬂ +£’ Lj, = Uy/iél &
that is, &= Clp& & (8)
Multiply again by &4, and we obtain

Ly — Ly = O£ ELE]. (9)

From (8) and (9), we have
Ehiie = Clp&y 8k — Ep(Ljy — Liy)
= O%.5, 8485 — hj)- (10)

Expressions such as C%,£! £ oceur so often in the sequel
that it will be convenient to write them as Ci,, ete. Thus

ip=E,0%, Clp=ClLy&s,

and so on.
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54-3. Let us consider the covariant derivatives of the
metrical tensor.

97k = 9P EL kER+ 9 PELEh
= g Clo 8+ 9P Clp &L
=0+ 0§ =
Similarly,
g = PO, EI(S —h) + g*BCL EL(85 — h)
= Ol — W) + O Ei(g™ — h=)
=0,
since Eighs — hPe) = k(& —EflhG) = 0.
If we write Ly = M Lj+ Liy),
and if covariant differentiation with respect to the symmetric

connection [, is written with the comma notation, we have,
jk
by adding the two results,

-(/fj)k = 0.
Hence Gipk = 0.

[t follows that the components I}y, are the Christoffel symbols
associated with the metric

g jdatdat.
From (8) and (10), we have
gk = Cip(0f — 3hE), (11)
and, as a corollary,
Eli = Cly(0f — Lhf) = b3 Cyp(84 — 1hE) = 0.

Next, %k = 9°79:; Cly (0% — 1hY)

= ¢; OF (05— §h3)

= g £i CYP (35— 1h3)

= O(85— 143). (12)
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Similarly, we prove that
- a_
oz,

Finally, a useful formula is obtained by multiplying (4) by

(h%—03) (k) — 0%) &

by = C% Wy — O he. (13)

Since (h5—065)8i = E]—E{ =0,
the left-hand side is zero, and we have
(hﬁ—&;‘{)(k;‘{——&ﬁ) C%pl, = 0. (14)

55. The transformation of tensors. When a trans-
formation of the group is applied to V, a tensor on V is trans-
formed into another tensor. We are mainly interested in the
conditions to be satisfied in order that a tensor be invariant,
and for this it is sufficient to consider invariance under
infinitesimal transformations, since a finite transformation
can be built up from these. We therefore consider an in-
finitesimal transformation x — x’, where

x§=xi+6“§§, (15)

where we can neglect squares and products of €*. To calculate
the effect of this infinitesimal transformation on a tensor

.’,::_‘_'_'{.lf of weight W, we proceed as follows. We first regard (15)
as & change of coordinate system at the point . Then, after
the transformation (15) has been applied to the tensor, the
components of the new tensor are given at 2’ in the original
coordinate system by the values of the corresponding com-
ponents of the original tensor at x in the new coordinate
system. The difference between this and the value of the
original tensor at the point «’ gives the change produced in
the given tensor at 2’ by the transformation. This change only
differs from the change at x by quantities of the second order,
and hence we have the expression for the change at z in the
tensor produced by the transformation. We denote the given
tensor at x by Qg::::l’.} (%), and the new tensor at the same
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point by ’i:;jjj{; (r). We then have (all in the original co-
ordinate system):

’
Qr;{,...;{, (.’E’) — ax‘i Q bq( ) a, ax ?x)'x .. aqu
T1...1p x; ay...ap ax axb axb
E ., OE;
1__ Wea € J1eeFr—1@ Ty p1ee Je 2%
Q ) + Z‘. QT b o,
o&e
.................. ] o
—e 3 Qi o |
Treedra@lp pyandp axi.—
e
— 7, (x) - E 1 l(“ ....... ,11,,4_1
! et O,
g:h agk
_ Jieeodr—1@fpiq.. ]q W ...:!, .
T @l B+ W e Qi
Hence Q'{:: “(x')— Q (x )= —e*4 Q
where A QJqu __rk _QJ:....]:q_*_ Z Q .................. iqagg_
@ VUil — aaxk lyaldp -t 1 7P00 PRy ' PRI N axi’
q g.’lr gk‘
A N Jl dr—1kdria... % 71 g
X @ik ot W
?’
K )iteda | N reeererneneneinenns k
= gac {',...{'Z,k QL, [T 2 S a, i,
r
r— k ri1 "
- Z Q"....’...?...’..ﬁ....”"Ei,k- (16)

From the first form given for Aa Q’:""?"’ we have
&, Qi: = QJ‘ Zlk
The condition that a tensor should be invariant for the
transformations of the group can therefore be written

A,Qh =0,
From this we have 4,9;; = g;; &% ; +g4.E% ;

= g,,,e(ég,i + g’g, i)
= 0,

by (12). Similarly, A4,¢% =0, A,Jg=0.

HHI 16
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It follows that the length {g,;£'¢/}t of any invariant contra-
variant vector £ is unaltered by the transformations of the

groups. Again
Aach 1'1; Z 611 Aper K drise. 'l,.ga ir
k
honein bk = 05
and similarly, 4 81: =0,

56-1. Invariant integrals. A p-fold integral

[P = [Pyt da
] 1

is said to be invariant if 4,8, ;=0 (a=1,...
i .
Now define P, o =P 5 &2
Then, since gLEr =8y,
— a a@.
we have P iy =P &5 - 88
and P“l WGy ff Ariqee aph‘)' = de WOp—1 Y Olr 1 e Op®
We have

eerOra1 B ori1e..0p S ink Ot =0t Oty

+
?!'M's
o

0 .
= [—a—" Pa|...ap+ Z Pa,...a,-_,/}ayh...a,,ozrk(&g hﬂ)] gl,l ..
k d

0 p
= [a;k Pa,...ap + 'érgle...ay—x/faH 10e03p ark:l

by (17). Hence,

0
A4,FP; . = 5 g-a_itkpl ap+ z Ao elr—1ff Arg1ee.ap

at ..

.. 0
= gk
_ba axk P

Eﬂ ay @pee1 £%r41
k T "

- &2

408+ 0L 1) ER

P
B a
Ay...0p + rglPa....a,_,ﬂ ayﬂ...apoa,a gz: s

(17)

%p

* 51

"p

%p
ip

.
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Further,

AP, & b
[gga-— .. a,+ 24 [ ac,..;ﬂa.-+‘...ap0g,a ha:"‘h;:

3
—éaa By 5, TZ By....00-Bprie.. ﬂp{ga -y hﬂ,}

Now, by equation (13)

8 hﬁ = hy OF b}, —hy C4 , bj

We may therefore write

Pﬂl Pr=1B i1 -Bp g“ &/f - C k}}r}
=Ly b ,,p/bf'[C(;yk‘; hy—Cs, 04 by — C5, b}, 67]
- })/)’,.../J,ﬂﬁ/iﬂ.,.../)',,h'g[ 67( r 86,) (""Z ay) (’p’ a

= [)/fx-u/’r—l B Brv1eefp Cgr“’
y (14) and (17). Thus the equations

AalJ@, dp 0
can be replaced by
G é
ég;l: Pal...ap + Télpal...ar~1/)‘1,- 1eeeGp (/'g,a = O' (18)

Conversely, in order to find the invariant p-fold integrals
we have to find functions P, ., which satisfy (17) and (18),
for a=1,...,r. In the case r = n, equation (17) is an identity,
since

M = o4,

We also observe that, on account of (18), if the tensors
which define two invariant integrals are equal at any point
of V they are equal at every point of V. Consequently, there

cannot be more than (z) invariant p-fold integrals which are

linearly independent.

16-2
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56:2. We now show that the harmonic integrals on V are

invariant. Let
fP =fi|Pi....i dxt ... dz'"»
p: ®

be a harmonic integral. Since P is closed,

p+1 1
r— —
Z (_ 1) ‘P’il...iy_liy+1...'tp+,,1:, - 0’
r=1
& 1
- . —_— r -
a'nd hence ‘I)i]..-’t'p.k - 2‘ ( 1) Pkl'\u-'ir-l’l'ﬂ 1e008p, Tr°

r=1
Therefore,

— ¢k k
AaI)h Jdp T gal lp,k+ 2& Ieodp—r K by pq.. ip 00,7,

.~ ~1gk
72:1(_ )r g Pk’h R PERTIN 7

+ E ( ﬁl‘ga 1,sz, Iy P PR TR
r=1
P
= Zl(“ 1) YEE Pty vty
r=
Hence we have A4,P~0.

Since the metrical and numerical tensors are invariant, and

Aa(A j,,Bm, m.) — Aa(A'Z: i,,) Bm‘ m,+A€: qu (Bm, m.)

we have (A, P)* = A, P*,
where P* is the dual of P (cf. § 27-2). But, since P is harmonic,
P* 0,

and therefore, by the reasoning given above,
A4, P*~0.

4, P is therefore harmonic and homologous to zero; hence
A,P =0,

and we have established the required result.
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As a corollary, we have the theorem that a manifold of n
dimensions which admits a transitive, closed, semi-simple
group of self-transformations has its pth Beth number not

greater than (n)
P
56-3. Any invariant p-fold integral which is closed is equat

to the sum of a harmonic integral and an invariant integral
which is null. We now consider null invariant integrals. Let

fr-Je.

be a null invariant p-fold integral. We have

¥
b = El( — 1)@t veipip
r—
and hence
»
a—1 (gk
4,5 ., 232-1( — 1P MER Letreniaeivs i) ive

Now

g{:Pki,...i, Vg aendp = g{:Qi....i,-.iﬂ rendpk gk (Qki,...i._.i,‘ peaeipets T )

= /Ia Qi....i,-. Totneestp Ri,...i,_li,l )

where
=1
]zjl---jp—l = %:1( - 1)" ! (g‘,; Qlcj|~"jr-ljf! 1-++Jp ~x)7jr a
Hence Ne@p = (4,Q)
Since P is a null form, there exists an (n — p)-form U satisfying
Uz, =P,

by the results of Chapter III. Hence, since P is invariant,
Aa[ Uﬁr] =0,

that is, N, UP,.=0
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since we have seen that the operations of forming the derived
form and of forming the dual form are interchangeable with
the operator 4,. It follows that

4,00,
for otherwise f [4,U],

would be a null harmonic integral. U< is therefore an invariant
(p—1)-form whose derivative is P. We have therefore the
following results concerning invariant forms:

(i) the derived form of any invariant form is invariant;

(ii) any invariant null form is the derived form of an
invariant form;

(iii) the dual of an invariant form is invariant.

56:4. We have seen that the number of linearly independent
invariant p-fold integrals on V is finite. Let this number be
N,. If o, is the number of invariant p-fold integrals no linear
combination of which is closed, the number of invariant
p-fold integrals which are null is a, ;. Every invariant in-
tegral which is closed is the sum of an invariant null integral
and a harmonic integral. Hence, if R, is the pth Betti number
of V,

N,=R,+a,+a,_,.
By (iii) of §56-3, N, =N,

—p»
and therefore Oty g =y g,

that is Oy =0y pg =—(Ap_1—a,_ )
= (= 1)P (g~ a,-1).
Now an invariant function P satisfies

g{;% =0 (a=1,..,7),

and therefore —ai) =0 (k=1,...,n).
0z,
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P is therefore a constant, that is, it is closed. Hence a, is zero.
Now consider an invariant n-fold integral. It is the dual of
an invariant 0-fold integral, and it is therefore of the form

fk Jgdxt... dxn,

where k is a constant. If this integral is null, & is zero, and
therefore a,,_; must also be zero. Hence

a,=a

g7} n—p-—1°

Let fU" (t=1,...,0,_,4)

be the invariant (n —p — 1)-fold integrals, no linear combina-
tion of which is closed. Then

Joo =ty

are invariant (n — p)-fold integrals, and

j(Ui).c (7'= 1, -'-aan—p—l)

are invariant p-fold integrals. Suppose that there is a linear
combination of these last integrals which is closed, say,

al( Ui' )ZE —0.
Then fai U:

is a harmonic integral which is null, and we conclude that
a,; Ui—> 0,

which is contrary to our hypothesis. Therefore

o G=tm
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are a,_,,_; = «, invariant p-fold integrals no linear combina-
tion of which is closed. It follows that any invariant p-fold
integral can be written in the form

Jepwv9),

where P is a harmonic form, W is an invariant (p —1)-form,

and
U = a',: U{.

Now take f(U")‘ = [W" (i=1,...,a,)

to be the invariant p-fold integrals, no linear combination of
which is closed. By repeating the argument given above, we
prove that

f(W")f (i=1,...a,)

are o, = a,,_, .; invariant (n—p—1)-fold integrals, no linear
combination of which is closed. Hence

(Wi =aiUi i (i=1,...,a,),

where ¥ is a closed invariant form, and (af) is non-singular.
Let (b}) be the inversc of the matrix (af). We replace U¢ by
Ui+biyi. Since Y is closed, this does not alter Wi = (U?)z.
With this new base for the a, ,_; invariant (» —p—1)-fold
integrals, no linear combination of which is closed, we have

(Wiye = ai Ui,

Hence (Wi = ai(U7)*
=alW,
and (Utyzs = (Wiy=

— AT
=a;Ul.
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The forms Ut (i=1,....a,_,,), Wi (i=1,...,a,) are uni-
quely determined in thls wa.y as a set, but can be replaced by
linear combinations of themselves with constant coefficients.
It follows that the invariant factors of the matrix

(a5 —2%))

are numerical invariants of the group of transformations
associated with the p-fold integrals. There exists a duality
relation between these sets of invariants, those corresponding
to the multiplicity p being equal to those corresponding to
multiplicity » —p —1.

Cartan(2] has shown that for spaces V with groups of a
certain type, a, = 0 for all values of p.

57-1. The group manifold. We now consider the
application of the results of §§56-1-56-4 to the translation
groups on the group manifold M. We recall (§53-6) that we
write the fundamental vectors of the left-hand translation
group as £, and the fundamental vectors of the right-hand
translation group as 5. We have, from the results of §53,

the equations
af

g, (g/} (_’_} r} : (vyﬂg (5)
Xy
a,,,, n}a
a = (/ o ’ 19
Yoy Uy, = Cha'ly (19)
; 0 0%
and 7, a'i'” & ?73"1 . (20)

We begin by considering the left-hand translation group.
Since this is a transitive, closed, semi-simple group, the theory
of §§ 54-56 can be applied, and we assume the results of these
paragraphs. But for the left-hand translation group we have
r = n, and hence

a 84

A A

This simplifies the formulae considerably.
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We first find the invariant simple integrals of the group.
The necessary and sufficient condition that the integral

Joueras
should be invariant is that
ov
a‘%‘i +v B ng = 0.
We show that these equations are completely integrable. The

condition for this is

v v

a,ij — Ya,ji>

that is,

v ov

- %ff O — v, O8, O% + a‘f. O+ 40, C4, CY = 0,

0% :

that is, v, Ch; C% =, 03 Cli—v, €L CY = 0,
s A

or v‘y[("};/t Og/\ + C'%/\ Cﬁa + Cya Of/t] gi gf = 0,

which is satisfied on account of (6).

We can determine the first Betti number R, of M by
finding the number of invariant simple integrals which are
closed. If

v, Edat = fvidxi

is closed, then Vij = Vi
ov ov,
that is, [-ﬂ + 1o, CF ] £ [—“ + 3o, ¥ ] £ -0,
ax]_ A aj i axi 2¥pMai | SF
which reduces to vy CF, = 0.

Since (¢,5) = (03, C4p) is of rank r, the magrix (C§ ) of 7 rows
and 72 columns is of rank r, and hence it follows that vp = 0.
Hence there are no closed invariant simple integrals, and it
follows that R, = 0.
It follows from this that the equations
ov,

_a J -
axk‘i"l)ﬂoak =0
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have a unique solution taking a given value at a certain point-
We can therefore find r sets of solutions, v, of these equa-
tions (one set corresponding to each value of A, A=1,...,7)
which take the values v} = 8 at the point O representmg
the identity transformation. We thus obtain r invariant

integrals
[erast = [ragrae

and for the left-hand translation group of M we have the result
that the number a, of invariant simple integrals, no linear
combination of which is closed, is equal to r.

57-2. We now investigate the properties of the vectors ¢},
just defined. We define £% by the equation

gf\ = gij g/\/l,gf'
Then §MEL = gllg, vivpELES
= g/wgaﬂvé ’l);’g.
0 .
Hence, , [62¢] = —g/,,,g“/’ [Chvyvi + CLvv3]
— 9, [C% + O vy A
= 0.
But, at the point O, which represents the identity trans-
formation,
GML = EXEL =0,
and therefore at every point of M we have
g/\ i 34\'
Hence it follows that  iv} = &&.
By a similar argument we show that if
;,u = ”; C/\/L CﬂyvA )

then a;V'\"+W Cru+ W5, Ch = 0.
Ty,
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Since W%, = 0 at O, it is zero everywhere, and hence
Ap

V508, = Coyviv),s (21
everywhere.

When we calculate covariant derivatives of ¢}, £} with
respect to the symmetric connection I}, defined by the left-
hand translation group, we obtain
= -0} 0%+ §v, CY;
=— 4 C%

— 30582,

/\

]

by equation (21); and
gf\,j = {]"k!h,tgif,j
== 39" Clylith
= 1058584
Again, GO g T
AL T
= 1O+ iy
= L;
ﬁga
zxqvk'

This last equation, and the condition that £ = £i at O, are
sufficient to show that ¢& = 9%, where 7¢ is the fundamental
vector corresponding to the right-hand translation group. We
shall therefore write 9%, 9% for &, £%, in future.

57-3. We now consider the integrals which are invariant
under the left-hand translation group. Consider the integral

f i, . dae.

] i 1,
We define P, o =P 05 N5
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Then 'Pt .ip = Pcn...a, "7%‘ ”qp'
At the point O we have P, = Pa‘ .ap» DUt this is not true at

Rpeeellp

other points. The condition that the 1ntegra.l is invariant is

a( 2. 1,,77““ %)=O,

that is, A,(P,... &) M mir =0,
that is, AP, . a,,) = 0.
Hence T’a‘_._% is a constant. Conversely, if P, .2, 18 & constant,
1 5 . .
fp'P“‘ ap i e das ... da'e

is an invariant integral. Thus the number N, of invariant

p-fold integrals is (1))) . Since, in the notation of § 56-4,

R,+a,+a, = (;),
it follows that
r
S (-1 R, + (=g = (=17 (") <o,
D - 0 p=0 p

and since a, = 0, it follows that the Euler- Poincaré invariant

2;] (— 1)? R, of the group manifold is zero.

57-4. Let us now consider the integrals on M which are
invariant under the right-hand translation group. The
fundamental vectors are now the vectors 7%, 7¥. We must
therefore replace the connection

oo

i o= gi ok

[‘]k ga axj

by th i L
y the connection L = 77"‘8

—g

oz,
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Since ML+ LE) = ML+ L) = ',
the symmetric connection is the same as for the left-hand

translation group. The metrical tensor g} associated with the
right-hand translation group is given by

95 = upnin’,
and hence at O we have g¢f; = g,;.

Also, g and g, satisfy the same linear differential equations

og¥;
8.7;”' = Yai Ttk + 9% Lt
%

09,
(] Ta a

U =g ] +q. 1.
axk Ja} ik T 9ial jho

and
and from this it follows that g;; = g¥; everywhere. Thus the
two translation groups define the same metric on the group
manifold.

The condition for the invariance of a tensor @%::#» under
the right-hand translation group is therefore

J1..-dg
U1eeelp

ik =0
From equation (10) we can deduce that
Lk ’

and it follows as above that the invariant p-fold integrals
under the right-hand translation group are the integrals

1 . .
f»—P G Eirdat .. dats,

| aeap 06 00

where P, , is a constant.
1enetp

57-5. The most interesting problem which arises in con-
nection with the group manifold M is the determination of the
integrals which are invariant under both the left-hand and
right-hand translation groups. If such an integral is

Jl—P- dui . dan,

pl- e
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we have P . i=0
and ‘I)lp.-‘ip“k = 0.
Therefore P =0

and the conditions

p+1 1
Zl(— U By iy eviprnte = 0
=

a,nd grs‘l)l'u--ip—l rs = 0

for a harmonic integral are satisfied. Thus every integral
which is invariant for both groups is a harmonic integral in
the common metric. Moreover, since the metric for the two
groups is the same, the harmonic integrals must be invariant
for the right-hand translation group aswell as for the left-hand
translation group. The integrals which we are seeking are
therefore just the harmonic integrals.

57-6. The condition for a harmonic integral can now be
replaced by

‘Pi....i'p.k =0
and Pi....i,,nk =0.
The first of these can be written
k 0 1 e 873
a o, I-Tz,...ap + 'ETEIPa,...a,_,ﬂa, F1eee0p (/a,a =0,
and the second is simply
0
Ay tvein = 0.

Hence the harmonic integrals are obtained by solving the
equations

p
El‘Pu,...a,ﬁlﬂar;‘...apog,a =0 (“= | ...,’I‘) (22)
r=

for the constants P, , . We have thus reduced the problem
of determining the harmonic integrals on M, and therefore
the Betti numbers, to a purely algebraic problem.
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We have seen that the first Betti number R, is zero. We now
show that R, is also zero. The equations to determine the
invariant double integrals

f VB, dat da = f% £ e deo

are B, 04+ Py 05, = 0. (23)

Permute a, 8,7y cyclically and add the three equations obtained.
We get
2(Fy, Cho+ By O + 1, O g) = 0.

Using (23) we obtain  F;,C%; = 0.
Hence 0=PF,0Ctf =P,
On the other hand we have R;>0. For,
Chpy Cls+ Coay Chs + Copn Oy
= Cypy Cos+ Jael Csy C,'l}a + Cha Ci/\a]
= Uppy Cas + 94 Ui Cz;ﬂ (by (6))
= Cypy Cas+ Cryp Cls = 0.

Hence f 31' CrwEL 84 8 dat do? dac®

is a harmonic integral of multiplicity three.

We may sum up the facts already established concerning
the topology of the group manifold of a closed semi-simple
continuous group as follows:

(i) the group manifold is orientable;
(i) Ry =Ry,=R,_,=R,_, =0 B;=R, 3>1;

r
(iii) the Kuler-Poincaré invariant 3 (—1)? K, = 0.
0

57-7. The determination of the Betti numbers of the group
manifold of a closed semi-simple continuous group has been
reduced to the problem of finding the integrals on the manifold
which are invariant under both the left-hand and right-hand
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translation groups, and these integrals, we have seen, are just
the harmonic integrals associated with the metric on the
manifold determined by the group. We have reduced the
problem of finding these integrals to that of solving the
linear equations (22). But in practice it is found that it is
simpler to find the invariant integrals directly, and by finding
the number of invariant p-fold integrals to determine the
Betti numbers.

A semi-simple infinitesimal group is known to be the direct
product of a finite number of simple groups (3], p. 174), and
when the decomposition of the group into simple groups is
known the problem is simplified. Let the simple groups be
Gy, ..., Gy, the dimension of G being r,. We can then choose a
basis for the fundamental vectors £ so that the constants of
structure C7 satisfy the conditions

Clp =
unless i+ dre <a<r+... 47y,
Tyt e+ Te 1 <P+ .+ 7,
1+ .+ re <YSry+...+r,,
for some s, and where the constants
CYs (B, y =ri+.o+rey+ 1, )

are the constants of structure of G,. Let F, . be a numerical

tensor (of the associated vector space) which satisfies cquations
(22). We consider the equations of this set for the values

a=r+..+r,_,+1,...,r;+...+r,. From these equations it
follows that
I)azl...ap = EAa,...ap,_‘ap.l 1eee0p ngc—ﬂ‘""a?. ’

where P§ is a numerical tensor of the associated

vector space defining an invariant integral for @,. Considering
each value of s, we see that F, must be a linear com-

Qy.eelp

bination of tensors of the vector space of the form
P p@ P

@yeitp ©Ap i, Tt T Apy faeeedp”

51 ,...ap'

HHI 17
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Further, we obtain the following algorithm for the pth Betti
number of the group manifold M of the semi-simple group G.
The polynomial

é(t) = Ry+ Ryt+...+ R 1,
where the coefficient £, is the ¢th Betti number of M, is called
the Poincaré polynomial of G. Then, if ¢,(¢) is the Poincaré
polynomial of the simple group @;, the Poincaré polynomial

o B0) = $1(0) . 0.

Thus in order to find the Betti numbers of the group manifold
of any semi-simple group, we express it as the direct product
of simple groups, and determine the Poincaré polynomials of
these simple groups. This brings us to the problem of finding
the Poincaré polynomials of simple groups, and we devote the
remainder of this chapter to the study of these invariants for
the main classes of simple groups.

58:-1. The four main classes of simple groups. It is
well known (13, p. 180) that the closed simple groups fall into
four main classes, with five isolated exceptions. The groups
of these four main classes can be represented as groups of
transformations N i
2t =ajz
of the linear vector space (21,...,2"), where the coefficients
a} are real or complex numbers. The four groups are repre-
sented as follows.

(i) The unimodular growp L,. The matrices in this case are
unitary and unimodular: a’d = I, |a| = 1. A unitary matrix

a such that la+L,| #0

can be written, in a unique way, as
a= (In - ‘.lia— ?lzl’p)—l (Ill + ‘.12'“+ ébp))
where a is a skew-symmetric matrix of real numbers, and B

is a symmetric matrix of real numbers. If a, is a unitary

matrix such that
lal+1n‘ = 0’
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the unitary matrices in the neighbourhood of it can be written

as a=a,I,— ja—3iB)* (I, +ta+}iB).

Conversely, any matrix of these forms is unitary. The condition
la|=1

imposes one condition on the elements of « and B, and enables
us to express ) as a function of the other elements. Hence
the dimension of the group manifold is

r=mn?-1.
The infinitesimal transformations of the group are given
by matrices I,+a+ip,
where Pl +pr=0

on account of the unimodular condition.

(ii) The orthogonal group O,,.,. In this case n is odd,
n = 2v+1, and the matrices a are real and orthogonal, and
|a| =1 If

la+L,|#0,

a can be written in the form
a = (I,— ) (I, + }a),
where a is skew, and a similar representation can be given when
|a+1,| =0.

Thus r = {n(n—1), and the infinitesimal transformations are

given by matrices
I,+a.

(iii) The orthogonal group O,,. In this case a is again real
and orthogonal, and |a | = L. The properties of the group are
different from those of the odd orthogonal group, but the
representation is the same.

17-2
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(iv) The symplectic group S,,. In this case n is even, n = 2v,
and the matrices are unitary and satisfy the equation

a'ya=y,
where Y= (_01 I(;')
If |a+L,| #0,

a can be expressed in the form

a= (In_ é’b)gl (In+ .l!b)a

where b=(a+w‘ [3+?8),
—B+id a—iy

in which & is skew, and B, y, 8§ are symmetric, and each is a
real matrix of v rows and columns. The matrices in the neigh-

bourhood of a,, where
I a,+1, I =0,

can be represented as before. Thus r = n(n+1), and the
infinitesimal transformations of the group are given by matrices

I,+D.

We have thus obtained parametric representations of the
groups. Each of them is closed. It is more symmetrical how-
ever to use superabundant coordinate systems on the group
manifold, and to represent the point corresponding to the
generic transformation, given by the matrix X, by the »®
elements 2% of this matrix. The point will often be denoted by X,
the symbol of the corresponding matrix. It is to be remembered
that a7 is a function of » parameters (sy, ..., s,).

58-2. The method of finding the invariant integrals on the
group manifolds of L,, Oy,,;, Oy, and 8,,, is the same in prin-
ciple for each group, and the differences are in the details.
Let G be any one of the groups, M its group manifold. We first
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find the vectors #¥ on M. If P,is any covariant vector, consider
the form Pdsé

and make the transformation s >s’, where
87 = 8;+6*EL.
We have
N gor: 0 . . o0& .
Ps')ds = | B(s)+¢* == Fi(s) €] || ds* +e* 2>*ds/
08; 0s;
= Py(s)ds’ +e*A, P,dst + O(e?).
Hence if P,ds? is invariant,
Py(s")ds"s = Py(s)dst + O(e?),
and conversely.
We have to find r independent 1-forms which are invariant
for transformations of the left-hand translation group. Let x
be the generic transformation of the group, and let (X?%) = x-1.

Consider the form ’
8k = Xjda,

and make the transformation x - x’ given by
x' = (I, +e7)X,

where (I, + et) is an infinitesimal transformation of the group.
(T is, of course, independent of the elements of X.) Since

X'ida", = Xida,
the form & is invariant. We have 22 such forms, and it remains

to show that r of them are independent. At the point x = I

n’

I+ x—l»gi e=I+b

a
is an infinitesimal transformation of the group, and a (1-1)
correspondence is established between the forms
ki
and the infinitesimal transformations of the group. There-
fore there are r independent forms {i. Any integral which
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is invariant for transformations of the left-hand translation
group can therefore be written in the form

f2P<;'::::;';>§;':x§}':x X, (24)

where the coefficients P( ;: ;") are constants.
By reasoning similar to the above we see that if a trans-
formation x —->x’,
x' = xa,
of the right-hand translation group is effected, ¢} is trans-
formed into o )
Ajllay,  (4j)=a"t,

and the condition for the invariance of (24) is therefore

(], ;:;)Ah‘ ’lpghl (l a’;{:
—LPC: 3,'; X
This condition can be written as
. 0k . Ok |
LP(;I ;:) Xp 8;7 };a—si‘
P
oxk . oxk
Xjp 7 . X
k 2s, X 08,
xy P
oab 022
= P(‘l ”) AL Xy aéf a§, Al 'awajl .
a h xb
ip 1,, e qe
Al Xg b s, o AP XY 3., @,

Now if €!,...,€" are r arbitrary numbers, and

'Laka
b= (Xaaa )

then I,+b is an infinitesimal transformation of the group,
and any infinitesimal transformation of the group can be
obtained in this way by suitable choice of €, ..., e". If
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€, ...,e (a=1,...,p) are p sets of r numbers, we obtain p
matrices by, corresponding to p arbitrary infinitesimal trans-
formations. If we multiply the above equation by

a
e ... €&,

a @
el’ eee ep’,

we obtain the result that

EP(i;...’ip)

J1..dp

birs, e+ Uibi (25)

[ i AYS

is a polynomial in the components of the tensors b, ; in the
vector space of the transformation, which is unaltered by
the transformation of the group. Conversely, we can reverse
the argument to show that if (25) is invariant for all trans-
formations of the group, where by, ..., b, arc p linearly in-
dependent matrices such that I, + by, is an infinitesimal trans-
formation of the group, then (24) is an invariant integral.
Now (25) is a polynomial in the components of the p tensors
which has the properties: (i) it is linear and homogeneous in
the components of each of the tensors; (ii) it is invariant under

the substitutions of the group; (iii) the substitution
. ( 1 2 .. p )
M My ... T,
performed on the tensors multiplies the polynomial by d,,, where
d,1is + 1 or — 1 according as 7 is an even or an odd substitution.

58-3. Conversely, let us consider a polynomial in the com-
ponents of p tensors bf,; (h=1,...,p) which are linearly
independent and are such that I, +byg, is an infinitesimal
transformation of the group. Suppose that this polynomial
satisfies conditions (i) and (iii) above. It follows at once that
it is of the form (25). If it also satisfies the condition (ii) it is
invariant under substitutions of the group, and, as we have
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seen above, the corresponding integral (24) is invariant under
both translation groups on the group manifold.

We therefore try to solve the problem of finding the in-
variant integrals by finding the polynomials in the components
of the tensors b, ; which satisfy conditions (i), (i) and (iii).
We may select the tensors by, ; in any way we please, provided
they are linearly independent and satisfy the condition that
I, +b, is an infinitesimal transformation of the group. In
the following paragraphs we consider the groups of the four
main classes separately, in each case choosing the tensors
bin; so that we can make use of a fundamental theorem in the
algebraic theory of invariants.

59-1. The unimodular group L,. If (24) is an invariant
integral for the group /., and we make the substitution z > 2’,

2’ = k2,

the integral is unaltered. Hence any integral which is in-
variant for transformations of the unimodular group is also
invariant for the transformations of the more ample group
consisting of all unitary transformations. Conversely, any
integral which is invariant for transformations of the more
ample group is invariant for the unimodular group. We there-
fore have to find polynomials of the form (25) which are
invariant for the transformations of the unitary group.

Since the unitary group depends on n? parameters, the
matrices b are subject to no conditions. Let us take p contra-
variant vectors Pf, and p covariant vectors Q¥ in the n-
dimensional vector space. Then we may take the p tensors to be

. . o
b(‘n) ji= P bz) QS;”-

It is easily seen that the p tensors satisfy the condition of
§ 58:3. We have to find polynomials in the components of these
2p vectors which satisfy the conditions:

(i) they are linear and homogeneous in the components
of each vector;
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(ii) they are invariant under substitutions of the unitary
group;

(iii) if the substitution 7 is made on the p tensors Pf, and
the p tensors Q% simultaneously, the polynomial is multiplied
by §,.

Using condition (ii), and the fundamental theorem of the
theory of invariants of the unitary groupis), we know that
the polynomial must be the sum of terms each of which is
a product of factors of three types:

(@) factors of the form

(PU.)QU")) = Iz;,,) Q‘,,k)y

(b) determinants | P}, ... BR,|;
| By - B

and (c) determinants

M . .

Q.. Qi
On account of (i), each factor of the type (b) must be balanced
by a factor of type (c); and since the product of these two

factors is
(Bpy@%) ... (Puy@*)

b

(B @*))  -oe (Fup @*)

the polynomial is expressible in the form
[ =2a,(Py Q) ... (P(p) Q)

where the summation is over the p! substitutions

2 ..
m = 2).
My My .. T,

Conversely, any polynomial of this form satisfies (i) and (ii).



266 CONTINUOUS GROUPS [v, 59.2

59-2. We now apply condition (iii). Let nf denote the
operation of replacing

‘P(li)3 (p)a Q(D sany Qép) by 'R;:]‘)! . (n,)’ Q(i PR ngﬂp)
in f, and write R, = (Fp@“) ... (Fp Q(pﬂ)_

Then, if f satisfies (iii), we have
1
f=T() = 38,1
l al
= ﬁ 21" § a/p 81, 7TRP
= }:, a, T(R,).
Now 7T'(R,) is itself a polynomla,l obviously satisfying (i) and

(ii). If we can prove that it satisfies (iii), we shall then have
merely to find the independent polynomials 7'(R,). But

nl'(R,) =m E;ﬁ d,0R,

=4,

m "Hp T)‘ mr
=4,T(R,):
Thus (iii) is also satistied. Similarly, we prove that
T@wR,) =9,T(R,).
Also, TR, = (Pgy @) Py @) ... (Pl @*7)
= (Py QM) (P @#) ... (B @“),

where the substitutions p, 7, A, p satisty

(mo) R,

A=mp, A= pum.
Hence nR, =R, .,
and therefore T(R,,,-) =8, T(R,).

npn—
From this it follows that if there exists an odd substitution

7 which is permutable with p, T'(R,) must be zero. We use this
fact to show that, for certain substitutions p, T'(R,) is zero.
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We resolve the substitution

1 2 ..
2=l o )
P1 Pe - Pp
into cyclic substitutions

p = (061, ceey ah‘) (ahrf'l’ ceey ah'+h’) cee (aﬂ—hv+1’ ...,O(,p),

1 2
where a = ( p )
o Ay ... @,

is a substitution on 1, ...,p. Suppose that, in the first place,
one h, say h,,iseven. Let 7 be the substitution which permutes
Ot tha st ooo> Eny +n, CYclically. Then 7 is odd, and it
permutes with p. Hence

T(R,) = 0.

Next, suppose that each A, is odd, and that two of them.
say h, and h,, are equal. Let 7 be the substitution which
permutes

Oyttt WI Oy s oo Xy WIBR Oy e
Again 7 is odd, and permutes with p, and therefore

T(R,) = 0.

P
Finally, take 7 = a~1; then

apmt = (1,..., k) (hy+1,..,hy+hy) ... (p=h,+1,...,p) = py
and T(R,) = 0, T(R,).

Any polynomial which satisfies the conditions (i), (ii) and (iii)
can therefore be expressed as a sum of polynomials 7'(R,),
where

Po= (L, .co,h)) (by+1, ..., hy+hy)...(p—h,+1, ..., p),
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and hy<hy<...<h,, hy+...+h,=p,
h;=1 (mod?2).
Now R, can be written as

— pi D pi. nH©) iy ) o a1 Ryt 1) p HP)
Rl’n—PlQih,I‘é;Qi.""P(h,;Q b Q ' "'Izp’;Qi,,—l

) =17 (fy+1) Cip iny
i ih %,
= b(i)iln o b(h:)ihx—l o b(;)’.p -

and therefore the polynomial (25) corresponding to 7'(K,) is

i i
'Zi !,’(1‘)1‘;., b(;;)i;.‘ ;

Geeeip | 4 i
11(12) iy ter ()(1’1) iy ’
P |

Lt 7,
bdi-1 - Odyip— |

The corresponding integral (24) is then
fg’“ X8y X ... x 0,
where Q,=Caxlax...x{H .

59-3. We now show that if 4> 2n— 1, £, can be expressed
as the sum of products

), x2y x .. .x8Q,,
where hy<hy<...<h,<2n—1.

The polynomial corresponding to £, is T(R,), where p, is
the cyeclic substitution

Po=(1,2,...,h).

If we can show that T(R,) can be expressed as a sum of
polynomials T'(R,) in which the substitutions p involve only
cycles of order less than &, we can, by a simple induction, show
that T'(R,)) can be expressed as a sum of polynomials T'(R,),
where o involves only cycles of order less than 2n— 1. The
result will follow immediately by constructing the corre-
sponding integrals.
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Suppose that » = 29— 1, where ¢ >n. Then

0=|PRy ..By 0 0..0] |@P @P..Qx"> QP
By By 0 0.0 lgnogo . qm Q¥
qu—z) Ré‘q--z) 0 0..0 0 0 0 0
Blp..Phy 0 0.0 [0 0 0 0
S (B o (P |
(Bog-0@9) ... (Pag Q)

=2 0,(Ba @) ... (Hgy-» Qre),
y

where v is the substitution

7—(1 2 3 ... 2q-2 2q-—l)
B 2 vee 2¢—2 ’
Hence 74[ 71 q Yq—l
(Pp @) .. (Fay 9 @*~?) X.6,(Fp @) .... (Figpp @) = 0.
Y ;
(26)
The term written explicitly is J, R,, where
_(1 2 ... 2q-2 2q—1)
2 7 e Yo Vo)

We have to consider the terms R, on the left-hand side of
this equation for which the substitution p is a cycle of order
2q — 1. For all such terms p is an even substitution, and since

ylp=(1,2..,h)
is also even, 8, = + 1. Further, we can write the cyclic sub-
stitution p in the form
p=(29—-1,7,7,+ LA, g+ 1, A, A1+ 1),
where A, ...,A,_, are odd integers. From the form of p, it
follows that the substitution

7r=(l 2 .. 2q—1)

. 29 —1 e A, +1
is even. 1 Ya a1
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But Po=mlpm=(1,2,...,29—-1),
and therefore 7'(E,) = T'(R,); hence, if there are £ terms in
(26) for which p is a cyclic substitution of order 2¢ — 1, the
operation 7' applied to (26) gives
kT(R,)+2T(R,) = 0,

where the substitutions o only involve cycles of order less
than 2¢ — 1. It only remains to show that k is not zero. This
follows at once from the case

(Yo Yo - Yg) = (3,5,...,2¢—1, 1),

59-4. We have now seen that any invariant p-fold integral
on the group manifold of L, can be written in the form

1o

L'u,aJ Qp xQy x...x 8, ,

where hy<hy<...<h,<2n—1,
hi+...+h, =p,
h;=1 (mod?2).

Further, all these integrals are invariant. We have still to see
whether the integrals

f.Qh‘ X8y x...oxQ,

where the suffixes h; satisfy the above conditions, are linearly
independent.

We first show that

0, == Xidal = 0.

o 0},
Since I, +( % 25, e“)
is an infinitesimal transformation of the group I,, the uni-
modular condition gives, for all ¢2,

. ox
X! e =0,
08,
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and therefore Q, = Xidai = 0.

Thus, to the above conditions for the suffixes A;, we add &, > 1.
We now show that with this new condition the integrals
of multiplicity » which we obtain by taking all allowable
partitions of p are independent. Since the Betti number
R, of the group manifold is one, there exists an invariant
integral of multiplicity r, and this can only be a multiple of

f!.)a XX oo X Qo1

since 3+5+...+(2n—1) = n2—1. Hence
Qyx805%x...x 802y, 1#0.
Let P =0Q, x8) x...xQ,
be an invariant p-form. There isa unique invariant (r — p)-form
P =0} x..x,
suchthath,,...,h,, ky, ..., /cl,, isa derangementof (3,5, ...,2n — 1),
and er’=91x!22x...x92n_l.
Let By, ..., By be the distinct forms
O xp x...x 8,
where hy+...+h, = p,
I<hy<..<h,<2n-1,
h;=1 (mod2).
Then PyxPyp=0  (i#)),
since the product involves at least one 2, twice; and
Pyx Py = Q3 x Q5% ... x Qg 1 #0.

Suppose that the s p-forms are not independent, so that there
is a relation

8
.Elai By =0.
i=
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3 —
Then YaFyxFy=0 (j=1,...,8),
i=1

and hence a; =0 G=1,...,9),

that is, we have a contradiction.

We have thus obtained a basis for the invariant p-fold
integrals on the group manifold M of L,, and we can therefore
calculate the Betti numbers of M. The p? Betti number
R, is the number of partitions

hithy+...+h,=p
of p, where 1<h<...<h,<2n—1,
h;=1 (mod2).
It follows that the Poincaré polynomial of M is
(L+83) (1 +8%) ... (1 +¢271),

60-1. The orthogonal group O,,,,. The determination
of the invariant integrals of the group manifolds of the other
simple groups follows the same lines as for the group L, and
the differences are in details. It will not therefore be necessary
to give the arguments at such length, and we shall merely deal
with the points of difference.

For orthogonal transformations in the vector space there
is no difference between contravariant and covariant vectors.
We may therefore write a contravariant vector P}, as a co-
variant vector P, where

PP = P (t=1,...,n).
Let P, ..., B}y and @P, ..., QP be 2p vectors, and let

bins = Py @ — Qi Pf.
These will be the tensors bf,; of (25). The polynomials (25),
regarded as polynomials in the components of the 2p vectors,
satisfy the three conditions (i), (ii) and (iii) of §58-2, but a
polynomial in the components of the 2p vectors which
satisfies these three conditions is not necessarily of the form
(25). A fourth condition on the polynomials is required:
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(iv) if we make an interchange of Pf,), @/, that is, if we replace
P‘h) by @f, and @P by P wherever they occur, we change the
sign of the polynomial. It is easily seen that when the con-
ditions (i)~(iv) are satisfied the polynomial is of the form (25),
and is invariant for the transformations of the group.

The fundamental theorem on the invariants of the ortho-
gonal group(s] tells us that a polynomial which satisfies (i)
and (ii) is a sum of terms each of which is a product of
factors of the form:

(@) (Em @), (B P®), (Quy P®);

(b) determinants P(a‘) . Py, (A+p=mn).
P @ - Play
Qoo -+ Qb
Qo - Qo

Since the product of two such determinants is expressible as
the sum of products of type (@), we may suppose that each term
has either one or no factor of the type (b). Suppose that there
is a determinantal factor present. This factor is linear and
homogeneous in the components of #n vectors and therefore the
factors of type (@) must be linear and homogeneous in the
components of 2p—n vectors. But this is impossible since
2p —n is odd. Therefore the polynomial is expressible as the
sum of products of terms of type (a).

60-2. We now take account of conditions (iii) and (iv). We
consider 2Pp' substitutions, made up of p! permutations of
P, ..., Py, and @9, ..., Q% simultaneously, and 27 inter-
cha.nges (Pl @P) > (Qby PP). A substitution is odd if it is
(@) an odd permutation, or (b) a simple interchange, or (c) the
product of an odd number of substitutions of type (a) and (b).
If @ is any polynomial in the scalar products

(Bn P9), (@) @9), (B @),

HHI 18
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\

we now take the operation 7' to be defined as
76) = — ). 9,7G,

summed over the 2¢p! substltutlons, where 6, is +1 or —1
according as 7 is an even or odd substitution. A basis for the
polynomials satisfying (i)-(iv) is given by the polynomials
T(S), where
8 = (B PP) ... (Bp,_p PP (@) @“2) .. (Q(a,,ﬂ) Q)
X (Bry @) ... (Bpyy @),
in which each vector appears once. As before, we prove that
aT(8) = 8, T(8) = T(wS).
Consider a sequence of factors
(B P49) (Tn) €7) ... (Qaay @)
of §. The interchanges
(P(i)\,)’ Q‘iA'))_')(Q(iA,)a Pfim) (P(A, -1)? J( - ) (Q(/\,.-‘), Ar- ‘))
replace this by
(Fap @*) (Fag @) ... (Fip,_p @),

and do not affect the other factors of S. There thus exists a
substitution 77 which changes § into

mS =+ R, = + (Fy Q") ... (K, @),
and a basis for the polynomials is given by the polynomials
T(R,). Asin §59-2, we show that we can confine ourselves to
polynomials 7'(R,), where
= (L2, .. k) (hy+ 1, ..k +hy) (p—h,+1,...,p),
and hy<hy<...<h,<2n—1, h;=1 (mod2).
60-3. We now show that if one of the numbers 4, is con-

gruent to 1, modulo 4, then T'(R,) is zero. Suppose, for in-
stance, that b, = 4¢+ 1. If the substitution 7 consists of the

permutation oy (3 by —1)...(2q+1,2q+2),
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together with the interchanges
(B, @) > (@6, PO), ... (B, @) > (Qhy B™),

then 7 is an odd substitution. But # is interchangeable with p,

and hence
T(R,) = 0.

Hence a basis for the polynomials is given by the polynomials
T(R,), where

Pp= (L b)) (by+1,...;0 +hy)...(p—h,+1,...,p),
in which hy<hy<...<h,<2n-3,
i=—1 (mod4).

The corresponding integral is

f!)"‘ X XXy
Asin §59-4, we show that

f'Q" X% oo X 2y q

is the unique integral of multiplicity ». Using this, we prove
the independence of the integrals as before, and show that the
Poincaré polynomial for the group manifold of 0,,,, is

(L4+8)(L+87) ... (L+82*3) (n odd).

61-1. The orthogonal group 0,,. In this case we cannot
eliminate the possibility of terms in our polynomial having

a factor
By . Blh|  (4p=m).

B, - B3y

Qs - @by

. 1 n
Qv - Qb

18-2
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The difference made by the terms with a determinantal factor
can be explained in the following way. Consider the improper
orthogonal transformation given by the matrix

a= /-1 0 ... 0
0 1

0 1

This is, of course, not a transformation of the group. A term
which has no determinantal factor is unaltered by the improper
transformation, but a term with such a factor is changed in
sign. We call the invariant integrals which are unaltered by
the transformation even invariants, and those which are
changed in sign odd invariants. Clearly every invariant
integral is the sum of an even invariant and an odd invariant,
and the process followed in the preceding paragraph serves
only to find the even invariants. The even invariants are
therefore compounded by addition and multiplication from

the forms
024,0Q.,...,825, 5.

61-2. We now show that Q,,_, is itself compounded from
the other forms. For this, it is merely necessary to show that
T(R,), where p is the cyclic substitution (1,2, ...,2n—1), can
be expressed as a polynomial 7'(R,), where each o only in-
volves cycles of order less than 2n — 1.

We begin with the identity

(P @) (P @®) ... (Flp) @2 Y) (Flg) Q) (Figy PP) | = 0.
(P @®) .

(Pan-@9)...
(Pann@¥).re oo
(Qn@® ... .. (Qp P®)

Multiply this by (Fg@®)...(Py,_5@*®*?), and apply the
operator 7'. If we expand the determinant in terms of the
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elements in the last row and last column, and make suitable
interchanges in each of the terms obtained, we find, as in § 59-3,

that we obtain
kT(Rp) +2T(R,) = 0,

where k is a positive integer, p is the cyclic substitution
p =(1,2,...,2n— 1) and the substitutions o each involve cycles
of order less than 2n — 1. It follows that £,,_, can be expressed
as a sum of products of 2,(h < 2n—1).

We can show at once that the even invariant integrals
obtained in this way are independent. Indeed, in the sub-
manifold of M which represents the sub-group of orthogonal
transformations leaving the space z, =0 invariant, the
integrals are independent; therefore they are independent
in the whole manifold.

The number of even invariant integrals of multiplicity p on
the group manifold M of the group 0,, is therefore equal to
the coefficient of ¥ in the polynomial

(L4283 (L+£67) ... (L +82275) (n even).

61-3. We now come to the odd invariant integrals. If a is
the improper transformation of §61-1, and x is any trans-
formation of the group 0,,, axa~! is a transformation of the
group, and in this way we define a (1-1) transformation of the
group manifold M into itself. Any even invariant integral is
unaltered by this transformation, while an odd invariant
integral is changed in sign. Consider the point O of M corre-
sponding to the identity transformation I,, and the points
corresponding to the infinitesimal transformations

I,+ec, (r=1,...,8—1;8=2,...,n),

where C,, is the (n, n) matrix having the element in the rth row
and sth column equal to + 1, the element in the sth row and
rth column equal to —1, and the remaining elements zero.
Then r + 1 points form an indicatrix for M. The transformation
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of M defined by the improper transformation a changes these

points into

I, I,—ecy (8=2,...,n),

I,+ec, (s>r>1),

and it follows that the transformation changes the orientation
of M. Now the dual of any integral is changed in sign when the
orientation of the manifold is changed, and it follows from this
that the dual of any even invariant integral is an odd in-
variant integral, and the dual of an odd invariant integral is
an even invariant integral. The odd invariant integrals are
therefore obtained by forming the duals of the even invariant
integrals.

The number of odd invariant integrals of multiplicity p is
therefore the coefficient of #"~» in

(1 +8) (1 +17) ... (L4820-5),
and this is equal to the coefficient of t»="+! in
-t (14 473) (14 ¢77) ... (1 8720H5)
= (1+13)... (L +¢"-5).

Hence the number of odd invariant integrals of multiplicity
p is equal to the coefficient of ¢ in

L+ B) (L+87) .. (182 5).
It follows that the Poincaré polynomial of the group manifold
of the group 0,, is
(L+83) (1 +¢7) ... (1 +82»5) (L+ 1) (n even).
61-4, An odd invariant integral of multiplicity n —1 can be
written down at once. We recall that for the orthogonal group

of transformations in n-space there is no difference between
covariant and contravariant vectors. We may therefore write

& =8y
and Gx = Zye
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Then direct calculation shows that

(a) A = Gi""i"zil is X Zi;’i. X ... X Zin—aiu—-: X gi,.—ﬂ:n
is an odd invariant form, and that

(b) Qyx 2% ...x82,, sxA
is a non-zero invariant integral of multiplicity r. It follows
that the invariant integrals on M can each be written as a
sum of products of

0, ...,825, 5 A,

in which no 2, or A appears more than once in a single term.

62. The symplectic group S,,. This case is very similar
to that of the orthogonal group O,,,,. If P?is a contravariant
vector and we define

R’:*=Pl‘+'l:’ P*.=——Pi (’l;:l,...,V),

%
P} is a covariant vector for transformations of the symplectic
group. To construct the tensors bf,; we take 2p contravariant
vectors By ..., P, @, ..., @), and write

blng = Py Qs + Foy Qnrs
which fulfils the conditions required. To find the invariant
polynomials (25) we have now to find polynomials in the com-
ponents of the 2p vectors which satisfy (i)... (iv) of §60-1,
provided we replace the simple interchange in (iv) by the
interchange followed by multiplication by —1. The poly-
nomials are expressible as the sum of terms which are products
of factors:

(a) (Rr) QZ;)) = - (Q(S)IJ(:;)’ (‘P(r)l)(:))’ (Q(r) Q&));
(b) determinants |PB}, ... F&, (A+p=n).

I 1
Ra,\) b P(g,\)

Q(lbx o QZ;’:)

1 n
b - Q8w
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Now

1 % *
By ... B3y ||Pdy - Poon | |BadB2) - Fa)@op)

1 D% *
Ry - Fay ||Fagr -+ Fapa
* * =

(lb.) Q(fm Q(b,)l Q(b,)n

Qb - Q|| o1 - Qon| |(@opF) - Qo b,
= [Z+ (Boy Piy) -+ (Quo, -y Qo)™
Hence the determinant in (b) is equal to

Z+ (Poy P - (Qo, -0 9,)-

Thus the determinantal factors can be eliminated.

From this point on, the reasoning is the same as in §60.
We find at once that the Poincaré polynomial of the group
manifold of the symplectic group is

(L+83) (1427 ... (1 +372) (n even),

and that any invariant integral is expressible as the sum of

products of
05,05, ..., 829, 4

63. Conclusion. The method which we have given for
finding the invariant integrals on the group manifolds corre-
sponding to simple groups belonging to any of the four main
classes is due to R. Brauer. Another method of obtaining the
Betti numbers of these group manifolds has been given by
Pontrjagin(4]. Itseemspossiblethatone of thesemethodscould
be extended to deal with the five exceptional simple groups.
When this has been done, it will follow from § 56-7 that we can
find the harmonic integrals on the group manifold of any closed
semi-simple group once its decomposition into simple groups
is known.
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